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1 Propagation of a cosine profile

1.1 Comparison of Explicit methods

TG2 (Consistent mass matrix) formulation results using Courant 0.5 and 0.75
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Figure 1.1: TG2 at C=0.5 Figure 1.2: TG2 at C=0.75

LW-FD (Diagonal mass matrix) formulation results using Courant 0.5 and 0.75
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Figure 1.3: LW-FD for CFL=0.5 Figure 1.4: LW-FD, CFL=0.75

TG3 formulation results using Courant 0.5 and 0.75
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Figure 1.5: TG3 for CFL=0.5 Figure 1.6: TG3, CFL=0.75

In comparison with the exact solution it can be concluded for that, the two explicit methods
TG2 and TG3 with the consistent matrix are more accurate than the Lax-wendroff (LW-FD)
scheme with a diagonal matrix. However from (1.1) its noted that TG2 cannot be used for
C=0.75. In terms of stability we see that TG3 is more stable than TG2 and LW-FD Methods



1.2 Comparison of Implicit methods

CN formulation results using Courant 0.5 and 0.75
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Figure 1.7: CN at C=0.5
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Figure 1.8: CN at C=0.75

CN-FD (Diagonal mass matrix) formulation results using Courant 0.5 and 0.75
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Figure 1.9: CN-FD for CFL=0.5

CN-FD

TG4 formulation results using Courant 0.5 and 0.75

TG3

08

06

04

0z

-0.2

C=0.5

0.2

C=05

0.6

0.8 1

Figure 1.11: TG4 for CFL=0.5
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Figure 1.10: CN-FD, CFL=0.75
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Figure 1.12: TG4, CFL=0.75

Comparing the results in Figure (1.7) (1.8), (1.11) and (1.11) with those in Figure (1.9),(1.10)
its evident that implicit methods with the consistent mass matrix are more accurate than the
one with the diagonal mass matrix. This behaviour is also similar with the explicit methods.

Comparing CN and TG4 we can see that TG4 is more accurate.

With regards to stability

CN-FD is snot stable as shown in Figure (1.9),(1.10). Therefore of all the three implicit method

TG4 is the most accurate and stable method.



2 Propagation of a steep front

1. Calculation of the CFL number
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Figure 2.1: CN-G for CFL=0.75 Figure 2.2: CN-LS, CFL=0.75

The propagation of the steep front problem is first solved using the Crank-Nicolson (with
the Galerkin in space ) and the results are shown in Figure(2.1). From this figure we can see
that this formulation procuses a lot oscillations which are caused by the Galerkin method. To
overcome this problem we employ another method that uses the Crank NiclosOn in time and
the least square method in space. The results for this new method are shown in Figure (2.2).
These results shows that this new method is bale to get ricd of the spurious oscillations.

Implementation of the Crank-Nicholson scheme in time and the least-squares for-
mulation in space

The implementation of this method is based on the discrete form of this equation with respect
to the convection equation which is given on page 121 of the Lecture book. This discrete form
can also be derived based on the 6 family of methods but in this work we will just use the final
form as follows.

1 1
(1 + (652 - 02025152)) Au = — Couff + 0C*0%uj (1)
This discrete equation can be written using the spatial operator given the Lecture book on
page 100 which yields the following equation.
((Ni, Nj) + 0*At(a- VN;,a- VN;)) Au= At (a- VN;, N;)u" — 0At*(a - VN;,a - VN;)u"
(2)
1

Using the above equation we can say that for = 5 we are employing the Crack Nicolson



method. Hence this was the method that is implemented in the code as shown below.

Alisp,isp) = A(isp,isp) +w;g* (N * N 4+ 0.25 * dts * (a * Nz)' * (a * Nx))
B(isp,isp) = B(isp,isp) + wig * (dt x (a * Nz) * N — (dt?/2) * (a * Nz)' * (a * Nz))
f(isp) = f(isp) + wig * (dt * (N') x SourceTerm(z) + (dt?/2) * (a * Nx)' * SourceTerm(z));

Solution using second-order Lax-Wendroff method
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Figure 2.3: TG2 for CFL=0.75 Figure 2.4: LW-FD, CFL=0.75

As it is evidently seen in Figure 2.3 using the second order Lax-Wendroff method with a
consistent mass matrix produces unstable solution at CFL = 0.75 . In order to overcome this
problem we need to use the lumped mass matrix hence the result in (2.4) shows that when the
lumped mass is used the solution ia stable and accurate.

Implementation of the second-order two-step Lax-Wendroff method

This method is given on page 141 of the lecture book as

At
Un+1/2 =u"+ ?U?

1 +1/2
Untt = " 4+ Atu;Z /

When we carry out the necessary representation of introducing the test function and per-
forming integration by parts then we can implement the method in the code as follows.

A(isp,isp) = A(isp,isp) +w;gx N' x N
B(isp,isp) = B(isp,isp) + w;g * dt x (a * Nz) x N
f(isp) = f(isp) + w;g * dta * (N') x SourceTerm(z)

At the same time we can implement the same method with the diagonal mass matrix as follows.

A(isp,isp) = A(isp,isp) + w;g * diag((N' x N) * unos)
B(isp,isp) = B(isp,isp) +w;g * dt x (a* Nz)' x N
f(isp) = f(isp) + w;g * dta x (N') x SourceTerm(z)
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Figure 2.5: LW-2S for CFL=0.3 Figure 2.6: LW-2S for CFL=0.15
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Figure 2.7: LW-FD-2S -Diag for CFL=0.3 Figure 2.8: LW-FD-2S-Diag for CFL=0.15

As we can see in figure (2.5) , (2.6) , (2.7) and (2.8) the problem was solved using lower
values of C= 0.3 and C =0.15. From the results we can see that both methods are not accurate
and stable enough for this problem. Although it is stated from the literature in the lecture book
that the method should be stable for C= 0.3 the results presented here states otherwise. From
the author’s point of view its either the formulation is not as stable as it is predicted in the
lecture notes or there is something wrong with authors implementation of the method.

3 The convection-diffusion case : (Gaussian hill problem

Crack-Nicolson in time + Galerkin in space solution
- Viscosity = 0.0033

Figure 3.1: For pe=1.5 Figure 3.2: For pe= 7.5 Figure 3.3: For pe=151

Figures (3.1), (3.2) and (3.3) shows the results for different values of the viscosity term.
From these results we can see that as we decrease the value of viscosity the problem becomes
highly convective which is a problem when using the Galerkin method in space. Hence from
this figures we see that with an increase in the pe number the solution displays a lot of phase



errors. This leads to conclusion that the standard Galerkin method is not suitable to be used
together the Crank - Nicolson method.
Comparison of Adam-Bashforth method and R22 in time methods

Adam-Bashforth in time 4+ Galerkin in space results

Figure 3.7: C=0.1 pe=0.5 Figure 3.8: C=0.1 pe=0.5

R 22 in time + Galerkin in space

Figure 3.9: C=0.1 pe=5  Figure 3.10: C=1 pe=0.5 Figure 3.11: C=0.1 pe=0.5
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Figure 3.12: C=1 pe=0.5 Figure 3.13: C=0.1 pe=0.5

The results shown a comparison of both methods for different values of Courant and pe
numbers. From the results in Figures (3.4) (3.5) we see that if the value of the peclet number
is very high then the Adam Bashforth method becomes accurate and stable . It should also be
noted that this happens when we take a very small time step. The moment we decrease the
value of Pe the Adam Bashforth method becomes unstable and inaccurate as it shown in Figures
(3.5) (3.7) and (3.8). From all the results of this method the value of C seems to to have the
same impact as the Pe value. On the other When using R22 in time we see that this method



combined with the Galerkin in space is very stable and accurate for that cases that have been
considered.

Important points on the implementation od the Adams Bashforth method
This is a second order accuareate explicit method an dthe derivation of this method was
done in class using the forward Taylor series

u(t ) :u(t )"’Atut(t )+7u“(t )—|—

in which the second order term is approximated as

g n — uy n—1

which gives the two level second order explict method

At

un+1:un++2

3uf —ul ™t 4

We can replace u; in the above method with our equation and use the forward Euler method
for the first time step in the implementation of this method. interms of stability Stability of the
second-order Adams-Bashforth method is also governed the same type as the Euler method, but
its stability range is only half that for the Euler method. This is because in convection-diffusion,
the stability condition depends on the value of Pe.

Time-discontinuous Galerkin formulation for the convection-diffusion equation

// wh(ul +a - vuh) —I—/ vVl vVuldQdt —I—/ wh(ti)(uh(ﬂ) - uh(t’_ﬁ) dQ=0
n Qn (9}

When we use linear finite element approximations in both space and time, it gives a third-
order accurate and unconditionally stable method. Following the developments in Section 3.10.1
for the pure convection problem we can do the same for the to the convection diffusion case.
Through this process the following partitioned matrix system is obtained for the nodal unknowns

un+1 o un+

2 2 1 1

< M + %AtC + éVAtK ) u"tt - ( M + %AtC + gyAtK ) =2 Myt (4)
Where the matrices M (consistent mass), C(convection), and K (diffusion) are defined as
the general finite element matrices. Note that here the conditions (1) = u™" (1) = 0 are
enforced to satisfy the inlet condition. Also it should be noted that this is a third order accurate
and unconditionally stable method which requires the solution of an algebraic system double
the size of usual time-stepping algorithms.



