Finite Elements in Fluids

Assignment-2

Assignment on ““Viscous Incompressible Flows"’

Submitted by,
Krupesh Beekanahalli Shivaprakash
Master of Science in Computational Mechanics

Submitted to,
Dr.Eshter Sala,
Lecturer,
Universitat Politecnica de Catalunya.



Cavity Flow Problem

The cavity flow problem is a standard benchmark test for incompressible flows. The

goal of this exercise is to analyse the results obtained when adopting either the Stokes

or the Navier-Stokes equations. Using the code in (HW2Files-Cavity) to compute the

Finite elements approximation of these problems, the questions of this assignment are answered.

a) Using the script mainStokes.m the solution of the Stokes problem is computed using

a uniform, structured mesh of Q2Qo, Q2Qs, P1P1and MINI (P1*P;1)) elements, with

20 elements per side. The following figures (Fig. 1 to Fig. 16) illustrates the plots of meshes and the
results. Mesh for velocity is shown in figure 1 to 4. And figure for pressure is shown in Figure 5 to 8.
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Figure 1. Mesh For Velocity of Q2Qo

Mesh for Velocity

Figure 2. Mesh For Velocity of QuQu

Mesh for Velocity

Figure 3. Mesh For Velocity of P;P;

Figure 4. Mesh For Velocity for MINI(P1*P)
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Figure 5. Mesh For Pressure of Q:Qq Figure 5. Mesh For Pressure of Q:Q;
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Figure 7. Mesh For Pressure of P;P; Figure 8. Mesh For Pressure of MINI (P1*P1)




Streamlines Streamlines

Figure 9. Streamlines of Q,Qq Figure 10. Streamlines of Q,Q
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Figure 11. Streamlines of P1P; Figure 12. Streamlines of MINI (P1*P1)

Figures 9 to 12 shows the streamlines for all four elements. For Q2Qo and Q,Q; the streamlines are
smoother and better, as the velocity is approximated using biquadratic interpolation polynomials.
For solution using P1P; element (Figure 10) there is slight oscillations near the boundaries, owing to
linear approximation of velocity. This problem is overcome in P;*P; due to the cubic bubble function
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Figure 13. Pressure Field for Q,Qo Figure 14. Pressure Field for Q2Qq
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Figure 15. Pressure Field for P,1P; Figure 16. Pressure Field for MINI (P1*P;)

The above four graphs illustrates the solution for pressure. In Q2Qo (Figure 13) pressure is
discontinuous between elements, this is due to constant pressure approximation. There are spurious
oscillations in solution with P;1P1, owing to the linear approximation in triangular elements. In
solutions from Q,Qq (Figure 14) and MINI (P1*P1) (Figure 16) , which LBB, pressure is continuous and
there are no spurious oscillations.



b) The solution of the Stokes problem is computed considering, (i) a structured, uniform mesh of

Q,Q; elements with 20 elements per side, (ii) a structured mesh of 20 x20 Q,Qielements refined

near the walls. The meshes and results are compared in following figures (17 to 24).
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Figure 18. For of Q;Qs (refined mesh)

Figure 17. For of Q,Qs (uniform mesh)

Mesh for Pressure

Mesh for Pressure

Figure 20. For of Q.Qu (refined mesh)

Figure 19. For of Q,Q; (uniform mesh)
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Figure 17. Streamlines of Q2Q; (uniform mesh) Figure 18. Streamlines of Q,Q; (refined mesh)
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Figure 19. Pressure of Q,Q; (uniform mesh) Figure 20. Pressure of Q,Q; (refined mesh)

Consider the results. There is not much difference in velocity fields or streamlines. Whereas
pressure is more refined at the boundaries. The results are improved in adaptive mesh (refined
mesh). Especially, at the boundaries solution is better captured in adaptive mesh. The pressure at
the boundaries is of the range of £1500, while it is of the range of £100 in the case of the uniform
mesh. Since, the results are accurate with adaptive mesh and computational costs are same both the
methods, adaptive meshing is best option. Considering practical aspects, in many problems,
boundaries are the most critical regions and hence mesh is to be refined at boundaries. Therefore,
adaptive mesh is better option for such applications.



c) The Stokes code is modified to solve the problem using a GLS stabilized formulation with P;P;
elements. The stabilization of the Stokes problem is obtained by adding stabilisation term to the
Galerkin weak form of the Stokes equations. The following stabilisation terms are considered,

(— V2w, —HV?U +Vp—b)=0 YweVy
(Vq, - vV +Vp—b)=0 VYqeQ
The reduced GLS form is given by: find +" « 8" and »" € @", such that, for all (w".¢"1€ V" x Q")
a(w", v” )+ b(w" .;J'r’] = (w", b") + (w", t")r =

Tal Nel

b(v". ¢") =D (V" VP == 7(Vq".b")qe
’.—] l—1

The stabilization parameter chosen is,

Where,
a = 1/3 is optimal for linear elements.

heis measure of element size.
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Fig 21. Streamlines for GLS (P1P1) Figure 22. Pressure for GLS with P1P; elements

Above two figures illustrates the results using GLS stabilised formulation for P1P; element.

Comparing with the galarking form (Fig.11 & Fig.15), the velocity and pressure solution are improved

by GLS stabilisation for P1P; elements. The oscillations near the boundary are reduced and the

spurious oscillations of pressure are absent in the stabilised solutions. The optimal value o= 1/3, is

considered for plotting.

The following plots (Fig. 23 to Fig. 28) compare the results for higher values of ‘a’ or stabilisation

parameter ‘7’. From the below graphs we can observe that for higher value stabilisation parameter

the solution is deviated from the actual solution. Hence, smaller and optimal value of the
stabilisation parameter is to be chosen for accurate results.
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Fig 23. Streamlines for GLS (a=3)
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Fig 25. Streamlines for GLS (a=300)
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Fig 27. Pressure output for GLS (a=30)
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Fig 24. Streamlines for GLS (a=30)
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Fig 26. Pressure output for GLS (a=3)
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Fig 28. Pressure output for GLS (a=300)



d) The script mainNavierStokes.m is used to solve the Navier-Stokes equations with Picard method.
Matlab function ConvectionMatrix.m is coded to evaluate the matrix arising from the discretization
of the convective term. The Navier- Stokes equations is solved using a structured mesh of Q.Qu
elements with 20 elements per side, considering the Reynolds numbers Re = 100, 500, 1000 and
2000. The number of iterations required for convergence of Picard method are tabulated as,

Re No. of Iterations
100 13
500 29
1000 35
2000 69

From the table we can conclude that the number of iterations required for convergence increases
with increase in Re.

The flowing plots (Fig. 29 to Fig. 36) illustrates the solutions using naiver stokes for different Re. It
can be observed the plots of streamlines that as Re is increased the position of the main vortex
moves towards the centre of the cavity. Observing the streamlines it can be concluded that, for
higher Re the stabilisation of the galarkin is required.

The range of pressure decreases with increase in Re. This is matching with the reference solution
shown in Fig. 37. Reference solution is taken from the textbook. (Finite Element Methods for Fluid
Flow Problems, Donea and Huerta, Wiley 2003)
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Fig.29 Streamlines for Re=100 Fig. 30 Streamlines for Re=500
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Fig.31 Streamlines for Re=1000 Fig. 32 Streamlines for Re=2000
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Fig.33 Pressure for Re=100 Fig. 34 Pressure for Re=500
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Fig.35 Pressure for Re=1000 Fig. 36 Pressure for Re=2000
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