
Finite Element in Fluids
Assignment 1

Manisha Chetry

23/05/2016

Given a domain Ω = (0, 2)× (0, 3) ∈ R2. The boundary Γ, with Dirichlet and Neumann bound-
ary conditions such that = Γd ∪ Γn, is defined by the following closed set as

Γ1 = (0, 0)× (0,
3

2
); Γ2 = (0, 0)× (

3

2
, 3); Γ3 = (0, 2)× (3, 3); Γ4 = (2, 2)× (0, 3); Γ5 = (0, 2)× (0, 0)

Exercise 1

The equation for 2D steady convection-diffusion reaction problem with the unknown , the con-
vective term a, the reaction term σ and source term s is as follows:

a · ∇u−∇ · (ν∇u) + σu = s in Ω

u = uD on ΓD

n · ν∇u = h on ΓN

In order to obtain the weak form, PDE is multiplied by a weight function w such that w = 0
on ΓD.Integrating over the computational domain Ω we get,∫

Ω

w (a.∇u−∇.(ν∇u) + σu)dΩ =

∫
Ω

wsdΩ in Ω

Integrating by parts the diffusion term and applying divergence theorem we get,∫
w(a.∇u)dΩ +

∫
∇w.(ν∇u)dΩ +

∫
wσudΩ =

∫
wsdΩ +

∫
Γn

whdΓ in Ω

Equation can be rewritten in compact form as:

a(w, u) + c(w, u, a) + (w, σu) = (w, s) + (w, h)ΓN
(1)

a(wh, uh) + c(a;wh, uh) + σ(wh, uh) = (wh, s) + (wh, h)ΓN

Now Discretizing the weak form using Galerkin’s method and approximation to the solution,

uh(x) =
∑
j

ujNj(x)w = Ni

1

We get,
a(Ni, Nj) + c(Ni, Nj, a) + σ(Ni, Nj) = (Ni, s) + (Ni, h)ΓN

After assembling of the elements globally, an algebraic system of equation is obtained.Th system
of equation can be written in the form as:

(C +K + F)u = f

Where u is the vector of the unknown values. C, K and F are respectively the convective matrix,
the diffusion matrix and the reaction matrix, while f is the contribution of the source term,and the
prescribed flux h.

2b). Using Galerkin formulation, we solve the following four cases :

a.) Convection dominant case

a = 1, ν = 0.001, σ = 0.001, s = 0, P e = 100

b.)Reaction dominant case

a = 0.001, ν = 0.001, σ = 1, s = 0, P e = 0.1

c.)Convection dominant case considering the source term.

a = 1, ν = 0.001, σ = 0, s = 1, P e = 100

d.)Convection-reaction dominant case

a = 1, ν = 0.001, σ = 1, s = 0, P e = 100

Results

For element size h=0.2

Figure 1: Galerkin for case 1 Figure 2: Galerkin for case 2

2

Figure 3: Galerkin for case 3 Figure 4: Galerkin for case 4

Observations: In the figure 1 we observe that Galerkin solutions give spurious oscillations in
the nodes which is unacceptable. This is due to the presence of convective term which dominates
diffusion and as a result of which Peclet number is very high. But in figure 2, it can be seen
that node to node oscillations are greatly reduced and gives approximate solutions. This is due to
reaction dominant case and very less Peclet number. In figure 3 and 4, non physical oscillations are
reduced but the errors are still large.

In order to overcome the problem for a no acceptable solution, without modifying the Galerkin
approach and without changing a,ν, σ and s, a mesh refinement is required. As the mesh element
size h decreases, better results are expected than previous but still node to node oscillations are
prevalent which is unacceptable.

For element size h=0.1

Figure 5: Galerkin for case 1 Figure 6: Galerkin for case 3 Figure 7: Galerkin for case 4

Another method was approached to overcome the problem, a modification of the Galerkin method
was made.Galerkin method lacks diffusion so to overcome that, an artificial diffusion term ν was
added to the equation. The added numerical diffusion depends on the element size h and the
parameters of the governing equation.

ν = β
ah

2
with β = cothPe− 1

Pe
(2)

If artificial diffusion is added, the solution is smoothed in all directions but the formulation is
not consistent. The results are shown below:

3

Figure 8: AD for case 1. Figure 9: AD for case 3. Figure 10: AD for case 4.

2c). Now SUPG and GLS methods are considered in order to solve the problem.SUPG and
GLS implementations make sense when the Peclet number is larger than one and Galerkin cannot
give stable results.In the given four cases in the assignment the second set of parameter would not
give us any difference compared with the Galerkin method as peclet number is less than 1. So the
rest of the cases (1,3 and 4) will give us better and stabilised results than galerkin. In order to
appreciate the advantage of the stabilization techniques compared to Galerkin, the third case which
is convection dominant without the reaction term is chosen.(Pe� 1)

The formulation of these methods in 2D steady convection-diffusion-reaction problem are as
follows:

a(w, u) + c(a;w, u) + (w, σu) +
∑
e

∫
Ωe

P (w)τR(u)dΩ = (w, s) + (w, h)ΓN

Where P (w) depends on the method(SUPG/GLS), τ is the stabilization parameter and R(u) is the
residual. For SUPG method,

P (w) = a.∇w
For GLS:

P (w) = a∇w −∇(ν∇w) + σw

For linear elements ∇(ν∇w) = 0.

The stabilization term used for solving the problem is:

τ =
h

2a
(1 +

9

Pe2
+ (

σh

2a
)2)1/2

The implementation of the SUPG method in matlab code:

Ke = Ke+ (nu ∗ (Nx′ ∗Nx+Ny′ ∗Ny) +Nig
′ ∗ (ax ∗Nx+ ay ∗Ny) +Nig

′ ∗ sigma ∗ (Nig)+

tau ∗ (ax ∗Nx+ ay ∗Ny)′ ∗ ((ax ∗Nx+ ay ∗Ny) + (σ ∗ (Nig)))) ∗ dvolu;

fe = fe+ (Nig + tau ∗ (ax ∗Nx+ ay ∗Ny))′ ∗ (fig ∗ dvolu);

The implementation of the GLS method in matlab code:

Ke = Ke+ (nu ∗ (Nx′ ∗Nx+Ny′ ∗Ny) +Nig
′ ∗ (ax ∗Nx+ ay ∗Ny) + sigma ∗ (Nig

′ ∗Nig)+

tau ∗ (ax ∗Nx+ ay ∗Ny + sigma ∗Nig)′ ∗ (ax ∗Nx+ ay ∗Ny + sigma ∗Nig)) ∗ dvolu;

fe = fe+ (Nig + tau ∗ (ax ∗Nx+ ay ∗Ny + sigma ∗Nig))′ ∗ (fig ∗ dvolu);

4

Results

For element size h=0.2

Figure 11: SUPG for case 1. Figure 12: SUPG for case 3. Figure 13: SUPG for case 4.

Figure 14: GLS for case 1 Figure 15: GLS for case 3 Figure 16: GLS for case 4

For element size h=0.1

Figure 17: SUPG for case 3 Figure 18: GLS for case 3

Observation We observe from the above figures that both SUPG and GLS gives similar results.
But when the element size is reduced the solution changes drastically due to the presence of h in the
stabilization parameter equation.Hence, more the mesh is refined the methods gives better results.

5

2d). Now the boundary conditions are changed to u = 2 in Γ2 and u = 1in Γ4.The BC in Γ4

is modified in the code to impose Neumann BC so that the same solution is obtained. Following
are the results obtained when Neumann boundary conditions are imposed vs Dirichlet boundry
condition as imposed on the outlet boundary.

Figure 19: Galerkin with neumann
boundary at outlet

Figure 20: Galerkin with Dirichlet
boundary at outlet

Figure 21: SUPG with neumann bound-
ary at outlet

Figure 22: SUPG with Dirichlet bound-
ary at outlet

Figure 23: GLS with neumann bound-
ary at outlet

Figure 24: GLS with Dirichlet bound-
aryat outlet

6

Exercise 2
In this exercise the transient term is included in the 2D convection-diffusion-reaction PDE

equation, the strong form is written as:

ut + a · ∇u−∇ · (ν∇u) + σu = s in Ω×]0, T [,

u(x, 0) = x(2− x) on Ω,

u = 1on Γ2

u = 0on Γ4

−ν(n.∇)u = h on ΓN

In order to discretize the problem above using the formulation for space among the ones described
in Exercise 1, Galerkin spatial discretization is used.For time discretization two methods are used:
1. Crank Nicholson method
2.Two step third order TG method
3. Pade approximation of order R22

Crank-Nicolson +Galerkin Formulation:
The value of un+1 is determined from un using the next relation:

u(tn+1)− u(tn)

∆t
= θut(t

n+1) + (1− θ)ut(tn) +O(
1

2
− θ)∆t,∆t2)

Neglecting the truncation error and replacing ut in the PDE we obtain:

∆u

∆t
+ θ(a · ∇)∆u = θsn+1 + (1− θ)sn − a · ∇un

For Crank-Nicolson method, θ = 1
2
. This method is implicit, so a system of linear equation has

to be solved. It is second order accuracy and it is unconditionally stable.
Multilpying with a test term and integrating by parts we get,

(w,
∆u

∆t
)− θ(∇w, (a∆u) + θ((a.n)w,∆u)Γout = (∇w, aun)− ((a.n)w, un)Γout + (w, θhn+1+

(1− θ)hn)Γin
N

+ (w, θhn+1 + (1− θ)hn)Γin
N

FE discretization:
In matrix form, it can be written as:

(
1

∆t
M − θC + θBout)∆u = f + (C −Bout)un

where,

Mab =

∫
ω

NaNbdΩ Consistent mass matrix

Cab =

∫
ω

Nb(a.∇Na)dΩ Convection matrix

Bout
ab =

∫
Γout

Nb(a.n)dΓ Outflow Boundary matrix

The implemented matlab code for Crank-Nicloson method is:

A = M + (dt/2)*C + (dt/2)*Mo;

7

B = - dt*C - dt*Mo;
f = dt*v1;

Where M and C are the mass matrix and the convective matrix. The Mo matrix is obtained by
discretizing the term a.n(w, u) on the outflow boundary and v1 is the vector related to source term.

Two step third order TG method (TG3-2S) It only involves 2nd order derivatives and
achieves third order accuracy.

ũn = un +
1

3
∆tunt + α∆t2untt

un+1 = un + ∆tunt +
1

2
∆t2ũntt

The parameter α influences the coefficient of the fourth order term in the overall time series.
For a value of α = 1

9
the TG3-2S method converts to TG3-1S.

Pade approximation of order R22
Pade approximation is fourth order time accurate discretization scheme:

un+1 = (1 + ∆t
∂

∂t
+

1

2!
∆t2

∂2

∂t2
+ ...)un = exp(∆t

∂

∂t
)un

The Pade R22 is an implicit 4th order scheme which can be obtained in the following compact
form:

∆u

∆t
−W∆ut = wunt

where,

∆u = (
un+ 1

2 − un
nn+1 − un++ 1

2
)

W =
1

24

[
7 −1
13 5

]
w =

1

2

[
1
1

]

8

Results

The problem was solved using Crank Nicolson galerkin formulation:
For t=110

Figure 25: CN for case 1. Figure 26: CN for case 2. Figure 27: CN for case 3.

c). For time analysis the Courant’s number has to be taken into account. Courant number is
given by:

C =
|a|∆t
h

So for different discretization time steps it was computed. Initially it was run for time step,
t=100 and the results are shown above.But we observe that for time steps less than 110 and more
than 110, the results don’t vary much. But time to compute the problem decrease/increases. Table
below shows how the time increases to compute as the number of time step increases. We observe
that CN-Galerkin gives stable solutions as time step increases. From the figure below it can be
observed that as time step increases, we get approximate solutions.

Time steps 50 120 160 220

Courant number 0.12566 0.069813 0.03927 0.02856
Comp.time 1.104 2.234 2.891 4.474

Figure 28: Computation at different time steps

9

Exercise 3

1). The strong form of Stokes equation for a steady case is given below:

−ν∇2v +∇p = b in Ω

∇·v = 0 in Ω

v = 0 in Γ1,Γ2,Γ3,Γ5

vy = −1 inΓ4

where ν is the kinematic viscosity and p is the kinematic pressure.
The weak form is obtained by integrating by parts and applying divergence theorem we get,∫

ω

∇w · ν∇vdΩ−
∫
ω

p∇.wdΩ =

∫
ω

w.bdΩ ∀w ∈ ν

∫
ω

q∇.vdΩ = 0 ∀q ∈ Q

Or in compact form,

a(w, v) + b(w, p) = (w, b)

b(v, q) = 0

ν := H1
ΓD

(Ω) = w ∈ H1(Ω)|w = 0 on ΓD

H2
ΓD

= w ∈ H2(Ω)w = −1 on ΓD

Approximating v = vh and pressure p = ph,the Galerkin formulation of the Stokes problem is:{
a(wh, vh) + b(wh, ph) = (wh, bh)
b(vh, qh) = 0

Finite dimensional Space (
K G
GT 0

)(
u
p

)
=

(
f
h

)
Where K is the viscosity matrix, G is the discrete gradient operator and GT is the discrete

divergence operator.
Choosing element and mesh size is an important aspect for quality of the solution.For simulation,

taylor Hood elements (Q2-Q1) elements have been used which is LBB stable. When we use a
continuous space for pressure, then DOF for pressure can be saved a lot. Velocity space also
becomes big enough to have the divergence stability which is one of the requisite condition.Well, for
triangular bilinear elements also it gives similar results. But for linear elements there is spurious
pressure nodes and oscillations in velocity field. So Q2-Q1 element is chosen which gives the best
results out of rest of the elements(trianlge and triangle with bubble function). The results are shown
below:

10

Q2-Q1 elements:

Figure 29: Pressure, velocity in y and x direction respectively for Q2-Q1 elements

Triangular bilinear elements

Figure 30: Pressure, velocity in y and x direction respectively for triangular elements

Q1-Q1(LBB not stable)

Figure 31: Pressure, velocity in y and x direction respectively for Q1-Q1 elements

11

2). Now navierstokes.m has been used to compute the solution of the Navier-Stokes equations
using one specific spatial discretization and type of element for Re=1,100,1000 and 2000. The
number of iterations needed for convergence is shown below in tabluar form:

For Re = 1:

Iteration Velocity increment [m/s]

0 1
1 4.981520e-03
2 8.600491e-05
3 8.841132e-07

For Re = 100:

Iterations Velocity increment [m/s]

0 1
1 3.255234e-01
2 1.110820e-01
... ...
11 =2.382659e-05

For Re = 1000:

iteration Velocity increment [m/s]

0 1.153554e+00
1 1.269226e+00
2 6.933016e-01
... ...
99 1.010572e+01

For Re = 2000:

iteration Velocity increment [m/s]

0 1.565798e+00
1 1.747213e+00
2 6.161955e+00
... ...
99 1.713691e+02

12

Figure 32: Diagram showing pressure, velocity field and streamlines for Re=100

Figure 33: Diagram showing pressure, velocity field and streamlines for Re=1000

13

Appendices
Modification in main.m file for exercise 1

14

Modification in FEMsystem.m file in EX.1

Modification in Method.m file for exercise 2

Modification in Computevelocity.m file for exercise 2

Modification in BoundaryConditions.m file for exercise 2

15

Modification in Stokessystem.m file for exercise 3

Modification in BC.m file for exercise 3

16

