
Exercise 4 - Optional Problem

Finite Elements in Fluids

Master of Science in Computational Mechanics 2016

Paris Dilip Mulye

June 4, 2016

PART A

The strong form of given problem is as follows,

−∇ · (µ∇ρ) + ū · ∇ρ = s(ū) ρΓ1,Γ2 = 1 ρΓ4 = 0 (1)

−∇ · (ν∇)ū−∇p = 0 uΓ1,Γ2 = 1 vΓ1,Γ2 = 0 p(0, 0) = 0 (2)

∇ · ū = 0 (3)

Where,

ν(ρ) = ν0 + ν0

(
1

1 + e−10(ρ−0.5)

)
s(ū) =

1

1 + e−10(|ū|−0.5)

Method Summary

Since the coupled nature of equations, a global matrix assembly would be done with DoFs ρ, u, v, p.
To simplify, a fixed point iteration method would be used to tackle the nonlinearity of problem. Also,
to further simplify, element type Q1-Q1 would be used which is bilinear in ρ, u, v and p. This reduces
the complexity since the nodes for all DoFs coincide which simplifies Gaussian point integrations for
coupled terms. It is important to note that this element does not satisfy LBB stability condition. Space
stabilization for ρ is done using SUPG method.

Weak Form

Equation 1

All weak forms are derived with the fact that ΓN is zero wherever Dirichlet conditions are not specified.
Therefore, flux on Neumann are not inserted into the equation. Also, fluxes on Dirichlet conditions
are not needed for solving the system (they can be obtained from eigenvalues). Therefore, flux terms
could be skipped in the derivation of weak form. Also, for brevity of representation, integration signs
are omitted from all terms. (1) can be reduced to weak form as follows for Galerkin Form, (wi = Ni)

−w∇ · (µ∇ρ) + wū · ∇ρ = ws(ū)

µ(∇w · ∇ρ) + ū · (∇wρ) = ws(ū)

µ(∇Ni · ∇Nj)ρ
h + ū · (∇NiNj)ρ

h = Nis(ū)

(Krho + CT)ρh = S

1

Equation 2

(2) can be converted into weak form, with same assumptions for the flux above, the bold values of

shape functions, indicate that they are for velocity, Ni =

[
1 0
0 1

]
Ni

−w̄ · ∇ · (ν∇)ū− w̄ · ∇p = 0

ν∇w̄ : ∇ū− w̄ · ∇p = 0

ν∇Ni : ∇Njū
h −Ni · ∇Njp

h = 0

Kūh +GT ph = 0

Equation 3

(3) can be converted into weak form. with same assumptions for the flux above,

w∇ · ū = 0

∇w · ū = 0

−∇Ni ·Njū
h = 0

Gūh = 0

Assembly of Matrices

All three equations can be assembles into a single system as follows, (Dirichlet BCs yet to implement)Krho + CT 0 0
0 K GT

0 G 0

ρū
p

 =

S0
0


Dirichlet BCs

The given BCs were applied in Lagrange form, A DirBCλ = b DirBC. The pressure BC is also
included in this BC matrix. This makes the full system as follows,

Krho + CT 0 0 (A DirBC)T

0 K GT

0 G 0
(A DirBC) 0



ρ
ū
p
λ

 =


S
0
0

(b DirBC)


Note that, the (A DirBC) matrix spans three columns for ρ, ū and p respectively.

Calculation of Matrices

Since, iterative scheme has been implemented, the solution at k is known at iteration = k+1. The
function Stokes system uses this global solution to calculate the elemental solution and sends it to
the function EleMatStokes. This function calculates the elemental matrices and returns them to the
parent function for assembly. The relevant code is mentioned below. The below mentioned quantities
are calculated at every gauss point in the element. Also, it is important to note that the SUPG
correction term has been added to Krho and S.

%obtain density at gauss point using previous solution

rho_ig = N(ig,:)*sole(1:nedofP);

%calculate nu at gauss point

nu_ig = nu + nu*(1+exp(-10*(rho_ig-0.5)))^-1;

2

%obtain velocity at gauss point

u_ig_x = N(ig,:)*sole(nedofP+1:2:nedofP+nedofV);

u_ig_y = N(ig,:)*sole(nedofP+2:2:nedofP+nedofV);

%obtain magnitude of velocity

u_mag = sqrt(u_ig_x^2+u_ig_y^2);

%calculate source term at gauss point

s_ig = (1+exp(-10*(u_mag-0.5)))^-1;

% calculate stiffness for stokes

Ke = Ke + nu_ig*(Nx’*Nx+Ny’*Ny)*dvolu;

%calculate G for stokes

Ge = Ge - N_ig’*dN*dvolu;

%source for stokes (zero in present case)

x_ig = N_ig(1:ngeom)*Xe;

f_igaus = SourceTerm(x_ig);

fe = fe + Ngp’*f_igaus*dvolu;

%calculate Peclet, tau for correction

tol = 1e-15; %to avoid division by zero

h = Xe(1,1)-Xe(2,1);

Pe = u_mag*h/(2*nu_ig+tol);

tau = h*(1 + 9/Pe^2)^(-1/2)/(2*u_mag+tol);

%K for density

Krhoe = Krhoe + (mu*(nx.’*nx + ny.’*ny)+...

tau*(u_ig_x*nx+u_ig_y*ny)’*(u_ig_x*nx+u_ig_y*ny))*dvolu;

%C for density

Ce = Ce + N_ig’*(u_ig_x*nx+u_ig_y*ny)*mu;

%source term S for density

Se = Se + (N_ig+tau*(u_ig_x*nx+u_ig_y*ny))’*s_ig*dvolu;

Solver

Based on the above derivation, the iterative solver has been implemented as follows,

while true

[K,G,f,C,Krho,S] = Stokes_system(X,T,XP,TP,referenceElement,nu,mu,sol);

[ndofP,ndofV] = size(G);

Atot = [Krho+C.’ zeros(nodes,2*nodes) zeros(nodes,nodes)

zeros(2*nodes,nodes) K G.’

zeros(nodes,nodes) G zeros(nodes,nodes)];

Atot = [Atot, A_DirBC.’

A_DirBC, zeros(nDir,nDir)];

3

Btot = [S;zeros(2*nodes,1);zeros(nodes,1);b_DirBC];

solnew = Atot\Btot;

rel_error = abs(norm(solnew)-norm(sol))/norm(solnew)*100;

if rel_error < 1

break

else

sol = solnew;

end

end

4

0
0.5

1
1.5

2

0

1

2

3
−150

−100

−50

0

50

Density

Figure 1: Case 1, Density

0
0.5

1
1.5

2

0

1

2

3
1

1

1

1

1

U

Figure 2: Case 1, Velocity in X Direction

0
0.5

1
1.5

2

0

1

2

3
−2.5

−2

−1.5

−1

−0.5

0

x 10
−14

V

Figure 3: Case 1, Velocity in Y Direction

0
0.5

1
1.5

2

0

1

2

3
−3

−2

−1

0

1

x 10
−16

P

Figure 4: Case 1, Pressure

Solution: Case 1

The solution for µ = 1e-3 and ν0 = 1e-4, is as shown in Figure 1 to Figure 4. This is a convection
dominated problem since |ū| ≈ 1. The density variation had spurious oscillations but they disappear
as the SUPG stabilization is implemented, as expected. The velocity in X has a constant value of 1
throughout domain. The velocity in Y has almost 0 solution. Pressure is 0 as well. The solution of
stokes equation seems a trivial solution. The oscillations in pressure plot are due to two facts, numerical
error (the error is of the order of 1e-18) and the fact that Q1-Q1 element does not satisfy the LBB
stability condition.

5

0
0.5

1
1.5

2

0

1

2

3
−600

−400

−200

0

200

400

600

Density

Figure 5: Case 2, Density

0
0.5

1
1.5

2

0

1

2

3
1

1

1

1

1

U

Figure 6: Case 2, Velocity in X Direction

0
0.5

1
1.5

2

0

1

2

3
−6

−4

−2

0

2

x 10
−14

V

Figure 7: Case 2, Velocity in Y Direction

0
0.5

1
1.5

2

0

1

2

3
−6

−4

−2

0

2

4

6

x 10
−16

P

Figure 8: Case 2, Pressure

Solution: Case 2

The solution for µ = 1 and ν0 = 1e-4, is as shown in Figure 5 to Figure 8. This is a convection-diffusion
problem since |ū| ≈ µ ≈ 1. The velocity in X has a constant value of 1 throughout domain. The
velocity in Y has almost 0 solution. Pressure is 0 as well. The solution of stokes equation seems a
trivial solution. The oscillations in pressure plot can be explained same as Case 1.

Conclusion

From the solution plots, it is clear that Stokes solution seems correct but trivial. It is difficult to deviate
from this stable solution, even after changing the initial solution guess.

PART B

Not Attempted.

THE END

6

