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1. TRANSPORT PROBLEM 

The actin filaments and monomers densities (F and G) are modelled by the following 

coupled system of partial differential equations 

in (0,T) × Ω in 

(0,T) × Ω 

where u is the fluid velocity and the following material parameters are used 

 DF = 5 µm/s σF = 0.25 s−1 

 DG = 15 µm/s σG = 2 s−1 σˆGF = 0.5 s−1 

The equations are completed with the following boundary conditions: 

• The filament density is constant at the upper boundary: F(r = 25) = 80 µM 

• No flux boundary conditions are considered for F everywhere else and for G on the entire 

boundary 

Consider a velocity field u(x,y) = −1/1500(rx,ry) µm/s, where (x,y) are the points 

coordinates and r = √𝑥2 + 𝑦2 

  

ANS.  

The above problem explains space and time dependant partial differential equation involves 

a double discretization. The solution of the problem involves spatial and the temporal 

descritization. Space and time are linked through the characteristics. The discretization of one 

influences the discretization of the other. An accurate spatial discretization can be eroded 

when transported in time if the time integration method cannot propagate the information 

along the directions prescribed by the convection term. Space discretization: 

1)Finite element method 

2)Time discretization: two classes of methods 

• Based on the characteristics 

• Based on standard coordinate system and use time-stepping algorithms. 

For the solution of the above problem, we are going to use, 𝜃 family method in which Crank 

Nicolson is the best option as it is second order method (𝜃 = 1/2) which is implicit and 

unconditionally stable. 

 



𝝏𝐅

𝝏𝒕
  𝛁 𝛁 𝝈

𝚫𝑭

𝚫𝒕
− 𝜃𝜟𝑭𝒕= Ft  

 

𝑭𝒏+𝟏 − 𝑭𝒏

𝚫𝒕
− 𝜃[(−𝐮. 𝛁𝑭𝒏+𝟏 + 𝐃𝑭𝜵𝟐𝑭𝒏+𝟏 − 𝝈𝑭𝑭𝒏+𝟏) − (−𝐮. 𝛁𝑭𝒏 + 𝐃𝑭𝜵𝟐𝑭𝒏 − 𝝈𝑭𝑭𝒏)] 

= (−𝒖. 𝜵𝑭𝒏 + 𝑫𝑭𝜵𝟐𝑭𝒏 − 𝝈𝑭𝑭𝒏)

Implementing Crank-Nicolson (𝜃 = 1/2) 

𝑭𝒏+𝟏 − 𝑭𝒏

𝚫𝒕
−

𝟏

𝟐
[(−𝐮. 𝛁𝑭𝒏+𝟏 + 𝐃𝑭𝜵𝟐𝑭𝒏+𝟏 − 𝝈𝑭𝑭𝒏+𝟏) − (−𝐮. 𝛁𝑭𝒏 + 𝐃𝑭𝜵𝟐𝑭𝒏 − 𝝈𝑭𝑭𝒏)] 

= (−𝒖. 𝜵𝑭𝒏 + 𝑫𝑭𝜵𝟐𝑭𝒏 − 𝝈𝑭𝑭𝒏)

𝜟𝑭

𝚫𝒕
−

1

2
(−𝐮. 𝛁𝜟𝑭 + 𝐃𝑭𝜵𝟐𝜟𝑭 − 𝝈𝑭𝜟𝑭) = (−𝒖. 𝜵𝑭𝒏 + 𝑫𝑭𝜵𝟐𝑭𝒏 − 𝝈𝑭𝑭𝒏)

 

This equation represents the strong form of the equation in Galerkin form, to convert it into 

weak form we multiply each term with weighted function ‘w’ and applying boundary 

conditions, we get following results . 

 

(𝒘,
𝜟𝑭

𝜟𝒕
) +

𝟏

𝟐
[𝑪(𝒖; 𝒘 , 𝜟𝑭) + 𝒂(𝒘, 𝜟𝑭) + (𝒘, 𝝈𝑭𝜟𝑭) = −[𝑪(𝒖; 𝒘, 𝜵𝑭𝒏) + 𝒂(𝒘, 𝑭𝒏 +

(𝒘, 𝝈𝑭𝑭𝒏)] 

 

Similar formulation is used to solve the equation no. (2) as follows 

𝝏𝑮 

𝝏𝒕
∇ −

 

𝐆𝐧+𝟏
− 𝐆𝐧+𝟏

𝚫𝒕
− 𝜃[(−𝝈𝑮. 𝛁𝐆𝐧+𝟏

+ 𝐃𝑮𝜵𝟐𝐆𝐧+𝟏
+ 𝝈𝑮𝑭𝐆𝐧+𝟏

) − (−𝝈𝑮 𝛁𝐆𝐧
+ 𝐃𝑮𝜵𝟐𝐆𝐧

+ 𝝈𝑮𝑭𝐆𝐧
)] 

= (−𝝈𝑮 𝜵𝐆𝐧+𝟏
+ 𝑫𝑮𝜵𝟐𝐆𝐧+𝟏

+ 𝝈𝑮𝑭𝐆𝐧+𝟏
)



Implementing Crank-Nicolson (𝜃 = 1/2) 

𝑮𝒏+𝟏 − 𝑮𝒏+𝟏

𝜟𝒕
−

𝟏

𝟐
[(−𝝈𝑮 𝜵𝑮𝒏+𝟏 + 𝑫𝑮𝜵𝟐𝑮𝒏+𝟏 − 𝝈𝑮𝑭𝑮𝒏+𝟏) − (−𝝈𝑮 𝜵𝑮𝒏 + 𝑫𝑮𝜵𝟐𝑮𝒏 + 𝝈𝑮𝑭𝑮𝒏)] 

= (−𝝈𝑮 𝜵𝑮𝒏 + 𝑫𝑮𝜵𝟐𝑮𝒏 + 𝝈𝑮𝑭𝑮𝒏) 

𝜟𝑮

𝚫𝒕
−

1

2
(−𝝈𝑮 𝛁𝜟𝑮 + 𝐃𝑮𝜵𝟐𝜟𝑮 + 𝝈𝑮𝑭𝜟𝑮) = (−𝝈𝑮 𝜵𝑮𝒏 + 𝐃𝑮𝜵𝟐𝑮𝒏 + 𝝈𝑮𝑭𝑮𝒏)

 

This equation represents the strong form of the equation in Galerkin form, to convert it into 

weak form we multiply each term with weighted function ‘w’ and applying boundary 

conditions, we get following results. 

 

(𝒘,
𝜟𝑮

𝜟𝒕
) +

𝟏

𝟐
[𝒂(𝒘 , 𝜟𝑮) + (𝒘, 𝝈𝑮𝜟𝑮)] = −[(𝒂(𝒘, 𝑮𝒏) + (𝒘, 𝝈𝑮𝑮𝒏) + + (𝒘,

𝟏

𝟐
𝝈𝑮𝑭𝑭𝒏) =

(𝒘,
𝟏

𝟐
𝝈𝑮𝑭𝑭𝒏+𝟏)] 

How it works at the background of the programme? 

The input parameters are provided by the inputs as follows 

D_F=5; 
sigma_F=0.25; 
D_G=15; 
sigma_G=2; 
sigma_GF=0.5; 

  
% GEOMETRY 
Nr=20; 
Ntheta=20; 
[X,T]= createMesh(Nr,Ntheta); 
numnp = size(X,1);  

 

 

The convection velocity is provided in the problem parameters. Spatial discretization is 
performed first using linear finite elements Then, transient response is computed using a time-
stepping algorithm.  

Crank Nicolson scheme is used for time descritization,4 Gause points method is used for 

time integration, the shape function and mass, convection matrix is called boundary value and 

mesh are given which are applied on boundary. Using Lagrange’s multiplication the equations 

are solved and the values of F and G are plotted across the domain. 



 

Variation of G value over the domain: 

The output shows exact similar results as we have applied the boundary conditions below. 

As the mesh is courser is the first figure the graph also has edges on the other hand figure gets 

finer as the mesh is improved . 

 

 

  
Figure 1 Mesh 50×50  And 40 ×40 F value over the domain 

 

Variation of G value over the domain: 

The following figure shows the variation of G value over the domain and the results are 

satisfactory as per the boundary conditions. It is denser in bottom side as compared to upper 

size as per results  



 
Figure 2 mesh 100 ×100 F value over the domain 

 

 

 
 

Figure 3 Mesh 5×5 And 400×40 G value over the domain 

The Crank Nicolson method is unconditionally stable hence proves here, the results which we have got are 

satisfactory and there is no discontinuity. But the accuracy is very poor at lover mesh size proves here.   



 

Figure 4  Mesh 100×100 G value over the domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.  STOKES PROBLEM  

Solve a Stokes problem 

∇ · σ = 0     in Ω 

∇ · u = 0     in Ω 

with prescribed velocity at r = 15 and r = 25 

ur(r = 15) = −0.15,  uθ(r = 15) = 0 

ur(r = 25) = −0.30,  uθ(r = 25) = 0 

and zero traction on the straight sides of the boundary. Consider a viscosity ν = 103  pN · s/µm. 

 

ANS. 

After neglecting the convective term and time dependency term from Navier stokes equation, 

we get Stokes problem which is the above question. There are two formulations of stokes 

problem, in first the the formulation is expressed in terms of pressure and velocity. 

But here the other formulation is used where the formulation uses Cauchy tress. The 

advantage of this approach is that it can readily  treat problems with fluid constitutive 

equations more general than the linear Stokes' law. 

In differential form, a steady Stokes problem is stated as follows in terms of Cauchy stress:  

given the body force 0. 

∇ · σ = 0     in Ω                                                 (equilibrium), 

        ∇ · u = 0     in Ω                                                (incompressibility) 

The weak form obtained multiplying by the velocity test function w and integrating by parts 

the stress term. Similarly, the incompressibility condition is multiplied by the pressure test 

function q and the result integrated over the computational domain. 

∫ 𝛁𝒘 ∶  𝛔 𝒅Ω = 𝟎

Ω

 

∫ 𝒒𝜵. 𝒗𝒅Ω = 𝟎

Ω

 

 𝒂(𝒘, 𝒗) = ∫ 𝒘𝒊𝒋,𝑺𝒊𝒋Ω
 𝒅Ω 



𝒃(𝒗, 𝒒) = ∫ 𝒒𝜵. 𝒗𝒅Ω

Ω

  

 

The mesh is created using provided code which is of Q1Q1 element mesh. The size of the 

mesh is taken 3 times over the domain. The velocity and pressure profile obtained over the 

domain is explained below. The X and Y component of velocity is also plotted in code and is 

shown below.  

For stabilization of the equation, the Galerkin Least Square method is used. Which has 

stabilized the equation and can be seen in the results below. 

 

  
Figure 5 Velocity Streamline profile of mesh 5× 5 and 40× 40 

 

 

 

Figure 6 Velocity Streamline profile of mesh 60× 60 



The streamline profile is totally disturbing in lower mesh but it is very much perfect at higher 

grid but also it takes lot of time to solve so we can say that the higher grid size may be 

expensive. 

  
Figure 7 Velocity X component profile of mesh 5× 5 and 40× 40 

 

Figure 8 Velocity X component profile of mesh 60× 60 

  
Figure 9 Velocity Y component profile of mesh 5× 5 and 40× 40 



 

Figure 10 Velocity Y component profile of mesh 60× 60 

 

 

 

 
 

Figure 11 Pressure profile of mesh 5× 5 and 40× 40 

 

 

Figure 12 Pressure profile of mesh 60× 60 



The pressure profile is pretty much similar at both the higher grid but it is very disappointing 

at lower grid though we have used G.L.S. method. But fine grid results are satisfactory so we 

can say the results are up to the mark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.       COUPLED PROBLEM 

The equation describing the evolution of monomers densities G does not involve any 

convective transport and, therefore, only the fluid around the fibers has to be 

considered. This fluid is modelled using the equations of a quasi-steady viscous fluid. 

Moreover, due to the presence of actin fibers, the incompressibility constrain is dropped 

and pressure is neglected. Then, the equations governing the coupled problem can be 

written as 

                                                                              in (0,T) × Ω 

in (0,T) × Ω         

  in (0,T) × Ω 

where ∇ · σm and Tm are surface forces on the leading edge. 

Solve the proposed problem with the parameters and boundary conditions described in 

the previous points. 

In order to treat the boundary terms, you can use the function boundaryMatrices.m, 

that builds the matrices arising from the discretisation of these two terms. Note that this 

function assumes that the same interpolation degree is used for u and F. 

Remark. The first equation in the system does not include any time derivatives and it can 

be evaluated at any time. Note, however, that our goal is to find the solution of the 

system at tn+1 and, therefore, it is convenient to evaluate the equation at this instant of 

time. Otherwise, we need to make sure that the initial condition verifies the equation. 

ANS. 

 

Given equation 

𝝑∇ · (∇su) + ∇ · σm (F ) + Tm(u) = 0          ( 1) 

𝝏𝑭

𝝏𝒕
 = -u. 𝜵F+Df𝜵2F-𝝈F                                        (2) 

𝝏𝑮 

𝝏𝒕
= DG∇2G−σGG + σGFF                             (3)            

In the above equations explains form of Navier stokes equation in which first equation 

contains 2 variables which are explained in the partial differential form in other two 

equations.  



The first equation in the system does not include any time derivatives and it can be evaluated 

at any time. Our goal is to find the solution of the system at tn+1 and, therefore, it is convenient 

to evaluate the equation at this instant of time. Otherwise, we need to make sure that the 

initial condition verifies the equation.Therfore considering equation at time tn+1  yields 

equation; 

𝝑∇ · (∇sun+1) + ∇ · σm (Fn+1 ) + Tm(un+1) = 0 

Multiplying the equation by weighting function w and integrating by parts , 

(𝐰, 𝛝∇ · (∇s un+1)) +(w, ∇ · σm (Fn+1 ) )+ (w,Tm(un+1)) = 0 

 

(𝐰, 𝛝∇ · (∇s un+1))= (𝐊𝐬 un+1)) 

(w, ∇ · σm  (Fn+1) )= (𝐓𝐅 (Fn+1 ) ) 

(w,Tm  (un+1))= (𝐓𝐦 (un+1)) 

 

The equation becomes; 

(𝐊𝐬 𝐮𝐧 + 𝟏)) + (𝐓𝐅 (Fn+1 ) )+ (𝐓𝐦 (un+1))=0            (i) 

 

For solving equation 2 and 3, we use Crank Nicolson scheme as follows, 

𝝏𝐅

𝝏𝒕
  𝛁 𝛁 𝝈

𝚫𝐅

𝚫𝐭
− θ𝚫𝐅𝐭= Ft  

𝐅𝐧+𝟏 − 𝐅𝐧

𝚫𝐭
− θ[(−𝐮. 𝛁𝐅𝐧+𝟏 + 𝐃𝐅𝛁𝟐𝐅𝐧+𝟏 − 𝛔𝐅𝐅𝐧+𝟏) − (−𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧)] 

= (−𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧)

Implementing Crank-Nicolson (𝜃 = 1/2) 

𝚫𝐅

𝚫𝐭
−

1

2
(−𝐮𝐧+𝟏. 𝛁𝚫𝐅 + 𝐃𝐅𝛁𝟐𝚫𝐅 − 𝛔𝐅𝚫𝐅) = (−𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧)

 

𝐅𝐧+𝟏 − 𝐅𝐧

𝚫𝐭
−

𝟏

𝟐
[(−𝐮𝐧+𝟏. 𝛁𝐅𝐧+𝟏 + 𝐃𝐅𝛁𝟐𝐅𝐧+𝟏 − 𝛔𝐅𝐅𝐧+𝟏) − (−𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧)] 

= (−𝐮𝐧+𝟏𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧)



𝐅𝐧+𝟏

𝚫𝐭
+

𝟏

𝟐
[(𝐮𝐧+𝟏. 𝛁𝐅𝐧+𝟏 − 𝐃𝐅𝛁𝟐𝐅𝐧+𝟏 + 𝛔𝐅𝐅𝐧+𝟏)] =

𝟏

𝟐
(−𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧) +

𝐅𝐧

𝚫𝐭

 

𝐅𝐧+𝟏

𝚫𝐭
 

𝐌

𝚫𝐭
(𝐅𝐧+𝟏) 

𝟏

𝟐
[(𝐮𝐧+𝟏. 𝛁𝐅𝐧+𝟏 − 𝐃𝐅𝛁𝟐𝐅𝐧+𝟏 + 𝛔𝐅𝐅𝐧+𝟏)] 

𝟏

𝟐
[𝐂(𝐮𝐧+𝟏, 𝐅𝐧+𝟏) − 𝐊𝐃(𝐅𝐧+𝟏) + 𝐌(𝐅𝐧+𝟏)] 

𝟏

𝟐
(−𝐮. 𝛁𝐅𝐧 + 𝐃𝐅𝛁𝟐𝐅𝐧 − 𝛔𝐅𝐅𝐧) −

𝟏

𝟐
[(−𝐮, 𝐅𝐧) + 𝐊𝐃𝐅𝐧 − 𝐌(𝐅𝐧)] 

𝐅𝐧

𝚫𝐭
 

𝐌

𝚫𝐭
(𝐅𝐧) 

 

 

𝐌

𝚫𝐭
(𝐅𝐧+𝟏) +

𝟏

𝟐
[𝐂(𝐮𝐧+𝟏, 𝐅𝐧+𝟏) − 𝐊𝐃(𝐅𝐧+𝟏) + 𝐌𝑭(𝐅𝐧+𝟏)]=

𝟏

𝟐
[𝑪(−𝐮𝐧, 𝐅𝐧) + 𝐊𝐃𝐅𝐧 − 𝐌(𝐅𝐧)] +

𝐌

𝚫𝐭
(𝐅𝐧)              

 

…(ii) 

(𝐊𝐬 𝐮𝐧 + 𝟏)) + (𝐓𝐅 (Fn+1 ) )+ (𝐓𝐦 (un+1))=0            (i) 

 

From equation (i) and (ii) we get following matrix 

 

[
𝐊𝐬 + 𝐓𝐦 𝐓𝐅

0
𝟏

𝟐
[𝑪 + 𝐊𝐃 + 𝐌𝑭] +

𝐌

𝚫𝐭

]+[𝒖𝒏+𝟏

𝑭𝒏+𝟏
]=[

𝑜
𝟏

𝟐
[𝑪(−𝒖𝒏, 𝑭𝒏) + 𝑲𝑫𝑭𝒏 − 𝑴(𝑭𝒏)] +

𝑴

𝜟𝒕
(𝑭𝒏)] 

 

The above equation has three unknowns which are C, 𝒖𝒏+𝟏, 𝑭𝒏+𝟏 and we have only 2 

equations. So to solve this equations we are going to use Picard method in which we are going 

to approximate the initial value till we get convergence and then after solving it we will get 

value of 𝑭𝒏+𝟏 . 

 

 



 

 

Similar formulation as equation (1) is used to solve the equation no. (2) as follows 

𝝏𝑮 

𝝏𝒕
∇ −

 

𝐆𝐧+𝟏
− 𝐆𝐧+𝟏

𝚫𝒕
− 𝜃[(−𝝈𝑮. 𝛁𝐆𝐧+𝟏

+ 𝐃𝑮𝜵𝟐𝐆𝐧+𝟏
+ 𝝈𝑮𝑭𝐅𝐧+𝟏) − (−𝝈𝑮 𝛁𝐆𝐧

+ 𝐃𝑮𝜵𝟐𝐆𝐧
+ 𝝈𝑮𝑭𝐅𝐧)] 

= (−𝝈𝑮 𝜵𝐆𝐧+𝟏
+ 𝑫𝑮𝜵𝟐𝐆𝐧+𝟏

+ 𝝈𝑮𝑭𝐅𝐧+𝟏)

Implementing Crank-Nicolson (𝜃 = 1/2) 

𝜟𝑮

𝚫𝒕
=

1

2
(−𝝈𝑮 𝜵𝑮𝒏 + 𝐃𝑮𝜵𝟐𝑮𝒏 + 𝝈𝑮𝑭𝑭𝒏) +

1

2
(−𝝈𝑮 𝛁𝜟𝑮 + 𝐃𝑮𝜵𝟐𝜟𝑮 + 𝝈𝑮𝑭𝜟𝑭) 

𝑮𝒏+𝟏 − 𝑮𝒏

𝜟𝒕
−

𝟏

𝟐
[(−𝝈𝑮 𝜵𝑮𝒏+𝟏 + 𝑫𝑮𝜵𝟐𝑮𝒏+𝟏 − 𝝈𝑮𝑭𝑭𝒏+𝟏)] =

𝟏

𝟐
(−𝝈𝑮 𝜵𝑮𝒏 + 𝑫𝑮𝜵𝟐𝑮𝒏 + 𝝈𝑮𝑭𝑭𝒏) 

The only unknown which is not given in above equation is  𝑭𝒏+𝟏 which we found using Picard 

method. We found it from the above matrix above and we will solve the above equation 

using Crank-Nicolson method, for the value of  𝑮𝒏+𝟏    

 

(As I come to the theoretical solution at last minute I cannot implement it in the code) 


