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Part 1. On Unsteady Problems:

-Calculate the Courant Number
The Courant Number is an indicator of the stability of a scheme and is defined as:

C =
|a|∆t
h

Where a is the convection velocity, ∆t is the time step and h is the mesh size.

-Solve the problem using the Crank-Nicholson scheme in time and linear finite element for the
Galerkin scheme in space. Is the solution accurate?

The problem to solve is the following:
ut + aux = 0 x ∈ (0, 1), t ∈ (0, 0.6)

u(x, 0) = u0(x) x ∈ (0, 1)

U(0, t) = 1 t ∈ (0, 0.6]

u0 = (x) =

{
1 if x ≤ 0.2,

0 otherwise

a = 1, ∆x = 2× 10−2, ∆t = 1.5× 10−2

The profile to transport is a steep front. Given the domain of [0,1] and the time frame, the fol-
lowing data is entered in the MATLAB code: a = 1, NumberT imeSteps = 40, NumberElements =
50.

(a) (b) (c)

Figure 1: Crank Nicholson Results for Courant Number 0.75
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-Solve the problem using the second-order Lax-Wendroff method. Can we expect the solution
to be accurate? If not, what changes are necessary? Comment the results.

Lax-Wendroff is expected to be unstable, since the given example has a Courant number of

0.75, when the stability limit of LW is
√

1
3 = 0.57735

(a) (b) (c)

Figure 2: Lax-Wendroff for Courant Number 0.75

The way to improve Lax-Wendroff’s stability range is to use the lumped mass matrix. This
is done adding up all of the terms in the rows of the consistent mass matrix, and placing the
contribution in the diagonal.

When running the code using LX with lumped mass matrix, the results are expected to be
stable.

(a) (b) (c)

Figure 3: Lax-Wendroff with lumped mass matrix for Courant Number 0.75

–Solve the problem using the third-order explicit Taylor-Galerkin method. Comment the re-
sults.

TG3 is implemented as follows:

Figure 4: Implementation of Taylor-Galerkin 3

The results of running the simulations using TG3 are shown next:
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(a) (b) (c)

Figure 5: Taylor-Galerkin third order

Conclusions. Part 1
The implementation of all of this schemes for solving the problem of a steep front transport is

not as complicated, due to the lack of boundary and source terms. It was needed only the calcu-
lation of the M, C, and K matrices; and then they should be multiplied by the right coefficients,
as shown in figure 4.

From the schemes studied Crank-Nicholson is the only one which does not require to fulfill a
stability condition and it is a second order method. Lax-Wendroff is also second order, it needs
to fulfill the Courant Number lower than 1/

√
3, but it has the advantage of being explicit. One

can compare figures 1 and 3. Observa how the lumped LW produces less oscillations than the
Crank-Nicholson method. This is due to the fact that ...

Finally, Taylor-Galerkin 3, also explicit but 3rd order accurate, is the one that performs better.
It has a stability range of Courant≤ 1. In figure 5 one can see how only a small fluctuation near
the front are present, and the solution is in general clean away from the front.
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Part 2. On Nonlinear Hyperbolic Problems:

The code provided is capable of computing the solution of Burgers equation:{
ut + fx(u) = 0

u(x, 0) = u0(x)

However, it uses a parameter ε to smooth, that is, the equation really simulated is:

ut + uux = 0→ uεtu
εuεx = εuεxx

The first method, Forward Euler, is totally explicit and it can be solved directly, as long as the
timestep allows it. For the Backward Euler, an implicit method there are some ways to deal with
the implicitness. The first one is Picard method.

Picard method is readily implemented and it consists on solving the following problem:

(M + ∆t(C(Un+1) + εK)︸ ︷︷ ︸
A(Un+1)

Un+1 = MUn

The initial solution is the solution at the previous timestep, and one should iterate until con-
vergence:

Un+1
k+1 = A−1(Un+1

k )(MUn)

For this exercise, one is to implement the Newton-Raphson scheme for solving the implicitness.
This is done by first calculation a residual f(Un+1) = 0 with:

f(U) = (M + ∆tC(U) + ε∆tK)U −MUn

One should use as initial guess the iteration of the last timestep, and iterate until convergence:

Un+1
k+1 = Un+1

k − J−1(Un+1
k )f(Un+1

k )

Where:

J =
df

dU
= (M + ∆tC(U) + ε∆tK) + (∆tC)

Since (dC/dU)U = C
The implementation in the code is shown next:

Figure 6: Newton-Raphson implementation

Testing the code
when running the code under different initial conditions, these are the results obtained:
It was proven that the two implicit methods can perform well under condition where the explicit

solver has blown up. The NR converges in around 3 iterations to the solution.
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(a) Initial Condition (b) Explicit FE

(c) Picard (d) Netwon-Raphson

Figure 7: Test 1, ∆t = 0.1; ε = 0.01

(a) Initial Condition (b) Explicit FE

(c) Picard (d) Netwon-Raphson

Figure 8: Test 2, ∆t = 0.05; ε = 0.01

5


