
Finite Elements in Fluids - Course Assignment

Albert Taulera Campos - MSc Computational Mechanics

April 2016

1 Introduction

In this assignment, several exercises are going to be solved. They are all based
on the same 2 dimensional domain, defined by the following characteristics:

Figure 1: Problem Statement

The codes used in all the sections are the ones that were given in the practical
sessions of the subject or downloaded from the reference Antonio Huerta Lacàn
webpage, widely complimented to cover all the subproblems proposed, all the
new boundary and initial conditions and the new methodologies for both time
and space integration.

1

2 Exercise 1

It is remarkable that the code came with a default velocity direction of v=
[cos(pi/3),sin(pi/3)]*a, and I have worked with it as nothing else had been
stated in the assignment.

**Remark: All the work had already been done when Pablo sent the in-
campus message changing the velocity direction. For obvious reasons, I am not
going to do the full assignment again.

• a) Weak form and Discretization. Weighted residuals and Galerkin
Method.

The Weak Form is obtained from the Srong Form in the following way:∫
Ω

w(a∇u)dΩ +

∫
Ω

∇w(ν∇u)dΩ +

∫
Ω

wσudΩ =

∫
Ω

wsdΩ

And basically the discretization relies on obtaining the next equation:

Ku = f

from our weak form. This is done through the following equalities:

Kij =

∫
Ω

Ni(a∇Nj)dΩ +

∫
Ω

∇Ni(ν∇Nj)dΩ

and

fi =

∫
Ω

NisdΩ

• b) Solution of the problem using the Galerkin approach. Over-
coming the not acceptable solutions and SUPG, GLS approaches.

In this section, different values of convection, source, diffusion and reaction
have been considered to study the different behavior of Galerkin, SUPG
and GLS under different conditions, especially under different Péclet num-
bers. Péclet can be defined as:

P é =
ah

2ν

and, as we will see, has a lot of influence in the results obtained and
the node-to-node spurious oscillations that can be generated in our 2D
analysis domain. The conditions contemplated in this section are:

2

Figure 2: Subcases to be tested and Boundary Conditions

For each of the 4 combinations of relevant independent variables the code
has been run and the results are shown next (Galerkin, SUPG and GLS)

(a) Galerkin (b) SUPG (c) GLS

Figure 3: Case 1: a=1, ν = 10−3, σ = 10−3, s=0

(a) Galerkin (b) SUPG (c) GLS

Figure 4: Case 2: a=10−3, ν = 10−3, σ = 1, s=0

3

(a) Galerkin (b) SUPG (c) GLS

Figure 5: Case 3: a=1, ν = 10−3, σ = 0, s=1

(a) Galerkin (b) SUPG (c) GLS

Figure 6: Case 4: a=1, ν = 10−3, σ = 1, s=0

After a first check to all the results plotted here, it can easily be seen that
Galerkin does not behave well in most cases, showing node-to-node oscil-
lations. Recalling the slides from Finite Elements in Fluids, oscillations
may appear for Pe>1.
It have been taken, for the following example for the Galerkin approach:

a = 1 ν = 0.1 σ = 10−3 s = 0 P é = 2 h = 0.2

and the Péclet number has been subsequently reduced only by reducing
the size of the elements. As the problem statment requires all the other
variables to remain constant, the size of the element, h, is the only mag-
nitude that we can change.
Subsequent iterations lead to:

a = 1 ν = 0.1 σ = 10−3 s = 0 P é = 1 h = 0.1

and

a = 1 ν = 0.1 σ = 10−3 s = 0 P é = 0.5 h = 0.05

The results would be:

4

(a) Pé=2, h=0.2 (b) Pé=1, h=0.1 (c) Pé=0.5, h=0.05

Figure 7: Different Pé and h values for the same Galerkin problem. Detection
of node-to-node oscillations

It can be seen that in the first image,7a , some oscillations appear. Not
many, because we are pretty close to the limit of stability, but they extist.
In the previous examples Pé values were so high that the instabilities were
easier to see.

On the other hand, images 7b and 7c show smooth solutions, which can
also be obtained using the alternative methods proposed, SUPG and GLS.
As it can be seen in all the previous sets of images, they offer a concise and
enough smooth solution for every case without requiring a refined mesh.

These two methodologies (and others not mentioned here) allow us to
benefit from the fact that they do not require fine meshes to find an
adequate solution. As a result, Galerkin should not be the aproach to be
prioritized in this kind of problems.

• c) SUPG and GLS. Step-by-step explanation of the methodolo-
gies and Code Implementation.

Basically, these two methodologies are based on new parameters added
to the weak form of the problem. These new parameters are ”stabiliz-
ers”, which make the solution much more consistent and without oscilla-
tions due to the Péclet number limitations. The basic weak form for the
Galerkin approach was:∫

Ω

w(a∇u)dΩ +

∫
Ω

∇w(ν∇u)dΩ +

∫
Ω

wσudΩ =

∫
Ω

wsdΩ

Basically, the SUPG approach to the weak form is the following, with
stabilizer terms added, shown in red.

∫
Ω

w(a∇u)dΩ+

∫
Ω

∇w(ν∇u)dΩ+

∫
Ω

wσudΩ+
∑
E

∫
Ωe

a∇wτ((a∇u)−∇(ν∇u) + σu)dΩ

5

=

∫
Ω

wsdΩ +
∑
E

∫
Ωe

(a∇w)τsdΩ

This stabilizer term is not the same that is used in GLS, they both differ
a bit. For GLS, the terms used is:∫

Ω

w(a∇u)dΩ +

∫
Ω

∇w(ν∇u)dΩ +

∫
Ω

wσudΩ+

∑
E

∫
Ωe

a∇w −∇(ν∇w) + σw)τ(a∇u−∇(ν∇u) + σu)dΩ

=

∫
Ω

wsdΩ +
∑
E

∫
Ωe

(a∇w −∇(ν∇w) + σw)τsdΩ

When it comes to the code implementation, it is quite easy to implement.
First of all, the τ parameter has to be determined. It can be changed, but
as default it is, for both formulations, the following one:

tau_p = h*(1 + 9/Pe^2 +(h*sigma/(2*a))^2)^(-1/2)/(2*a);

And, for both formulations the tau is included in the stiffness matrices
and nodal force vectors of the element in the following way:

– SUPG

Ke = Ke + (N_igaus’*convi + nu*(Nx’*Nx+Ny’*Ny) +

sigma*N_igaus’*N_igaus ...

+ tau*(convi’*convi + convi’*sigma*N_igaus))*dvolu ;

fe = fe + (N_igaus + tau*(ax*Nx+ay*Ny))’*(f_igaus*dvolu);

– GLS

Ke = Ke + (N_igaus’*convi + nu*(Nx’*Nx+Ny’*Ny) +

sigma*N_igaus’*N_igaus ...

+ tau*((convi + sigma*N_igaus)’*(convi +

sigma*N_igaus)))*dvolu ;

fe = fe + (N_igaus + tau*(convi+sigma*N_igaus))’*(f_igaus*dvolu);

As it is remarked in the slides of the subject, SUPG and GLS are com-
pletely identical for convection-diffusion with linear elements. They be-
come different when we introduce the reaction term. GLS obtains higher

6

contribution from the reaction term than SUPG, meaning that the in-
stabilities that can be introduced by Galerkin approach are a bit more
amplified in GLS if we compare them to SUPG.

To make differences appear (they are so little that can not be easily ap-
preciated in the images shown before) we have used a huge reaction term
value (σ = 1000). Here we can appreciate that GLS makes oscillations
bigger, tracking the position of one of the nodes of our solution.

Figure 8: Comparative. Node 13. Analysis of SUPG and GLS with a=1, ν = 1,
σ = 1000 and s=0. GLS, in red, shows higher oscillations

• d) Change in the boundary conditions and Neumann BC.

In this section, all boundary conditions (Dirichlet) have been raised in 1
point, having now ρ = 2 and ρ = 1 instead of ρ = 1 and ρ = 0, respectively.
The solution should be similar, just with a relative translation in the ρ
axis. The results, which are, indeed, very similar to the ones in 23:

7

(a) Galerkin (b) SUPG (c) GLS

Figure 9: Case 1: a=1, ν = 10−3, σ = 10−3, s=0

8

3 Exercise 2

In this section, the transient term is included, together with new initial condi-
tions and velocity vector. The new initial conditions are:

x0(x, 0) = x(2− x)

in Ω and the boundary conditions are going to be the same than in exercise 1.
The convective term is:

a(x, y) = (−x,−y)

• Discretization of the problem. Choosing a space discretization.
Time discretization using 2 out of:

– Crank-Nicolson method

– Two step third order TG method.

– Padé approximation of order R22

The systems have been worked separately, Crank-Nicolson and the Padé
aproximmation of order R22, which are the ones chosen to work with.

Moreover, all the methods have been implemented in the same way, using
the theoric matrices of the implicit padé implementation. Implicit Padé
aproxximation lies:

Figure 10: Compact form for Padé aproxximation problems

where

where W is a (ntg − 1)x(ntg − 1) matrix and w a (ntg − 1) vector. Their
definition depends on every particular method and will be adapted for
both Crank-Nicolson and R22.

9

– Crank-Nicolson method
The adaptation for W and w for the Crank-Nicolson method is the
following one:

Figure 11: C-N W and w coefficients

Obviously, for the C-N approach, both matrix and vector become
scalar, obtaining the usual description of this methodology.

– Padé approximation of order R22

Figure 12: R22 W and w coefficients

These coefficients of w and W will be implemented in the code as different
options so the solution can be computed with both methodologies. They
are applied in the following way:

d_temp = input(’Choose a method to perform time integration = ’);

if d_temp == 0

method = ’CN + ’;

W = 1/2;

w = 1;

beta = [0,1];

elseif d_temp == 1

method = ’R22 + ’;

W = (1/24)*[7 -1; 13 5];

w = [1/2; 1/2];

beta = [0,1/2,1];

and then used to compute the matrices of the system to solve, in each of
the different methods available (Galerkin, LGS, SUPG), for example:

disp(’Computation of total matrices for the time-integration scheme’)

10

Kt = C + nu*K;

A = [];

for i = 1:n

row = [];

for j = 1:m

row = [row, Id(i,j)*M + dt*\textbf{W(i,j)}*Kt];

end

A = [A; row];

end

nccd = size(Accd1,1);

Accd = []; bccd = [];

for i = 1:n

row = [];

for j = 1:m

row = [row, Id(i,j)*Accd1];

end

Accd = [Accd; row];

bccd = [bccd; bccd1];

end

nccd = n*nccd;

Atot = [A Accd’; Accd zeros(nccd)];

Atot = sparse(Atot);

%Totality of the code available in the files%

Even though having different methods available, taking some conclusions
from the exercise 1, as it is asked, the best time-step integrating method-
ologies to be used is the SUPG one, with the best stabilizing techniques
and the lower error propagation.

• Code programming

The full code used in this assignment is available as an attachment to this
project.

The interesting part to remark in this section is the imposition of boundary
and initial conditions at the same time. We have:

Figure 13: Boundary Conditions

11

Figure 14: Initial Conditions

which would be coded in the following way:

% INITIAL CONDITION

c = zeros(numnp,1);

for i=1:numnp;

c(i,1)=X(i,1)*(2-X(i,1));

end

%BOUNDARY CONDITIONS

nodes_y0 = [2:nx]’ ; % y=0

nodes_x1 = [(nx+1):nx+1:(ny+1)*(nx+1)]’ ;% x=1

nodes_y1 = [ny*(nx+1)+nx:-1:ny*(nx+1)+2]’ ;% y=1

nodes_x0 = [(ny)*(nx+1)+1:-(nx+1):1]’ ;% x=0

%we require the division so we can have the different specified areas of

%boundary conditions.

nodes_x0_1 = nodes_x0(1:length(nodes_x0)/2) ; % half x=0

nodes_x0_2 = nodes_x0(length(nodes_x0)/2+1:end); % 2half x=0

% nodes_DC = [nodes_y0; nodes_x1; nodes_y1; nodes_x0];

nodes_DC=nodes_x1;

%new

nodes_DC_1=nodes_x0_1;

nodes=[nodes_DC;nodes_DC_1];

x1 = X(nodes_DC,1); y1 = X(nodes_DC,2);

x2 = X(nodes_DC_1,1); y2 = X(nodes_DC_1,2);

c=[nodes_DC,0*x1];

d=[nodes_DC_1,ones(length(x2),1)];

C=[c;d];

in this image we can see how does it behave in the first timestep of the code
execution, when we have huge discontinuities due to this non-continuous
conditions.

12

Figure 15: Initial Conditions + Boundary conditions

We expect to see a smoothing all along the timesteps so our problem shows
realistic behavior.

• Mesh discretization and time discretization

For the sensitivity analysis on the mesh size we have used the following
problem characteristics (with these values we guarantee Pé, C stability in
most cases and and study of the full transient)

ν = 0.1 tstep = 0.02 tend = 2 s = 0 Crank−Nicolson SUPG

13

(a) Final tstep 7x7 mesh
(b) Final tstep 7x7 mesh lin-
ear diagram

(c) Final tstep 15x15 mesh
(d) Final tstep 15x15 mesh
linear diagram

(e) Final tstep 30x30 mesh
(f) Final tstep 30x30 mesh lin-
ear diagram

Figure 16: Differences between mesh discretization sizes

We can appreciate how the mesh refinements help improve our results.
The 7x7 mesh gives pretty bad results and early oscillations that grow
over 1, the maximum that we can achieve in our problem, so maybe that
mesh is not the most adequate. From 15x15 and above all results seem to
pretty much behave the same.

The computational cost has not been numerically determined, but as for
every finite element analysis case, it is exponential and growing the num-
ber of elements from 15 to 30 in each direction highly increments our
computation cost.

When it comes to timesteps and time discretization, the sensibility analysis
will be the next. We have used a tn = 2 because we can assume that the
problem near to stationarity when we are close to that value. Therefore,
we are going to work with the same final time and different timesteps.

14

After trying with different values, it is obvious that as we go up in the
timestep, higher errors are made in the solution of our problem. See how
as we increase the Courant number, increasint the timestep, the solution
every time becomes stranger and more distant to the usual solution showed
before.

(a) Final tstep=0.01 mesh
(b) Final tstep=0.01 mesh lin-
ear diagram

(c) Tstep=0.1 mesh
(d) Tstep=0.1 mesh linear di-
agram

(e) Tstep=0.5 mesh
(f) Tstep=0.5 mesh linear di-
agram

(g) Tstep=1 mesh
(h) Tstep=1 mesh linear dia-
gram

Figure 17: Differences between time discretization sizes

15

They have also been studied the differences between Péclet numbers. Not
in extension, but as an example we can see the differences using ν factors
that are different, one stable and the other instable for the stability Péclet
condition:

(a) Pé=0.47 (b) Pé=0.47

(c) Pé=4.71 (d) Pé=4.71

Figure 18: Differences between Péclet numbers

As one could expect, the high Péclet numbers above the limits stablished
before (ex.1) show oscillations on the solution.

• Quadratic elements implementation

Unfortunately, this part has not been done succesfully. It has been tried,
though. To achive that purpose, several changes have been implemented;
they are described next.

First of all, shape functions for the quadratic elements have been included.
The code for them is:

N = [xi.*(xi-1).*eta.*(eta-1)/4, xi.*(xi+1).*eta.*(eta-1)/4, ...

xi.*(xi+1).*eta.*(eta+1)/4, xi.*(xi-1).*eta.*(eta+1)/4, ...

(1-xi.^2).*eta.*(eta-1)/2, xi.*(xi+1).*(1-eta.^2)/2, ...

(1-xi.^2).*eta.*(eta+1)/2, xi.*(xi-1).*(1-eta.^2)/2, ...

(1-xi.^2).*(1-eta.^2)];

with their consequent derivatives. But that is not all what is required.
The fact of inserting new nodes between the linear elements that we had
requires the creation of a new mesh. For example, the new nodes coordi-
nates are computed as:

16

% nodes coordinates

for i=1:ny+1

ys = ((i-1)*hy+y1)*vect_ones;

posi = [(i-1)*(nx+1)+1:i*(nx+1)];

X(posi,:)=[xs,ys];

end

which completely differs from the previous implementation. New bound-
ary conditions have also been implemented to fullfill the new node num-
bering. All the process has been carefully implemented but, finally, the
solution matrix became singular, as it can be seen here:

(a) Solution obtained (b) Solution obtained

Figure 19: Quadratic elements solution. 15x15 ν = 0.1

The solution matrix at each timestep, sol, gives a lot of results as NaN ,
which mean that they are divided by zero or infinite. The involved ma-
trices; L, U and F have been reviewed and no source of singularity has
been found. This probably is due to an implementation problem or some
mistake in some part of the code. This would have been further tested or
further checked if the amount of time available wasn’t so limited.

17

4 Exercise 3

In this exercise, the following boundary conditions have been taken into account
for the stokes problem:

Figure 20: Problem Statement

It is notorious that now there is a side of the rectangle that has different
boundary conditions in the X and Y directions, only being constrained in the
Y one. Therefore, every side has been constrained but the X direction of that
side, which is not included as a Dirichlet boundary condition in the definitive
code.

In this first section, the different element types that came implemented in
the given code are going to be tested under different conditions to assess their
suitability in the solution of the full problem.

The different options are:

• Element Types : Triangular, Quadrilateral, Bubble

• Degree Velocity: 1, 2

• Degree Presure

All subcases will be compared under the same conditions: 10x15 mesh.

18

(a) Velocity Distribution - Linear/Linear (b) Pressure Distribution Linear/Linear

(c) Velocity Distribution - Lin-
ear/Quadratic

(d) Pressure Distribution Lin-
ear/Quadratic

(e) Velocity Distribution - Quadratic/Lin-
ear

(f) Pressure Distribution Quadratic/Lin-
ear

(g) Velocity Distribution - Quadrat-
ic/Quadratic

(h) Pressure Distribution Quadrat-
ic/Quadratic

Figure 21: Quadrilateral elements19

(a) Velocity Distribution - Linear/-
Linear

(b) Pressure Distribution Linear/Lin-
ear

(c) Velocity Distribution - Quadrat-
ic/Linear

(d) Pressure Distribution Quadrat-
ic/Linear

(e) Velocity Distribution - Quadrat-
ic/Quadratic

(f) Pressure Distribution Quadrat-
ic/Quadratic

(g) Bubble Triangles - Velocity Dis-
tribution - Linear/Linear

(h) Bubble Triangles -Pressure Distri-
bution Linear/Linear

Figure 22: Triangular elements and Triangular with bubble function

20

Figure 23: Triangle with Bubble function elements

After a close look at all the combinations shown above we can easily state
that the combination of elements and shape functions for velocity / pressure
that work properly are:

• Triangular or Quadrilaterals with 2nd degree in Velocity and 1st degree
in Pressure.

• Triangular with Bubble function for both 1st degree in Velocity and Pres-
sure

The other ones were subject to several Matlab Warnings of singular matrices
and won’t be considered to give good solutions of the problem. Some of them
are giving results that are close to the smooth ones obtained but with local
oscillations that make them unrealistic.

• Stokes. Weak Form and Discretization. Mesh size comparison
and choosing criteria. Description of velocity and pressure fields.

The weak form of the Stokes problem can be written in the following way:
Find the values of v and p that for all w functions accomplish:∫

Ω

∇w : σdΩ =

∫
Ω

w · bdΩ +

∫
Γ

w · tdΓ

∫
Ω

q∇ · vdΩ = 0

After integration by parts and divergence theorem usage we can get to the
expression:

where relevant terms influence can be seen. It can be rewritten in the
following form, involving velocity and pressure:

with the matching discretization for the Galerkin Approach :

21

When it comes to mesh size, one of the most important and limiting factors
is the computing performance of the computer. As this computations have
been done in a laptop, the Matlab Code can not run meshes finer than
20x30 for V-Quadratic and P-Linear Quadrilateral elements.

(a) Y Velocity Distribution -
Quadratic/Linear

(b) Pressure Distribution Quadrat-
ic/Linear

(c) Y Velocity Distribution -
Quadratic/Linear

(d) Pressure Distribution Quadrat-
ic/Linear

(e) Y Velocity Distribution -
Quadratic/Linear

(f) Pressure Distribution Quadrat-
ic/Linear

Figure 24: Differences in Y-Velocity and Pressure distributions using different
refinement level meshes

22

As it can be appreciated, in the little range where we can study the be-
havior of the problem, almost all refinement mesh levels work fine.
It is true, though, that for the pressure distribution the singular points
that can be seen in the limits of the rectangular domain grow and grow as
the refinement increases. These two points should be studied further and
with a much more refined meshes to extract some relevant conclusions re-
garding them. They can be related to some boundary conditions or some
code issues.

In the images can be really well appreciated how the values of velocity
stick to -1 in the imposed boundary condition on that side of the domain,
while the rest of the rectangle adapts to this with a transition until it gets
the value in all the other sides, 0. When it comes to pressure, we can ap-
preciate singular pressure points in the corners of the -1 imposed velocity
boundary. Their values can not be believed, as it grows with refinement
and would require, as said, further study.

• Navier-Stokes. Convergence depending on Re

Taking into account the given initial conditions, the code has been tested
under the following specified conditions:

– Re=1

– Re=100

– Re=1000

– Re=2000

only being it convergent in the two first subcases. The number of iterations
were:

– Re=1 - 3 iterations

– Re=100 - 103 iterations

– Re=1000 - Oscillating solution

– Re=2000 - Oscillating solution

The appearance of the solutions, velocity and pressure were:

23

(a) Velocity Distribution - Re=1 (b) Pressure Distribution Re=1

(c) Velocity Distribution Re=100 (d) Pressure Distribution Re=100

Figure 25: Differences in Velocity and Pressure distributions depending on
Reynolds number

Huge differences can be seen regarding the velocity and pressure fields,
thing that is completely logical taking into account that the problem is
completely different. The mesh used is 10x15, as was the one that gave
better relation between performance/results in the last section of the ex-
ercise. Quadratic in velocity and Linear in pressure elements have been
used also, as they were the ones that gave better results in the previous
computations.

It can be seen how the velocity and pressure field suffer slower transitions
as the Reynolds number goes up. The area of influence of the -1 velocity
boundary is much higher when Re=100 than when it is equal to 1.

The problem has also been tested under different conditions when it comes
to element types, showing that triangular bubble function elements have
higher difficulties when it comes to convergence. Quadrilaterals and tri-
angular elements work more or less at the same convergence ratio.

24

