
MSc in Computational Mechanics

Finite Elements in Fluids

MATLAB Assignment (version 11):

Hybridisable Discontinuous Galerkin

Submitted by:
Mario Alberto Méndez Soto

Submitted to:
Prof. Matteo Giacomini

Prof. Antonio Huerta

Spring Semester, 2019

1 Problem statement

Consider the domain Ω = [0, 1]2 such that ∂Ω = ΓD ∪ ΓN ∪ ΓR with ΓD ∩ ΓN = ∅, ΓD ∩ ΓR = ∅
and ΓN ∩ ΓR = ∅. More precisely, set:

ΓN := {(x, y) ∈ R2 : y = 0}
ΓR := {(x, y) ∈ R2 : x = 1}
ΓD := ∂Ω\(ΓN ∪ ΓR)

The following second-order linear scalar partial differential equation is defined
−∇ · (κ∇u) = s in Ω,

u = uD on ΓD

n · (κ∇u) = t on ΓN

n · (κ∇u) + γu = g on ΓR

(1.1)

where κ and γ are the diffusion and convection coefficients, respectively, n is the outward unit
normal vector to the boundary, s is a volumetric source term and, uD, t, and, g are the Dirichlet,
Neumann and Robin data imposed on the corresponding portions of the boundary ∂Ω.

1. Write the HDG formulation of the problem (1.1). More precisely, derive the HDG strong and
weak forms of the local and global problems.[Hint: the hybrid variable û needs to be introduced
on both on ΓN and ΓR]

2. Implement in the Matlab code provided in class the corresponding HDG solver.

3. Set κ = 5 and γ = 3. Consider u(x, y) = sinh(asin(κπx) + bcos(π(x + γy))), with a = 1.2
and b = 0.75. Determine the analytical expressions of the data uD, t and g in problem (1.1).
[Hint: Use Matlab tools for symbolic calculus]

4. Solve problem (1.1) using HDG with different meshes and polynomial degrees of approxi-
mation. Starting from the plots provided by the Matlab code, discuss the accuracy of the
obtained solution u and of the post-processed one u∗.

5. Compute the errors for u, q, and u∗ in the L2-norm defined in the domain Ω. Perform a
convergence study for the primal, u, mixed, q and post-processed, u∗ variables for a polynomial
degree of approximation k = 1, ..., 4. Discuss the obtained numerical results, starting from
the theoretical results on the optimal convergence rates of HDG.

2

2 HDG formulation

An equivalent strong form to the problem in (1.1) can be written in the broken computational
domain as:

−∇ · (κ∇u) = s in Ωi, and for i = 1, ..., nel,

u = uD on ΓD

n · (κ∇u) = t on ΓN

n · (κ∇u) + γu = g on ΓR

JunK = 0 on Γ

Jn · ∇uK = 0 on Γ

(2.1)

Then, the problem can be solved as two separate problems. First, the local problem with Dirichlet
boundary conditions is defined as:

∇ · qi = s in Ωi,

qi + κ∇ui = 0 in Ωi,

ui = uD on ∂Ωi ∩ ΓD,

ui = û on ∂Ωi\ΓD,

(2.2)

for i = 1, .., nel.
Furthermore, a global problem where a primal variable û is imposed on both ΓN and ΓR can be

derived. Thus, this global problem acquires the following form:
Jn · qK = 0 on Γ

n · q = −t on ΓN

n · q = γû− g on ΓR

(2.3)

The condition JunK = 0 is not explicitly considered since it is imposed automatically because û
is unique for adjacent elements.

For the derivation of the weak forms, the following scalar and vectors spaces will be used:

W(D) = {w ∈ [H1(D)]2, D ⊂ Ω}
V(D) = {v ∈ H1(D), D ⊂ Ω}
M(S) = {µ ∈ L2(S), S ⊂ Γ ∪ ∂Ω}

Thus, given uD on ΓD and û on Γ ∪ ΓN ∪ ΓR, the weak formulation of the local problem aims to
find (qi, ui) ∈ W(Ωi)× V(Ωi) that satisfies:

−(∇v,qi)Ωi
+ 〈v,ni · q̂i〉∂Ωi

= (v, s)Ωi

−(w,qi)Ωi
+ κ(∇ ·w, ui)Ωi

= κ〈ni ·w, uD〉∂Ωi∩ΓD
+ κ〈ni ·w, û〉∂Ωi\ΓD

(2.4)

3

where the numerical traces of the fluxes q̂i are defined, for stability purposes, as:

ni · q̂i :=

{
ni · qi + τi(ui − uD) on ∂Ωi ∩ ΓD
ni · qi + τi(ui − û) elsewhere

(2.5)

Similarly, the weak form of the global problem is defined simply as finding û ∈M(Γ ∪ ΓN ∪ ΓR)
for all µ ∈M(Γ ∪ ΓN ∪ ΓR) such that:

nel∑
n=1

〈µ,ni · q̂i〉∂Ωi\∂Ω +

nel∑
n=1

〈µ,ni · q̂i + t〉∂Ωi∩ΓN
+

nel∑
n=1

〈µ,ni · q̂i + g − γû〉∂Ωi∩ΓR
= 0 (2.6)

Replacing the definition of the fluxes (2.5) into the previous equation, the global problem becomes:

nel∑
n=1

{
〈µ,ni · qi〉∂Ωi\ΓD

+ 〈µ, τiui〉∂Ωi\ΓD
− 〈µ, τiû〉∂Ωi\ΓD

− 〈µ, γû〉∂Ωi∩ΓR

}
= −

nel∑
n=1

{
〈µ, g〉∂Ωi∩ΓR

+ 〈µ, t〉∂Ωi∩ΓN

}
(2.7)

For the discretization of the local (2.4-2.5) and global (2.7) problems, discrete finite-element
spaces Wh, Vh, and Mh are defined as follows:

Wh(Ω) = {w ∈ [L2(Ω)]2; w|Ωi
∈ [Pp(Ωi)]

2 ∀Ωi} ⊂ W(Ω)
Vh(Ω) = {v ∈ [L2(Ω)]2; v|Ωi

∈ Pp(Ωi) ∀Ωi} ⊂ V(Ω)
Mh(S) = {µ ∈ [L2(S)]2; µ|Γi

∈ Pp(Γi) ∀Ωi ⊂ S ⊂ Γ ∪ ∂Ω} ⊂ M(S)
(2.8)

which allows the introduction of element-by-element interpolations of the form:

q ≈ qh =

nel∑
n=1

Njqj ∈ Wh (2.9)

u ≈ uh =

nel∑
n=1

Njuj ∈ Vh (2.10)

û ≈ ûh =

nel∑
n=1

N̂jûj ∈Mh(Γ ∪ ΓN ∪ ΓR) orMh(Γ) (2.11)

Thus, using this interpolation and the matrix notation presented in [1] and [2], the following
elemental system of equations emerges:[

Auu Auq

κAT
uq Aqq

]
i

[
ui

qi

]
=

[
fu
κfq

]
i

+

[
Auû

κAqû

]
i

ûi (2.12)

Similarly, applying the interpolation to (2.7) produces the following system of equations:

nel∑
n=1

{[
AT

uû AT
qû

]
i

[
ui

qi

]
+ [Aûû]i ûi +

[
AR

ûû

]
i
ûi

}
=

nel∑
n=1

{
[fû]i +

[
fRû
]
i

}
(2.13)

4

where matrices AR
ûû and fRû are associated to the Robin boundary condition of the problem and can

be defined as:

AR
ûû = −

∑
∂Ωi∩ΓR

γ

nf
ip∑

g=1

N̂n(ξfg)N̂T (ξfg)wfg

fRû = −
∑

∂Ωi∩ΓR

nf
ip∑

g=1

N(ξfg)g(x(ξfg))wfg

After substituting the local solution (2.12) in (2.13), the global system becomes:

K̂û = f̂

with

K̂ =

nel

A
i=1

[
AT

uû AT
qû

]
i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
Auû

κAqû

]
i

+ [Aûû]i +
[
AR

ûû

]
i

and

f̂ =

nel

A
i=1

[fû]i +
[
fRû
]
i
−
[
AT

uû AT
qû

]
i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
fu
κfq

]
i

5

3 Computational implementation

Prior to modifying the originally given code, analytical expression for uD, t, and g were computed
using the MATLAB symbolic tools. The results of these computations are presented below.

uD =

sinh
(

3 cos(3π y)
4

)
for x = 0

sinh
(

6 sin(5π x)
5

+ 3 cos(π (x+3))
4

)
for y = 1

(3.1)

t = 11.25π cosh

(
3 cos (π x)

4
+

6 sin (5π x)

5

)
sin (π x) (3.2)

g = 3 sinh

(
3 cos (π (3 y + 1))

4

)
− 5 cosh

(
3 cos (3π y)

4

) (
6π − 3π sin (3π y)

4

)
(3.3)

Corresponding expressions were introduced in the existing functions analyticalPoisson.m and
sourcePoisson.m for the computations of the source term and the exact solution, which also
includes the computations for the Dirichlet boundary values. Moreover, new analogous functions
were added for the mathematical expressions for t and g: neumanPoisson.m and robinPoisson.m,
respectively.

The provided code separates the element faces into internal and external. Using this informa-
tion, a newly introduced function called ExtFace class.m divides the external boundary faces into
Neumann, Dirichlet and Robin. The code implemented is shown in the listing below.

Listing 3.1 – Function ExtFace class.m

1 func t i on in foFace s = ExtFace c la s s (in foFaces ,X,T)
2 k=1; q=1; m=1;
3 f o r i = 1 : l ength (in f oFace s . extFaces)
4 El num = T(in foFace s . extFaces (i , 1) , 1 : 3) ; %c a l l s the on−edge nodes
5 Nod 1 = X(El num (1) , :) ;
6 Nod 2 = X(El num (2) , :) ;
7 Nod 3 = X(El num (3) , :) ;
8 i f Nod 1 (2) == 0 && Nod 2 (2) == 0 | | Nod 1 (2) == 0 && Nod 3 (2)==0

| | Nod 3 (2) == 0 && Nod 2 (2)==0 % y=0 (Neumann f a c e s)
9 in foFace s . extFaces N (k , :) = in foFace s . extFaces (i , :) ;

10 k = k+1;
11 e l s e i f Nod 1 (1) == 1 && Nod 2 (1) == 1 | | Nod 1 (1) == 1 && Nod 3 (1)

==1 | | Nod 3 (1) == 1 && Nod 2 (1)==1 % x=1 (Robin f a c e s)
12 in foFace s . extFaces R (m, :) = in foFace s . extFaces (i , :) ;
13 m=m+1;
14 e l s e
15 in foFace s . extFaces D (q , :) = in foFace s . extFaces (i , :) ;
16 q = q+1;
17 end
18 end
19 end

6

Moreover, the definition of the matrix F , which contains reciprocal information of the faces, was
modified to allocate the Dirichlet boundary faces to the highest indices. The listing below shows
the introduced changes in function hdg preprocess(T,X).

Listing 3.2 – Changes introduced in function hdg preprocess(T,X)

1 F = ze ro s (nOfElements , 3) ;
2 f o r iFace = 1 : nOf Inte r i o rFace s %numbering o f i n t e r n a l f a c e s
3 in foFace = intFaces (iFace , :) ;
4 F(in foFace (1) , in foFace (2)) = iFace ;
5 F(in foFace (3) , in foFace (4)) = iFace ;
6 end
7
8 f o r iFace = 1 : nOfExter iorFaces N %numbering o f Neuman f a c e s
9 in foFace = in foFace s . extFaces N (iFace , :) ;

10 F(in foFace (1) , in foFace (2)) = iFace + nOf Inte r i o rFace s ;
11 end
12
13 f o r iFace = 1 : nOfExter iorFaces R %numbering o f Robin f a c e s
14 in foFace = in foFace s . extFaces R (iFace , :) ;
15 F(in foFace (1) , in foFace (2)) = iFace + nOf Inte r i o rFace s +

nOfExter iorFaces N ;
16 end
17
18 f o r iFace = 1 : nOfExter iorFaces D %Numbering o f D i r i c h l e t f a c e s
19 in foFace = in foFace s . extFaces D (iFace , :) ;
20 F(in foFace (1) , in foFace (2)) = iFace + nOf Inte r i o rFace s +

nOfExter iorFaces N +nOfExter iorFaces R ;
21 end

Since the nodes on the Dirichlet boundaries are assigned to the highest index values, the degrees
of freedom of the system need to be re-defined as follows:

Listing 3.3 – Redefinition of doF in main file

1 u D i r i c h l e t = computeProject ionFaces(@ an a ly t i c a lPo i s s o n , in f oFace s .
extFaces D ,X,T, re f e renceElement) ;

2
3 d o f D i r i c h l e t= (nOf Inte r i o rFace s+nOfExter iorFaces N+nOfExter iorFaces R)*

nOfFaceNodes + (1 : nOfExter iorFaces D*nOfFaceNodes) ;
4
5 dofUnknown = 1 : (nOf Inte r i o rFace s *nOfFaceNodes+nOfExter iorFaces N*

nOfFaceNodes+nOfExter iorFaces R*nOfFaceNodes) ;

Finally, codes for the computations of matrices involving the Neumann and Robin boundaries
were written in function hdgMatrixPoisson.m. As it can be noticed, the matrices are only computed
if the element has faces on the Neumann or Robin boundaries and the matrix elements are allocated
accordingly.

7

Listing 3.4 – Coding for the additional matrices in hdgMatrixPoisson.m

1 %Robin matrix (All R)
2 i f Fext R == 1
3 nodes = faceNodes (face R id , :) ; Xf = Xe(nodes , :) ;
4 dxdxi = Nx1d*Xf (: , 1) ; dydxi = Nx1d*Xf (: , 2) ;
5 dxdxiNorm = s q r t (dxdxi .ˆ2+ dydxi . ˆ 2) ; d l i n e = dxdxiNorm .* IPw f ' ;
6 i n d f a c e = (face R id −1)*nOfFaceNodes + (1 : nOfFaceNodes) ;
7 Auu f = N1d'*(spd iags (d l ine , 0 , ngf , ngf)*N1d)*gamma;
8 Arr (i nd f a c e , i n d f a c e) = −Auu f ;
9 end

10
11 %Neumann f o r c e vec to r
12 fqN = ze ro s (nOfFaces*nOfFaceNodes , 1) ;
13 i f Fext N == 1
14 nodes N = faceNodes (face N id , :) ;
15 Xf N = Xe(nodes N , :) ;
16 dxdxi = Nx1d*Xf N (: , 1) ; dydxi = Nx1d*Xf N (: , 2) ;
17 dxdxiNorm = s q r t (dxdxi .ˆ2+ dydxi . ˆ 2) ; d l i n e = dxdxiNorm .* IPw f ' ;
18 aux f = −N1d'*(spd iags (d l ine , 0 , ngf , ngf)*neumanPoisson (N1d*Xf N)) ;
19 i f f a c e N i d == 1
20 fqN (1 : n o d e s o f f a c e) = aux f ;
21 e l s e i f f a c e N i d == 2
22 fqN (n o d e s o f f a c e +1:2* n o d e s o f f a c e) = aux f ;
23 e l s e
24 fqN (2* n o d e s o f f a c e +1:3* n o d e s o f f a c e) = aux f ;
25 end
26 end
27
28 %Robin f o r c e vec to r
29 fqR = ze ro s (nOfFaces*nOfFaceNodes , 1) ;
30 i f Fext R == 1
31 nodes R = faceNodes (face R id , :) ;
32 Xf R = Xe(nodes R , :) ;
33 dxdxi = Nx1d*Xf R (: , 1) ; dydxi = Nx1d*Xf R (: , 2) ;
34 dxdxiNorm = s q r t (dxdxi .ˆ2+ dydxi . ˆ 2) ; d l i n e = dxdxiNorm .* IPw f ' ;
35 aux f = −N1d'*(spd iags (d l ine , 0 , ngf , ngf)* rob inPo i s son (N1d*Xf R)) ;
36 i f f a c e R i d == 1
37 fqR (1 : n o d e s o f f a c e) = aux f ;
38 e l s e i f f a c e R i d == 2
39 fqR (n o d e s o f f a c e +1:2* n o d e s o f f a c e) = aux f ;
40 e l s e
41 fqR (2* n o d e s o f f a c e +1:3* n o d e s o f f a c e) = aux f ;
42 end
43 end

8

4 Results and discussion

Examples of the solutions obtained using linear and cubic approximation with different meshes
are depicted in Figure (4.1).

(a) Linear interpolation and 2048 elements (b) Cubic interpolation and 512 elements

(c) Analytical solution

Figure 4.1 – Comparison of numerical results using different degrees of interpolation and meshes
with the analytical solution

Although a finer mesh was used for the linear interpolation, the associated computer error was
higher (e = 1.718371 · 10−1 in L2(Ω)) in comparison with the one of the cubic interpolation (e =
2.179106 · 10−2 in L2(Ω)).

9

Figure (4.2) shows the numerical solution computed on an equally-refined mesh with a degree of
approximation p = 2 and p = 4. It is worth noting how the accuracy becomes higher as the degree
of the approximation increases resulting in a error reduction of an order of magnitude.

Figure 4.2 – Model problem solution for p = 2 (left) and p = 4 (right) on mesh with 128 elements

10

Using the implementation given for the post-processing technique, Figures (4.3) and (4.4) show
a comparison of the original and post-processed solutions, where the gain in accuracy induced
by the post-processing is clearly observed for both coarse and refined meshes. For the 4th-order
interpolation in Figure (4.3), the solution uh∗ has an error in the L2(Ω) norm of 1.811941 · 10−1

whereas, by post-processing, this the value decreases to 2.359702 ·10−2. Similarly, in the case of the
linear interpolation in Figure (4.4), the error reduction is from 6.316016 · 10−1 to 1.375870 · 10−2. It
is important to stress that the additional accuracy gained by the post-processing requires only the
solution of a element-by-element problem, having a comparatively insignificant associated cost.

Figure 4.3 – Effect of post-processing procedure for solution using 8 elements with p = 4

Figure 4.4 – Effect of post-processing procedure for solution using 512 elements with p = 1

11

Finally, an h-convergence study of the error of solution and the post-processed solution is per-
formed. Figure (4.5) shows the results of the convergence study where the difference between the
optimal rate of convergence of the solution (p+ 1) and post-processed (p+ 2) is clearly illustrated.
As predicted by the error estimator, a similar rate of convergence is observed for the post-processed
solution uh∗ that results from a computation with degree of approximation p and the solution uh

computed with a degree of approximation p+ 1. Nevertheless, even though the rate of convergence
might be similar, the post-processed solutions of degree p are more accurate in comparison with the
solution with a p+ 1 approximation.

Figure 4.5 – Error of the solution and the post-processed solution in the L2(Ω) norm as a function
of the characteristic element size h for different values of the approximation degree p

12

Bibliography

[1] Ruben Sevilla. Hybridisable discontinuous Galerkin for second-order elliptic problems. Notes
for DG Summer School - Barcelona. 2017.

[2] Ruben Sevilla and Antonio Huerta. “Tutorial on Hybridizable Discontinuous Galerkin (HDG)
for Second-Order Elliptic Problems”. In: May 2016, pp. 105–129. isbn: 978-3-319-31923-0. doi:
10.1007/978-3-319-31925-4_5.

13

https://doi.org/10.1007/978-3-319-31925-4_5

	Problem statement
	HDG formulation
	Computational implementation
	Results and discussion

