

Treball realitzat per:

Arthur Lustman

Dirigit per:

Dr. S. Zlotnik
Dr. M. Giacomini

Màster en:

Erasmus Mundus M.Sc. in Computational
Mechanics

Barcelona, 14 June 2019

Departament de Laboratori de Cálcul Numèric

 T
R

EB
A

LL
 F

IN
A

L
D

E
M

À
ST

ER

Coupling efficient parallel solvers
for saddle-point problems with
serial Matlab code

CONTENTS CONTENTS

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Numerical solution of linear system of equation . 1

1.1.1 Direct methods . 1
1.1.2 Iterative methods . 2
1.1.3 Solving linear systems in Matlab . 3
1.1.4 Solving linear systems in hypre . 3

1.2 Parallel Computing to treat large scale problems 3
1.3 Contributions of this Master thesis . 5
1.4 Outline . 6

2 The Uzawa Algorithm 7
2.1 Saddle-point problems . 7
2.2 Krylov Subspace . 9
2.3 Uzawa iteration . 9
2.4 Derivation of the Uzawa algorithm . 10

2.4.1 Initial Residual r(0) . 11
2.4.2 Conjugate direction d

(i)
1 . 11

2.4.3 Step size α(i) . 12
2.4.4 The update of the velocity u(i+1) . 12
2.4.5 The incremental residual r(i+1) . 12

2.5 A simple implementation of the Uzawa Algorithm 12
2.6 A parallel version of the Uzawa Algorithm . 14

2.6.1 Hypre implementation . 14
2.6.2 A scheme of the algorithm . 16

2.7 Saddle-point problem solver with Matlab interface 17
2.7.1 GMRES . 17
2.7.2 BoomerAMG . 18
2.7.3 ParaSails . 19

3 Results 20
3.1 Problem statement . 20
3.2 Direct solver . 20
3.3 Iterative solver . 22
3.4 Hypre’s code results . 22

3.4.1 Strong scalability results . 23
3.4.2 AMG results . 25
3.4.3 Details of scalability . 25

4 Conclusion 27

5 Further Improvements 28

References 29

CONTENTS CONTENTS

Abstract
Linear systems with saddle-point structure arise from the discretization of several engineering
problems, like incompressible flows as well as problems in elasticity and electromagnetics involving
mixed finite element formulations. The peculiar structure of the resulting matrices makes classical
iterative methods available in most common linear algebra libraries inefficient for large scale prob-
lems. This work aims to propose an efficient alternative to built-in Matlab iterative algorithms,
providing to end-users a seamless access to a parallel linear solver tailored for saddle-point prob-
lems. More precisely, an interface between Matlab and an implementation of the Uzawa algorithm
in hypre, the High Performance Preconditioners library developed at Lawrence Livermore National
Laboratory (USA), is proposed.
The developed strategy allows Matlab users to run the Uzawa algorithm on up to 32 processors,
exploiting efficient hypre solvers, e.g. preconditioned conjugate gradient (PCG), generalized mini-
mal residual method (GMRES), algebraic multigrid (AMG), as well as hypre preconditioners like
AMG and ParaSails. Validation of the methodology and scalability analysis are performed for
moderate-sized systems, up to 1 million of unknowns, arisin from the Taylor-Hood discretization
of a 3D Stokes problem with high variations of the viscosity coefficient.

i

CONTENTS CONTENTS

Acknowledgments
I would like to thank every person who has contributed to the success of my thesis

First of all, I would like to express my deepest thanks to Dr. M. Giacomini and Dr. S. Zlotnik
for their time dedicated to me, sharing their expertise and precious advices in regards to the com-
pletion of my thesis.

I would like to thanks my family who has always been encouraging me through those last two
years to complete my master.

ii

1 INTRODUCTION

1 Introduction

The solution of linear system of equations is ubiquitous in engineering applications. Among them,
linear system arising from finite element discretization have a sparse structure or other proper-
ties that can be taken advantage of. Large sparse symmetric and non-symmetric linear systems
of equations appear in eigenvalue computation, solving discrete finite-element problems, device
and circuit simulation, linear programming, chemical engineering, and fluid dynamics modeling[1].
Several techniques have been proposed for such problems.

This work focuses on saddle-point matrices which appears in most applications of scientific
computing. These demanding and important applications can immediately benefit by any im-
provements in linear equation solvers. The goal is to provide an efficient parallel solver for large
saddle-point problems that can be exploited with a seamless Matlab interface.

1.1 Numerical solution of linear system of equation

In the case of solving a classic linear system of equation,

Ax = b (1)

where A ∈ Rn×n is a non-singular sparse matrix and b ∈ Rn is a given vector, one can solve it
with a direct or an iterative solver.

A simple and direct way to compute the solution x would be to invert the matrix A and multiply
it by the forcing vector b. The matrix A has the benefit of being sparse, meaning the non zero
values takes only a small percentage of the information inside the matrix. Computing the inverse
of a matrix is a computationally expensive operation that usually results in this case with storing
a dense matrix A−1 which is not recommended. Solving the problem this way is not recommended
as it would mean we are not using the sparsity of the matrix, a valuable property the could be
taken advantage of. Another inconvenience is when the solver doesn’t have access to the entire
matrix at once, such case is in relation with the usage of parallel computing, which is a convenient
way to speed up the computation of the solution.

1.1.1 Direct methods

A sparse linear system is frequently solved by sparse direct solvers, which usually rely on varia-
tions of Gauss elimination methods[2]. Permutation matrices are chosen to preserve sparsity and
maintain stability in order to factorize the matrix A into two triangular matrices LU [3]. The two
triangular systems Ly = b and Ux = y are solved to obtain the solution x.

During the last 30 years, sparse direct solvers have been the subject of a lot of discussion and
were developed to reach high efficiency. In the early times of computers, the sparsity of the ma-
trices had to be exploited as a way to spare memory and time when solving large linear systems.
A dense matrix of a million unknowns could never be stored in the computers available in 1985[4].
Nowadays the computers have grown bigger and more powerful, but the computation cost required
by a direct solver for large scale problems still exceeds the available computing resources.

The various fields of science gave birth to different patterns and characteristics of sparse ma-
trices. A vast amount of solvers have been developed and show strength of weaknesses depending
on the properties of those matrices, some in parallel computing too. For example, MUMPS (Mul-
tifrontal Massively Parallel sparse direct Solver)[5] is a parallel sparse direct solver for which the
matrix needs to be positive definite. Direct solvers are very efficient when dealing with small scale
problem (∼ 105) but their usage can be criticized in terms of computational resources. For large
problems, direct solvers require an amount of memory that is not available in existing computing
facilities.

1

1.1 Numerical solution of linear system of equation 1 INTRODUCTION

1.1.2 Iterative methods

On the other side, an efficient iterative solver reaches the solution using computationally cheap
iterations. An iterative solver work by making a guess on the solution x0 and computing the
residual of the solution r = Ax0 − b. The iterative solution xi is then updated depending on the
method and the iteration stops when a tolerance over the residual is passed, reaching a stopping
criteria.

A classical example of iterative algorithm is represented by Richardson’s method[6]. It relies
on a perturbation matrix E and a relaxation parameter α ∈ (0, 1). The equations of the method
are written

B = A+ E

xk+1 = xk + αB−1
(
b−Axk

)
and could control the efficiency towards reaching a solution of the linear system of equation (1).

The convergence is defined by the method, and so, proof of convergence can be derived from
the mathematical description of the solution. The convergence is described as the expression of
the iterative error ek = x − xk, where u is the exact solution and xk is the solution computed
at kth iteration of the solver. The convergence of Richardson method is assured as long as the
condition number, defined by the operator ρ, of the matrix

(
I − αB−1A

)
is smaller than 1

||ek+1|| ≤ ρ
(
I − αB−1A

)
||ek||

For that reason, the matrix B is called a preconditioner and has the crucial role to decrease the
condition number of the matrix A, improving the solvability of the system. As a result, in order
to decrease the workload of the algorithm, we want a matrix B such as cheap (easy to parallelize
and/or to inverse) and close to the matrix A. This way, the action of the preconditioner reduce
the condition number ρ

(
I −B−1A

)
, leading to a convergence acquired in less iterations.

The role of α is to control the size of the steps jumping to the next iterative solution x(i+1).
The rate of convergence is controlled by this parameter, which has to be the large enough to build
a fast converging algorithm, but not too much to induce big changes, producing large errors within
each iterations.

The solution of a system of equation is reached differently depending on the iterative method
used. Their application and efficiency depends on their properties, this subject is part of the thesis
and presented in section 2.

The iterative scheme to perform the solution of a saddle-point problem has been introduced
by Arrow, Hurwicz and Uzawa [7]. In our case, the method used is the Uzawa algorithm coupled
with the preconditioned conjugate gradient method (PCG), one of the most famous Krylov sub-
space methods. The Krylov methods are interesting for their computationally cheap operations as
the linear subspace of variable is spanned by the multiplication of the exponent of a sparse ma-
trix A by a vector x. Meaning the iterations of such methods are performed with the same expense,

Kk(A,x) := span{x, Ax, A(Ax), A (A(Ax)) , ...}
as a single matrix-vector product. The Uzawa algorithm is later described in the subsection 2.3

The PCG method has the advantage to adapt the previously described relaxation parameter α
within each iteration, hence the steepest descent : locally computed convergence to minimize the
A norm of the error u − u(k) in the evaluated steepest direction. The iterative solver is often
described with the usage of a preconditioner to increase the rate of convergence and the number
of iterations. More about this subject is covered in section 2.

2

1.2 Parallel Computing to treat large scale problems 1 INTRODUCTION

1.1.3 Solving linear systems in Matlab

When the dimension of the problem is large, the computational and memory constraints make is
necessary to adapt the algorithm to a parallel environment. Matlab is a great software for pro-
totyping numerical method and provides very efficient solvers for general systems. Unfortunately,
it does not give you much control on the solver used, in particular for parallel solvers, and the
performance for large problem is not optimal under default configurations.

1.1.4 Solving linear systems in hypre

In this paper, the task is to build an efficient solver for saddle-point problems by distributing
subsets of the linear system of equation among different processing units. Since hypre is a library
with iterative solvers implemented in parallel, the usage of such library makes it desirable.

Hypre is an open source library of linear solvers developed by the Lawrence Livermore National
Laboratory since 1990s. The library offer a large panel of solvers and preconditioners to perform
the solution of large sparse linear systems on massively parallel computers[8]. The open-source
codes are written with different programming language using a parallel MPI and OpenMP envi-
ronment.

The Uzawa algorithm is implemented on Hypre and run on a cluster. This implementation
opens the path for solving other types of problem in a controlled parallel environment. The solvers
implemented in the Hypre library and their efficiency are described in the result section 3.

1.2 Parallel Computing to treat large scale problems

The size of the sparse linear system of equation solvable has greatly increased since the first one
solved using relaxation methods such as successive over-relaxation (SOR) or related techniques[4].
From a rough number of 200 in 1970 to more than a billion on 2010, this limit is pushed upon
every day[4]. This is related to the performance of the machines, more powerful and more mem-
ory allocated and as a result of the time spent into development of algorithms and their efficient
implementation.

Parallel computing is a type of computation in which many calculations or execution processes
are carried out simultaneously by involving multiple processors. Larger problems can be divided
into smaller ones which can then be solved at the same time. Parallelism has long been employed
in high-performance computing, but it is gaining broader interest due to the physical constraints
preventing frequency scaling. The frequency scaling is the technique to increase the performance of
computers by increasing the frequency of the processors, thus the power consumption. It has been
the dominant way to decrease run time, see Moore’s law, from the mid-1980s until recently[9][10].
Moore’s law, originated around 1970, predicted that the run time but more specifically, the in-
tegrated number of transistors, related to the processing power for computers will double about
every 18-24 months. Although the law is still in effect after the end of frequency scaling, the focus
of companies has been shifted in 2005 from single to multiple processing units, often called ”cores”,
into a single chip[9]. As a result, the techniques for problem solving using modern computers have
gradually translated from sequential to parallel instructions.

The strength of a parallel code lies in the fact that the algorithm can use more computational
resources to further reduce the run time. The problem is split into independent parts that are
individually solved each by a single processing unit. As a necessity to be suitable for a parallel
execution, the algorithm must provide enough independent computations.

3

1.2 Parallel Computing to treat large scale problems 1 INTRODUCTION

Due to the advancement in the scientific computing field, simulations are being more precise
and the problems are growing larger every single day: there is a constant demand for computing
resources. The consequence of such lead to the research of parallel high-performance machines
such as a computer cluster.

A computer cluster is a system built up from server nodes, it consists of a large number of
processors in proximity that interacts with each other. Clusters are now often used for parallel
simulations due to their performances. Their usage, although possible for sequential codes, is
adequate for algorithm that can partition the workload into several independent parts in order
to speed up the run time. To obtain a parallel program, the algorithm must be written in a
suitable programming language for which the parallel execution is controlled by specific run time
libraries[9]. They can handle different programming languages and are necessary in order to make
use of the multiple processors that are included in the machine. Their implementation and effi-
ciency is based on the assumptions they make about the underlying memory architecture: shared
memory, distributed memory or shared distributed memory.

Usually, when introduced to parallel computing, one of the first thought protocol is OpenMP,
a multi-threaded parallel programming language. It is designed for multi-platform shared memory
multiprocessing programming in C, C++ and Fortran. It is a very flexible interface for developing
parallel applications that are based on the concept of multithreading, a method of parallelizing
whereby a master thread forks a specified number of worker threads where the instructions are run
sequentially to divide the total task.

When implementing a sequential code to parallel, the desire is to obtain a scalable algorithm,
meaning the run time linearly decrease with the number of processors involved in the computation.
The scalability of a complete algorithm cannot be satisfied by solely running portions of the code
in a parallel scheme, i.e. like would an OpenMP implementation.

Additionally, the data availability performed by the OpenMP protocol can be a major draw-
back. Most variables are considered visible to all threads by default, meaning they are shared and
stored on the memory. These information have to be grabbed by the speed-limited transmission
of wires connected to the memory and could severely impact the performance of the algorithm.
It is often a called a bottleneck in software engineering, the capacity of the computer to perform
fast algorithms is limited by such component. In this case, the scalability of the parallel algorithm
would be limited by the memory architecture.

The OpenMP implementation of an algorithm like Uzawa would consist on using multiple
threads to perform computationaly expensive instructions while the rest of the code could be kept
in a sequential environment. It represents a naive way to build a parallel code as the scalability
would not be good for previously described reasons. In order to reach an appropriate scalability
factor, the whole algorithm needs to be running in a complete parallel fashion and split the data
directly to the processing unit.

The algorithm should be performed in a distributed memory environment where each proces-
sors owns their private memory. The data is split at the start and stored by each processes. The
task is individually performed by each core that operates on their local data and a message-passing
protocol is used when remote data is required. The most widely used message passing system is
Message Passing Interface (MPI).

Hypre library has both OpenMP and MPI implemented in their functions. The code written
solely uses the MPI environment, for which the implementation of the Uzawa algorithm is described
at the end of section 2.

4

1.3 Contributions of this Master thesis 1 INTRODUCTION

1.3 Contributions of this Master thesis

The aim of the master thesis is to provide an interface between Matlab and a library of parallel
solvers with a special emphasis on saddle-point problem. The contributions can be split into
multiple points:

• To implement an interface between Matlab and Hypre. The Matalb code would be running
sequentially and send instructions to Hypre to solve a saddle-point problem in parallel for a
variable number of processors

• To implement in Hypre a solver for saddle-point problems based on the Uzawa algorithm

• The usage of the solvers in Hypre should be transparent and configurable from the Matlab
interface. In this case, the interface should allow the extension of other kind of specific solvers

5

1.4 Outline 1 INTRODUCTION

1.4 Outline

The thesis starts by explaining the saddle-point problem to be solved. An example of Stokes prob-
lem leading to a saddle-point matrix is briefly introduced and the characteristics of the resulting
linear system are described. The properties of Krylov subspace method is introduced, with the
PCG method, in order to demonstrate the solving pattern of the Uzawa algorithm.

The rest of section 2 is focused towards the implementation of the Uzawa algorithm in the
Hypre library and the Matlab interface. As a first step towards reaching this goal, a simple imple-
mentation of the Uzawa algorithm was developed in Matlab for testing and debugging purposes.
This version has the advantages of being straightforward and sequential but it suffer from poor
efficiency when dealing with large matrices. The parallel implementation of the algorithm is later
discussed and a scheme of the Uzawa implementation in hypre is given. Finally, an explanation of
the developed Matlab interface to solve saddle-point problems is given. To conclude this section,
a scheme of the complete algorithm is presented.

Section 3 describes the numerical experiments performed. A set of 7 matrices with different
dimensions are utilized. Small-scale problems that are affordable to solve in Matlab are used to
test the solutions of the proposed routine. After that, the Hypre computation of the solution is
completed with multiple processors to evaluate the scalability of the algorithm. Since the Hypre
solve of the Uzawa algorithm has been implemented with multiple iterative solvers, this section is
concluded by looking at their individual results.

The last section reports the results computed on the set of problems. For the performed
simulations, the implemented methods with the best numerical performances can be deducted. A
few paragraph dedicated to the strength and weaknesses of the code is given, with the further
improvement that could be performed.

6

2 THE UZAWA ALGORITHM

2 The Uzawa Algorithm

This section describes the theoretical knowledge towards solving saddle-point problems using an
Uzawa algorithm coupled with the PCG method. The properties of saddle-point matrices are
first explained and a small example is given through the Stokes problem. The Krylov subspace
method is described as a structure to understand the PCG method involved in Uzawa. This section
concludes by describing the implementation of the code through the library Hypre.

2.1 Saddle-point problems

The subject of this thesis is the focus on the construction of an efficient solver of a saddle-point
problem appearing in the block of a 2× 2 system of equation[

A B
B> 0

] [
u
p

]
=

[
f
g

]
(2)

It is important to note that this format is not the most general form of a saddle-point problem[1][11]
but they are not the subject of discussion in this thesis.

Finding the solution (u∗,p∗) of the saddle-point problem (2) becomes a first-order optimality
conditions for the following equality-constrained quadratic programming problem[1]

min J(u) =
1

2
〈Au,u〉 − 〈f ,u〉 (3a)

subject to B>u = g (3b)

Where the operation 〈a, b〉 defines the inner product of two vectors

〈a, b〉 = a> · b = aibi (4)

As for optimization problems with constraints, the Lagrangian functional can be introduced

L(u,p) = J(u) +
(
B>u− g

)> · p (5)

A saddle point problem is a point (u∗,p∗) ∈ Rm+n that satisfies

L(u∗,p) ≤ L(u∗,p∗) ≤ L(u,p∗) for any u ∈ Rm and p ∈ Rn (6)

Or equivalently,
min
u

max
p
L(u,p) = L(u∗,p∗) = max

p
min
u
L(u,p) (7)

The reasoning behind those equation is that in a saddle-point problem, the two unknowns u and
p need to be solved together and never be understood as two unrelated equations. This matter is
discussed in the following subsections where we introduce the Uzawa algorithm.

This particular type of problem can be retrieved in the case of many different applications
in engineering. For example, in the case of a Stokes problem with the saddle-point problem
being a symmetric linear system. The incompressible Stokes equation can be written in the weak
formulation as: find (u, p) ∈ V ×Q such that

a(w,u) + b(w, p) = (w,f) ∀w ∈ V, (8a)

b(q,v) = 0 ∀q ∈ Q (8b)

Where V and Q are Hilbert spaces, a and b are bounded bi-linear forms on V ×V and V ×Q respec-
tively and (w,f) is a bounded linear functional on V . After discretizing with stable finite element
pair, a system of equation (8) can appear in the form of the block 2×2 linear systems (2)[12][13][14].

7

2.1 Saddle-point problems 2 THE UZAWA ALGORITHM

For the rest of the thesis, although not particularly specified for, the block structure equation
to be solved is written as the solution of a Stokes problem. It serves as a starting point to visualize
the variable but, the solver proposed is not restricted to such problem.[

K G
G> 0

] [
u
p

]
=

[
f
g

]
(9)

Where K ∈ Rn×n is a symmetric positive definite matrix and matrix G ∈ Rm×n. The solution
(u∗,p∗) of the problem is a saddle-point of the corresponding energy functional where the velocity
is a minimum and the pressure is a maximum for the energy functional[1][15].

A problem arising from the Navier-Stokes equations has not been considered in this thesis but is
still introduced out of completeness. The case of an incompressible Navier-Stokes problem is more
complex since non-linearity is induced. The convection matrix C(u) is added to the K matrix.
Such problem would require a nonlinear solver and a method to treat with the non-symmetric K
and is out of the scope of this thesis.

The system of equation (9) is equivalent to the system of equation,

Ku +Gp = f , (10a)

G>u = g . (10b)

From these equations, the solution can be interpreted as,

u = K−1 (f −Gp) , (11a)

G>K−1Gp = G>K−1f − g . (11b)

The last equation can be represented by the linear system of equation

Sp = t . (12)

This equation originates from the usage of the Schur complement S that arise from a block
Gaussian elimination. The unknown of this equation is the pressure, and the t vector is equal to
the right hand side of the equation (11b).

The unique solvability of the saddle-point problem is assured by the non-singularity of the
matrix of the Schur complement S = G>K−1G. Due to the structure and properties of equation
(9), the matrix S is non-singular if and only if G has full column rank(G) = n, n being the column
dimension of the matrix[1][12].

The non-singular linear system of equation has a unique solution (u∗,p∗) reached by using
the Uzawa method. This algorithm originated from Hirofumi Uzawain in the context of concave
programming and solves both equations at the same time. The algorithm performs an iterative
process to reach a solution p(i) through the application of the conjugate gradient method on equa-
tion (11b). The solution of velocity field u(i) is then updated during the iterative process.

Since the Schur complement is a symmetric positive definite matrix, the requirements for the
usage of the conjugate gradient method are met[13] and the Uzawa method can be performed.
The variables are computed at each iteration i with increments and the solution for the velocity

u(i) and the pressure p(i) are computed with the conjugate directions d
(i)
1 and d

(i)
2 respectively.

Both d vectors form an orthogonal base serving as a direction vector towards the solution of the
saddle-point problem (u∗,p∗).

8

2.2 Krylov Subspace 2 THE UZAWA ALGORITHM

2.2 Krylov Subspace

For simplicity, the basics of Krylov subspace method is described for the unpreconditioned and
non-singular systems. If an initial solution u(0) is defined, the initial residual r(0) is defined with
the second equation r(0) = G>u(0)−g. Krylov subspace methods are iterative methods whose ith
iterative solution u(i) is described as,

u(i) ∈ u(0) +Ki(G
>, r(0)) for i = 1, 2, ...

Where Ki denotes the ith Krylov subspace generated by G> and r0 where clearly K0 ⊂ K1 ⊂
K2 ⊂ Every member is a matrix-product vector of the first i power of a matrix A ∈ Rn×n and
a vector x ∈ Rn.

Kk(A,x) ≡ span{x, Ax, A2x, ..., Ak−1x}

The utility for this class of methods lies in the observation that the linear subspace spanned
with a sparse matrix A and any vector x is relatively cheap to compute : if A ∈ Rn×n has at
most l non-zeros entries in any rows then Ax can be computed in only nl floating point operator.
The result of the matrix-vector product is a vector Ax and the further element of the Krylov
subspace is computed with the matrix-vector product A(Ax) which makes the generation of every
family-member within the same range of workload.

2.3 Uzawa iteration

The initial residual r(0) and conjugate direction d(0) are computed from the equation (10b) and
updated in the loop. The iterative process starts to compute the solution of the pressure p(i)

from the conjugate direction d
(i)
2 and the step size α(i) : the solution is reached by increments

p(i+1) = p(i) + α(i)d
(i)
2 . The iterative velocity u(i) is updated during this algorithm with the

conjugate direction d
(i)
1 which expression is described in equation (16).

The following instructions describe the equation of the Uzawa algorithm to perform the solution
of a saddle-point problem (9).

A Consider an initial guess p(0) for the pressure, generally equal to an array of zeros, in order
to get the corresponding u(0) from equation (10a)

Ku(0) = f −Gp(0) (13)

B Obtain the initial residual r(0) associated with the equation (10b) and initialize the conjugate

direction d
(0)
2

r(0) = G>u(0) − g (14)

d
(0)
2 = r(0) (15)

C Start the iterative process with i = 0

(a) Solve the following equation to obtain conjugate direction d
(i)
1

Kd
(i)
1 = Gd

(i)
2 (16)

(b) Evaluate the step size α(i)

α(i) =
〈r(i), r(i)〉
〈Gd(i)

2 ,d
(i)
1 〉

(17)

9

2.4 Derivation of the Uzawa algorithm 2 THE UZAWA ALGORITHM

(c) Update the variables of the velocity, pressure and residual u(i), p(i) and r(i)

p(i+1) = p(i) + α(i)d
(i)
2 (18)

u(i+1) = u(i) − α(i)d
(i)
1 (19)

r(i+1) = r(i) − α(i)G>d
(i)
1 (20)

(d) Test of convergence with the norm of the new residual ||r(i+1)|| and the conjugate

direction ||d(i)
1 ||

(e) Compute the optimization direction d
(i)
2 with the parameter β(i)

β(i) =
〈r(i+1), r(i+1)〉
〈r(i), r(i)〉

(21)

d
(i+1)
2 = r(i+1) − β(i+1)d

(i)
2 (22)

The algorithm is composed of 2 instructions (A and B) outside the loop and 5 instructions
(C.(a)-(e)) inside. The iterative process produce a vector (u(i+1),p(i+1)) that converge towards
the solution of the saddle-point problem.

The stopping criteria are subject of a tolerance ε imposed by the user that define the preci-
sion of the solution reached. The solution is obtained only when the two test of convergence are
successfully passed:

• The relative residual of the solution, for which the initial residual is given from equation (14)

||r(i)||
||r(0)||

6 ε . (23)

• The iterative solution for the conjugate direction ||d(i)
1 ||. Since the solution u(i+1) is updated

by the factor α(i)d
(i)
1 , it serves as an indicator to how close are we getting to the solution.

From equation (19),

u(i+1) − u(i) = −α(i)d
(i)
1

The second test performed is done over the relative increments α(i)d
(i)
1 ,

||α(i)d
(i)
1 ||

||u(i+1)||
6 ε (24)

The Uzawa iterations are based on the conjugate gradient algorithm for the transformed prob-
lem (11). The algorithm is constructed in a manner which avoids the need to explicitly calculate
K−1 and to construct the Schur complement S. Instead, the instructions A and C.(a) require a
linear solver. The choice of solver, between direct or any iterative method, usually depends on the
size of the problem, the properties of the matrix and the flexibility of the software.

2.4 Derivation of the Uzawa algorithm

The Uzawa algorithm equations is the result of the conjugate gradient method applied to the
second equation of the transformed problem (11). The algorithm of the preconjugate gradient
method for equation (12) is written

10

2.4 Derivation of the Uzawa algorithm 2 THE UZAWA ALGORITHM

Algorithm 1: The Preconditioned Conjugate Gradient (PCG) method for Sp = t[13]

1 Choose initial solution p(0)

2 Compute initial residual r(0) = t− Sp(0)

3 Solve Mz(0) = r(0)

4 Set d(0) = z(0)

5 while i = (0, imax) until convergence do

6 α(i) = 〈z(i), r(i)〉/〈Sd(i),d(i)〉
7 p(i+1) = p(i) + α(i)d(i)

8 r(i+1) = r(i) − α(i)Sd(i)

9 〈 Test for convergence 〉
10 β(i) = 〈z(i+1), r(i+1)〉/〈z(i), r(i)〉
11 d(i+1) = z(i+1) − β(i+1)d(i+1)

12 end

The role of the preconditioner M can be rendered ineffective if set to the identity matrix. If
so, the line 3 is ignored and the variable z(i) is equal to the residual r(i).

The PCG method has been developed by Hestenes & Stiefel [16] and is interesting for the cheap
computational work: the workload of a single iteration is two inner products, three vector updates
and one matrix-vector product. The test performed for the convergence is done by checking if the
relative residual r(i) is smaller than a tolerance ε imposed by the user. In this case, the initial
residual r(0) is equal to the right-hand side of the problem Sp = t due to the usual initial choice
of the solution p(0) to a 0 vector.

Most of the equations in the Uzawa algorithm are directly derived from the PCG method. But,
the PCG method solves the equation containing the schur complement S which we do not want to
explicitely construct. Since we have an equivalent value coming from equation (11b), the lines 2,
6 and 8 in the algorithm 1 are using S and need to be modified. Additionally, an equation has to
be implemented to compute the iterative velocity u(i).

2.4.1 Initial Residual r(0)

From line 2, the initial residual r(0) becomes,

r(0) = t− Sp(0)

=
(
G>K−1f − g

)
−G>K−1Gp(0)

= G>K−1f︸ ︷︷ ︸
u(0)

−g −���
���

�:0
G>K−1Gp(0)

= G>u(0) − g

Under the assumption that the initial solution p(0) is equal to 0.

2.4.2 Conjugate direction d
(i)
1

The PCG algorithm is performed on the equation (12) for which the unknown is the pressure and

the direction d
(i)
2 is obtained. A conjugate direction is computed for the velocity, hence d

(i)
1 coming

from the following equation

Kd
(i)
1 = Gd

(i)
2

This is the foundation for the following equations in order to make sure of the non-usage of the
inverse of the sparse matrix K. This step of the algorithm would be solved with an appropriate
direct or iterative solver.

11

2.5 A simple implementation of the Uzawa Algorithm 2 THE UZAWA ALGORITHM

2.4.3 Step size α(i)

Consider d(i) = d
(i)
1 , from line 6 of the CG algorithm we transform only the denominator of α(i)

〈Sd(i),d(i)〉 = 〈Sd(i)
2 ,d

(i)
2 〉

= 〈G>K−1Gd(i)
2 ,d

(i)
2 〉

= 〈G>K−1Gd(i)
2︸ ︷︷ ︸

d
(i)
1

,d
(i)
2 〉

= 〈G>d(i)
1 ,d

(i)
2 〉

= 〈Gd(i)
2 ,d

(i)
1 〉

The last step is done by using the properties of the inner product operator.

2.4.4 The update of the velocity u(i+1)

The velocity field u(i+1) is updated by using the equation (11a)

u(i+1) = K−1
(
f −Gp(i+1)

)
= K−1

(
f −G(p(i) + α(i)d

(i)
2)
)

= K−1
(
f −Gp(i)

)
︸ ︷︷ ︸

u(i)

−α(i)K−1Gd
(i)
2︸ ︷︷ ︸

d
(i)
1

= u(i) − α(i)d
(i)
1

2.4.5 The incremental residual r(i+1)

Finally, the (i+ 1)th residual r(i+1) is slightly different, from line 8 of the CG algorithm

r(i+1) = r(i) − α(i)Sd
(i)
2

= r(i) − α(i)G>K−1Gd
(i)
2︸ ︷︷ ︸

d
(i)
1

= r(i) − α(i)G>d
(i)
1

2.5 A simple implementation of the Uzawa Algorithm

A simple Matlab implementation of the Uzawa algorithm was developed for testing and debugging
purposes. The algorithm can be tested for direct or iterative solvers for solving equations (13) and
(16).

The following algorithm written is an exact transcription of the section 2.3 in order to compute
the solution of a saddle-point problem of variable size. The results obtained with different saddle-
point matrices are discussed in the section 3.

The data matrices loaded are of format equation (9). The additionnal terms A and b are the
matrix and vector equal to the left and right-hand-side of the block system of equation. The
unknown x is the vector of both velocity and pressure unknowns.

A =

[
K G
G> 0

]
b =

[
f
g

]
x =

[
u
p

]

12

2.5 A simple implementation of the Uzawa Algorithm 2 THE UZAWA ALGORITHM

The saddle-point problem can be directly solved using the direct solver mldivide ”\” in Matlab
with the linear system of equation Ax = b. This solution Vsol is used to display the relative L2

error conv rel with the solution computed by the Uzawa algorithm.

relL2
=
||x− x(i+1)||
||x||

(25)

The stopping criterias are based on the previously discussed relative residual equation (23) and
the relative increment equation (24)

1 load ('matr i ce s ') ;
2
3 % computing the s o l u t i o n with a d i r e c t s o l v e r
4 Vsol = A\b ;
5
6 f i n a l = 200 ; % number o f maximum loops
7 e r r o r r e l = ze ro s (1 , f i n a l) ;
8 i n c r r e l = ze ro s (1 , f i n a l) ;
9 conv e r r = ze ro s (1 , f i n a l) ;

10 t o l = 1E−4;
11
12 % arrays used in the a lgor i thm
13 d 1 = ze ro s ([l ength (f) , f i n a l]) ;
14 d 2 = ze ro s ([l ength (g) , f i n a l]) ;
15 u = d 1 ;
16 p = d 2 ;
17 r = d 2 ;
18 alpha = 0 ;
19 beta = 0 ;
20
21 %UZAWA algor i thm s t a r t s here
22 u (: , 1) = K\ f ;
23 r (: , 1) = G'*u (: , 1) − g ;
24 d 2 (: , 1) = r (: , 1) ;
25 f o r i = 1 : f i n a l −1
26 d 1 (: , i) = K\(G*d 2 (: , i)) ;
27 alpha = (r (: , i) '* r (: , i)) /(d 2 (: , i) '*G'*d 1 (: , i)) ;
28 p (: , i +1) = p (: , i) + alpha*d 2 (: , i) ;
29 u (: , i +1) = u (: , i) − alpha*d 1 (: , i) ;
30 r (: , i +1) = r (: , i) − alpha*G'*d 1 (: , i) ;
31 conv e r r (i) = norm(Vsol − [u (: , i +1) ; p (: , i +1)]) /norm(Vsol) ;
32 e r r o r r e l (i) = norm(r (: , i +1)) /norm(r (: , 1)) ;
33 i n c r r e l (i) = norm(alpha*d 1 (: , i)) /norm(u (: , i +1)) ;
34 d i sp ([' I t e r a t i o n ' , num2str (i) , ' : Error o f ' , num2str (e r r o r r e l (i))])
35 d i sp (['D i r e c t i o n a l e r r o r o f ' , num2str (i n c r r e l (i))])
36 d i sp (['Convergence e r r o r o f ' , num2str (conv e r r (i))])
37 i f e r r o r r e l (i) < t o l AND i n c r r e l (i) < t o l
38 break
39 end
40 beta = (r (: , i +1)'* r (: , i +1)) /(r (: , i) '* r (: , i)) ;
41 d 2 (: , i +1) = r (: , i +1) + beta*d 2 (: , i) ;
42 end

13

2.6 A parallel version of the Uzawa Algorithm 2 THE UZAWA ALGORITHM

2.6 A parallel version of the Uzawa Algorithm

Hypre librairies uses the parallel environment MPI which is triggered with a MPI Init and closes

at the complete end of the algorithm on a MPI Finalize command. There is no possibility to
shut down an restart the parallel MPI implementation during the algorithm to perform operations
in a sequential way.

The way the MPI parallel implementation works is: the same program runs on all processes
which can all be distinguished by a unique identifier called rank. All variables in a process are
local, there is no concept of shared memory. The program has to be written in a sequential lan-
guage supported by MPI, like Fortran, C or C++. The communication performed between each
processor is done via calls to an appropriate library. All messages transferred between processes
carries data which could be a simple item or a complicated distributed structure. Although MPI

is not the only message passing protocol, other specialized languages have been developed[17] but
their comparison is beyond the scope of this thesis.

Since there are no notion of shared data in MPI, the matrices and vectors have to be split before
the start of the algorithm. The functions developed in the library are dependant on the scattering
of the data, which might be conducted in a column or row wise decomposition. Although most
of the operations used in the Uzawa algorithm are embarrassingly parallel, data communication
between processors is needed for the matrix-vector product and inner product. Their behavior
is explained in the following subsection.

2.6.1 Hypre implementation

Hypre is a very powerful object oriented library of parallel solvers with a large amount of tools
implemented. The manipulation of the data structure is split among 4 different conceptual inter-
faces depending on the grid-based interfaces of the domain. The objective is to build an iterative
solver for a saddle-point linear system of equations, for that we do not have access to information
about the domain nor the grid structure. Thus, the Linear-Algebraic System Interface (IJ) was
picked since it is a very generic interface.

The IJ interface performs a row-wise data decomposition for the reason that it is the only scal-
able approach for assembling matrices on thousands of processes[8]. The matrices are distributed
by block of rows where each processor i ∈ (0, P − 1) owns the sub-matrix Ai,

A0

A1

...
AP−1

where A ∈ Rm×n. A component of the split matrix is written Aij with the row partition
i ∈ (mi−1,mi) for which the whole column j ∈ (0, n) can be retrieved.

The implementation scheme to initialize the sub-matrix in each processor has to be done on a
collective call, each processes builds their own sub-matrix in a synchronized scheme by reading a
text file provided. The sub-matrices are created as an object type HYPRE PARCSR, the only object
type supported in the implemented functions. Once initialized, the routine SetValues() sets ma-
trix values for some number of rows (nrows) and some number of columns in each row (ncols), in
a Compressed Column (CC) format for storing sparse matrices.

The same split among the processes occurs for the vectors, each processes owns a sub-vector
bi, for i ∈ (0, P − 1) which is a portion of the full vector b. Their object type and routines are
similar to those of the matrices.

14

2.6 A parallel version of the Uzawa Algorithm 2 THE UZAWA ALGORITHM

Each processor contains a row portion of the matrices and vectors. The matrices and vectors
are not completely accessible at once by each processor and if needed, such information has to be
fetched from the owner of the data. Simpler functions like vector updates and scalar-vector product
could be locally computed and does not require inter-processor communication. They are respec-
tively performed by the functions hypre ParVectorAxpy and HYPRE ParVectorScale .The two

other operations in the Uzawa algorithm are dependent of the data owned by the other processes,
their behavior is determined by the row-wise data decomposition :

• The inner product of the owned sub-vectors is performed to obtain a local inner product.
Then a reduction routine is done in a summation way by calling the MPI library’s function
MPI AllReduce . The resulting inner product is the summation of all local inner product of

each processes. This operation is performed by the function HYPRE ParVectorInnerProd .

• Due to the row-wise data decomposition, the matrix-vector product needs data about the
subvectors of the other processes. This operation could be time-consuming if not adequately
implemented, see the note on edgce-cut from graph theory[18]. This is being taken care
of by the function HYPRE ParCSRMatrixMatvec and HYPRE ParCSRMatrixMatvecT for the
product with the transpose of the matrix.

Notes on the edge-cut notion :
The linear system of equation is split among all the different processes in different sub-domains
or subsets. An edge is an operation linking different data of the subsets. Sometimes, the edge is
cut by the subsets boundary when the data are not included in the same subsets, and is part of a
cut-set : the set of edges that have one endpoint in two different subsets. An edge-cut is important
as it represents data not locally available that need to be reached from other processes.

A function that generates no edge-cut performs operations between locally owned data on the
processor. For example, a vector update is an embarrassingly parallel function because it does not
require communication and therefore, the cut-set is empty. On the other hand, a matrix-vector
product function in a row-wise data decomposition is an operation written∑

i

Aijxj for Aij ∈ Pi

for which each non zeros component Aij has to be coupled with the vector component bj . Since
the vector is also split between processors, the component bj might not be locally owned and would
represent an addition to the cut-set. Each cut represents a component bj that needs to be fetched
in the adequate subset for the matrix-vector product to correctly work.

Figure 1: Parallel implementation of matrix-vector product

15

2.6 A parallel version of the Uzawa Algorithm 2 THE UZAWA ALGORITHM

The Figure 1 is an example of an MPI parallel implementation of a matrix-vector product with
3 processors. The matrix A and vector b are split among 3 processors P i with i ∈ (0, 1, 2) in a
row-wise decomposition. Due to the sparsity of the matrix, the product of A(P 1) with the vector
b needs the following components: c1 = {0, 1, 2, 3, 4}.

A portion of the vector is locally stored and so, only the edge-cut components are to be fetched
in the respective processors ec1 = {0, 1, 4}. Instead of just reaching for the whole vector b, the com-
ponents have to be individually reached in order to maintain efficiency and to not induce overhead.

2.6.2 A scheme of the algorithm

The Uzawa algorithm implemented in Hypre follows step by step the subsection 2.3. Uzawa itera-
tion described earlier in this section. The matrix splitting is not being taken care by this algorithm,
this part is completed by the Matlab interface. The matrices and vectors are split and saved on
a folder accessible by Hypre. The Hypre’s implementation of Uzawa striclty performs the solution
of the saddle-point problem and writes the solution back in the folder.

The parallel implementation of Hypre’s algorithm is described on Figure 2. As a preliminary
step, the matrices and vectors are initialized and the memory is allocated on each processors.
Each processor P i starts by loading their data and performing the Uzawa algorithm sequentially.
Communication can occur at each instruction and is not restricted to a neighbor processor. After
reaching their portion of the solution, a convergence test in the form of equations (23) and (24) is
ran. If failed, the Uzawa algorithm restarts for each processor at instruction C until the solution
is obtained.

Figure 2: Hypre parallel implementation of UZAWA algorithm

Some range of flexibility has been left to the user as the iterative solver can be chosen from the
ones implemented. The performances of the different iterative solvers used in the Uzawa algorithm
are written in section 3. Results.

Since the matrix splitting is not being taken care of, the hypre algortihm is rendered useles
without the proper pre-processing of the data. A Matlab interface is considered to serve as a
user-friendly communicator with hypre and can supply the desired pre-process algorithm. The
complete process solving a saddle-point problem through a Matlab interface is explained in the
following subsection.

16

2.7 Saddle-point problem solver with Matlab interface 2 THE UZAWA ALGORITHM

2.7 Saddle-point problem solver with Matlab interface

This subsection explains the usage of the saddle-point problem solver implemented in hypre through
a Matlab interface. The interface initiates the complete process and communicates with the saddle-
point solver through a folder called hypre4matlab installed within the hypre library. A scheme of
the complete process is pictured on the following figure.

Figure 3: Scheme of saddle-point problem solver with Matlab interface

When the code within the interface is launched, the matrices and vectors corresponding to the
saddle-point problem are split into nOfProc parts corresponding to the different number of proces-
sors chosen. This data is numbered accordingly to the rank of the processor in charge and sent to
the solver folder hypre4matlab. The Uzawa algorithm is initiated and the solution to the saddle-
point problem is computed using the iterative solver chosen by the variable solver id within the
Matlab interface. The scattered solution is then written within the folder hypre4matlab, loaded
back and combined in Matlab to perform post-process analysis.

The iterative solver of use could be modified by changing the variable solverID to the 4 different
possibilites.

PCG GMRES
AMG 0 20
ParaSails 1 21

Table 1: solverID parameter

If the algorithm is to be executed on a cluster, it usually involves a job-scheduler in the form
of a shell file. The complete process can the be executed by scheduling the task on the cluster.

The solver and preconditioner implemented in the hypre algorithm are described in the following
subsections.

2.7.1 GMRES

The generalized minimum residual method is an algorithm developed by Saad & Schultz[6] to per-
form the solution of a non-symmetric system of linear equations. The method is a generalization
of the MINRES method developed by Paige & Saunders[19] a robust algorithm for indefinite coef-
ficient matrices as well as positive-definite matrices.

The GMRES method is derived by replacing the symmetric Lanczos occurrence used to build
the solution x(i), by the Arnoldi variant for non-symmetric matrices[13]. The Lanczos occurence is
closely related to the PCG method and gave birth to the MINRES method, which is adequate for
symmetric indefinite systems. The usage of the Armoldi variant lead the path to built the solution

17

2.7 Saddle-point problem solver with Matlab interface 2 THE UZAWA ALGORITHM

for non symmetric problems.

The algorithm is constituted of two loops which iterates k times to build up the orthonormal
basis vk of the Krylov space Kk(A,v(1)). After reaching a stopping criteria the solution x(i) of the
linear system of equation is assembled.

v(1) is the unit vector of the initial residual r(0)

v(1) =
r(0)

||r(0)||
(26)

on which the orthonormal basis is constructed.{
v(1),v(2), · · · ,v(k)

}
The additional vector v(k+1) is added to the basis by checking orthogonality with all previously

constructed vectors {v(j)}kj=1. Due to this, the required work and storage is proportional to the
amount of iterations. There exist a point to where the computational cost of an iteration is too
large, this is restricted by a restart parameter m. Once k > m, the GMRES method stops,
computes the temporary solution x(i) and restarts with it as to compute the initial residual r(0).
However, this may put a break on the rate of convergence of the solution compared to a full
GMRES method[13].

2.7.2 BoomerAMG

BoomerAMG is the parallel implementation of the Algebraic Multigrid Method which is part of the
multigrid methods[20][21], a class of very efficient iterative solvers designed originally for discrete
Poisson problems. The strength of those methods comes from the fact that the computational
work is linearly proportional O(N) to the dimension of the discrete problem.

The essence of multigrid is to decompose the grid function into its component and split them
among multiple subspaces to quickly reach the solution. The relaxation scheme, or smoother, used
by the multigrid method is efficient with high frequency error modes but does not do well with the
smooth part of the error. The smoother part of the error stands out more in coarser grid, from
which the error is approximated using the relaxation scheme. The error is later corrected in the
finer grid.

The error components is rapidly reduced in the coarser subspace which contains much less
degrees of freedom. Although this method originated from a two-grid algorithm, modern methods
use a serie of coarser grids to gradually reduce the problem size. The coarsening strategy, respon-
sible for the way the coarser grid is build, is at the root of the efficiency of the iterative solver.

The faster method of the multigrid class is the geometric multigrid method but it is not fre-
quently used due to its lack of flexibility. On the other side, AMG has a wide range of applicability
and a very robust solution method best developed for symmetric positive definite problems[22].
The coarsening of the AMG is completed solely on the algebraic information.

The coarsening strategy are heuristics methods to select which component is required for a
coarser grid. They evaluate the strength of a node regarding the number of links it has with its
neighbors. A node i strongly depends on a node j if

−aij ≤ θmax
k 6=i

(−aik)

Where θ is a user-defined threshold. If θ = 0 is selected, then there are no coarsening.

18

2.7 Saddle-point problem solver with Matlab interface 2 THE UZAWA ALGORITHM

The complexity of a coarser grid can be further reduced by using an aggressive coarsening. The
choice of nodes is more selective by introducing the notion of long-range connections, gradually re-
moving the number of entries in the coarser grid. The coarsening will results in less number of nodes
selected, less communications to be done in parallel and so affect the rapidity of the algorithm.
On the other side, it will impact substancially impact the complexity of the preconditioner[22].

2.7.3 ParaSails

ParaSails is a parallel implementation of a sparse approximate inverse preconditioner[8][23]. The
function evaluate the sparsity pattern through the usage of the least-squares minimization. The
preconditioner can handle symmetric positive definite matrices and non-symmetric and/or indefi-
nite matrices depending on the parameters used in the function in hypre.

ParaSails approximates the sparsity pattern of the inverse of the matrix A. Since A is sparse,
the inverse of the matrix is dense. The sparsification of the matrix A is performed by dropping all
entries in a symmetrically diagonally scaled when a value is smaller than the parameter thresh[8].
The accuracy and cost of ParaSails is defined by the parameters to select the sparsity pattern. The
storage spend to build the preconditioner is usually smaller than the space required to store the
original matrix.

The preconditioner P is built with a least-squares minimization (Frobenius norm).

||AP − I||F (27)

Developing the preconditioner in column vectors P = [p1, ...,pn], the Frobernius norm can be
written in euclidean norm

||AP − I||2F =

n∑
i=1

||Api − ei||22 (28)

where ei is the euclidean vector.

Since the matrix A is sparse, the least square problem is reduced to the non-zero entries Si of
pi and Ti of A(:, Si).

||Api − ei||2 = ||A(Ti, Si)pi(Si)− ei(Ti)||2 (29)

19

3 RESULTS

3 Results

The results performed on the Hypre implementation of the Uzawa algorithm are described in this
section. This chapter starts with a short description of the problems and its dimensions. A set of 7
matrices is split into two categories, small-scale and large-scale problems, over which the efficiency
of solvers is compared. The matter starts by using Matlab’s direct solver which has the advan-
tages of being very fast and rigid. However, the direct solver’s time computation does not linearly
scale with the number of unknowns and it cannot compete with an iterative solver for large-scale
matrices. The usage of iterative solvers is a necessity for larger matrices.

The study of the efficiency of the Uzawa algorithm over all set of matrices with different iterative
solvers concludes this chapter.

3.1 Problem statement

The set of matrices are obtained from the discretization of a R3 Stokes problem in a cube domain
Ω ∈ (0, 1)3 with a varying number of elements used for the mesh in each direction. The elements
are cubes with 20 nodes for the velocity and 8 for the pressure. The number of unknowns for the
velocity is multiplied by 3 since we are working in three dimensions.

The viscosity functions used in the definition of the Stokes problem are not constant but have
a spatial variation of up to 4 orders of magnitude. This represents a challenge for the solver and
requires the use of preconditioners.

The number of unknowns and nodes in each matrices of the set is displayed in the Table 2. The
line between small and large-scale problems is drawn by the drop of efficiency from the direct solver
of Matlab for matrices, around 200,000 of unknowns. From now on, references to the matrices will
be done by their number of unknowns.

elements # nodes for u # unknowns
53 = 125 1,331 4,208

103 = 1, 000 9,261 29,113
153 = 3, 375 29,791 93,468
203 = 8, 000 68,921 216,023
253 = 15, 625 132,651 415,528
303 = 27, 000 226,981 710,733
353 = 42, 875 357,911 1,120,388

Table 2: Size of the Stokes problem

The equations of the Uzawa algorithm are written in the previous section 2.3. Only both in-
struction A and C(a) for solving a linear system of equation require the usage of a direct or iterative
solver. The complete Uzawa algorithm run time and efficiency can be compared with the usage of
different solvers.

The instruction C(a) is inside a loop, which means, depending on the saddle-point problem,
it could be repeated over more than a hundred times: the solver plays an important role in the
algorithm. It is a potential bottleneck, the efficiency would be severely impacted for the usage of
an inappropriate solver.

3.2 Direct solver

This subsection is focused on the Matlab’s direct solver to compute the solution of a Stokes prob-
lem. The operator mldivide ”\” solves the linear system of equation Ax = b using a direct solver

20

3.2 Direct solver 3 RESULTS

of choice depending on the dimensions and format of A and b.

The direct solver takes advantages of the properties of the matrix, such as symmetry, by dis-
patching an appropriate solver. This approach aims to minimize computation time[24]. Mldivide
works like a decision tree and chooses a different direct solver depending of the properties of the
matrix. In the case of solving the presented saddle-point problem, the matrix at hand is symmetric
positive definite and so, the direct solver used is a LDL or Cholesky.

The average time for solving different matrices of the saddle-point problem has been written in the
table 3.

unknowns average time
4,208 ∼ 0.5 sec
29,113 ∼ 6 sec
93,468 ∼ 120 sec
216,023 ∼ 1100 sec

Table 3: Computational cost of a monolithic Matlab solver

The computational time rises up by an order of magnitude for each matrix. On top of that,
Matlab’s direct solver is a memory expensive operation and the memory requirements get unaf-
fordable for larger matrices.

The average time to directly compute the solution of a monolithic system of equation is rela-
tively quick for matrices up to 100,000 degrees of freedom. The previous results cannot be directly
compared with an iterative solver as they are inadapted to perform the solution of a saddle-point
problem in a monolithic scheme; the Uzawa algorithm is required.

For the Uzawa algorithm, the options are to use either a direct or iterative solver. The com-
putational time to complete the algorithm can be evaluated and the number of loops serves as an
indicator. Since the workload per iteration doesn’t change, the number of iterations for a saddle-
point matrix is similar and not related with the choice of the solver. The computational time to
perform the Uzawa algorithm would roughly be equal to the number of iterations multiplied by a
single iteration time.

The time completion of an Uzawa algorithm depends on the solver used. A simple way to
compare the usage of a direct and iterative solver would be to compare their efficiency over the

repeated instruction C.(a) inside the loop Kd
(i)
1 = G>d

(i)
2 . The matrix on the left-hand side K is

symmetric positive definite, a property that should be acknowledged by the user for choosing the
adapted iterative solver and the appropriate preconditioner. The PCG method is an appropriate
iterative linear solver in this case[13]. The Table 4 compares the time computation for solving
small-scale linear system instruction C.(a) between the direct method and the pcg function of
Matlab with an 10−6 tolerance.

unknowns direct PCG(ε = 10−6)
3,993 ∼ 0.2 ∼ 1
27,783 ∼ 4 ∼ 10
89,373 ∼ 70 ∼ 60
206,763 ∼ 1000 ∼ 300

Table 4: Computational time [s] spent on solving instruction C.(a)

Looking at the results obtained from Table 4, it is clear that an iterative solver is faster than
the direct method for the Uzawa algorithm with large matrices. Additionally, the computational

21

3.3 Iterative solver 3 RESULTS

time of the iterative solver could be reduced by either implementing a preconditionner or reducing
the tolerance criteria to reach a solution. Modifying the tolerance has an impact of the speed of
convergence and the accuracy of the solution. There exist a lower limit for the tolerance ε for which
the Uzawa algorithm won’t converge due to imprecise solutions in instruction C(a) being computed.

Although the time spent on the Uzawa algorithm between the direct and iterative solvers are
comparable, we are still far away from the efficiency of the monolithic Matlab solver on the saddle-
point problem. In order to see further improvement of the algorithm, we have to make usage of
more computational resources and dig into parallel implementation.

3.3 Iterative solver

The Hypre implementation of Uzawa algorithm is very similar to Matlab but permits the usage of
multiple processors to speed up the computation. Because there exist no direct solver in Hypre,
the results of the monolithic direct solver, table 3, cannot be directly compared.

The iterative solver has a large impact of the scalability of the algorithm. The algorithm can be
tested with the usage of multiple iterative solvers for which there exist many different parameters.

The system interface chosen for Hypre limits the possibility to a variety of dozen different
solvers and preconditioners. Unfortunately, due to implementation problems not all of them could
be used in this algorithm, the following table list the different combinations implemented

Method \ Preconditionner none BoomerAMG ParaSails
PCG X X X
GMRES X X X
BoomerAMG X

Table 5: Iterative Solver-Preconditioner imported in hypre implementation of Uzawa

The AMG method is a very powerful solver that require a proper amount of tuning to be
competitive. PCG and GMRES are Krylov subspace methods for which each operations can
be computed cheaply. This gives a great advantages in terms of consumption of computational
resources. Results for the Uzawa algorithm with those methods are described in the following
subsection.

3.4 Hypre’s code results

This subsection runs all the tests to measure the efficiency of Hypre’s implementation of Uzawa
algorithm. The time for each iteration can be measured separately, splitting the influence of the
iterative solver and the other instructions in order to test the scalability of the algorithm in each
part of the code.

All size matrices were run over the two solvers with the ParaSails preconditioner. The follow-
ing subsections will discuss about their time computation and scalability. This could allow us to
justify our choice of most efficient iterative solver for solving the Stokes problem under analysis
using Uzawa.

The AMG preconditioner is a very tunable function that deserve the adequate parameters in
order to be efficient. However, in the context of this problem, the study over the parameters has
not been further pushed and a few tests were run with the default’s parameters. In this sense, the
AMG preconditioner provided results that are not competitive with ParaSails. The results with
BoomerAMG preconditioner are written in the subsection 3.4.2.

22

3.4 Hypre’s code results 3 RESULTS

All the following results were computed with the same stopping criterias. The selected tolerance
ε has been fixed prior to the relative L2 error equation (25). The tolerance used for the stopping
criteria was fixed at 10−2 which resulted in an approximative 10−4 relative L2 error. The exact
solution of the Stokes problem has been computed using the direct Matlab’s solver, which could
be performed over smaller-scalled matrices (until 710,783 unknowns).

Since the linear system of equation to be solved is similar in each iteration, there is no need
to each time build a preconditioner. Although this forces us to keep the same iterative method
over the completion of the Uzawa algorithm, which could be restrictive in the case of a non-linear
system of equation.

3.4.1 Strong scalability results

The strong scalability of an algorithm is verified by checking the speedup factor, the ratio between
the sequential and parallel algorithm time computation. This ratio measures the relative perfor-
mance of two systems computing the same instructions with different computational resources.
With P being the number of processors, the speedup factor is expressed

Speedup =
Tserial
Tparallel

≤ P (30)

The computational time is decreasing by less than a 1/P factor, a straight line of coefficient 1
demonstrate the perfect scalability but is rarely achieved due to multiple reasons[10][9]. The later
the curve diverges from the straight line, the better the scalability of the method is.

2 4 8 16 32
2
4

8

16

32

Processors

S
p

ee
d
u
p

fa
ct

or

4,208 29,113 93,468 216,023
415,528 710,733 1,120,388

Figure 4: ParaSails-PCG

2 4 8 16 32
2
4

8

16

32

Processors

4,208 29,113 93,468 216,023
415,528 710,733 1,120,388

Figure 5: ParaSails-GMRES

The time spent is proportional to the number of processors and the two methods are giving
similar results. Their strong scalability is getting better as the dimension of the problem increases:
this is explained by the induced overhead introduced with small problems. In order to correctly
scale, the amount of operations per processor should be adequate, which is not the case for small-
scale problems. The amount of data per processor is too little and more time is spent in the
communication between each processor[10][9].

The scalability is an important property of a parallel algorithm. The run time further decreases
by using more processors, a resource that could be accessible. On modern parallel architecture,

23

3.4 Hypre’s code results 3 RESULTS

the method that provides the best results for this problem is ParaSails-PCG which is close to a
speedup factor of 24.14 with 32 processors over a saddle-point problem of 1,120,388 unknowns.
Both methods provide very similar results as seen over the figures 6 and 7, a comparison of the
strong scalability of both methods with the matrices of 710,733 and 1,120,388 unknowns.

2 4 8 16 32
2
4

8

16

32

Processors

S
p

ee
d
u
p

fa
ct

or

ParaSails-PCG ParaSails-GMRES

Figure 6: 710,733 unknowns

2 4 8 16 32
2
4

8

16

32

Processors

8000 8000
8000 8000

Figure 7: 1,210,388 unknowns

Rephrase
Another component that shouldn’t be dismissed is the time computation. If the number of proces-
sors available in a cluster is fixed, the computational time cannot be further reduced by demanding
more resources. This category is completely dominated by the ParaSails-PCG method, as it can
be seen in the Table 6 with the computational time for the largest size matrix.

unknowns ParaSails-PCG ParaSails-GMRES
4,208 9 10.6
29,113 51.2 58.8
93,468 200.3 274.9
216,023 295.5 327.8
415,528 543.4 630.2
710,733 924.6 1070.6

1,120,388 2797.2 5560.6

Table 6: Time computation [s] for all matrix sizes at 16 processors

As seen of the Table 6 in the context of this problem, the PCG method is more efficient than
GMRES. Although the scalability is very close, there is a gap between their computational time
that tends to increase with the size of the matrix.

The GMRES solver with the actual parameters lack efficiency over large scale matrices. This
is explained by the increase of the computational cost induced by saving the constructed vector
of the orthogonal base {v(j)}kj=1. As the matrices grow larger, the size of the vector increase and
with it the memory requirements. Checking for orthogonality to build a new orthogonal vector
v(j) is computationally expensive. Although this problem could be solved by reducing the restart
parameter for large matrices, it could have an impact on the rate of convergence. The GMRES

24

3.4 Hypre’s code results 3 RESULTS

method should be the subject of a large series of test run over different restart parameters to
deduce a trend and decrease the run time.

3.4.2 AMG results

In the current parameters for AMG, the preconditioner has been unsuccessful to give similar results
to ParaSails. Due to the long time to process, the solution of saddle-point problems with the Uzawa
algorithm has been limited up to matrices of 93,468 unknowns. A few tests were run with PCG
and GMRES solver for saddle-point problem for the 3 smaller matrices. Although the scalability
results are similar than the previous methods with a ParaSail preconditioner, the time completion
is much higher.

unknowns AMG-PCG AMG-GMRES
4,208 82 89
29,113 388 405
93,468 2261 2462

Table 7: Time computation [s] for small-scale matrices at 16 processors

The time completion for a matrix of 4,208 unknowns actually increased from the sequential
time of 80 seconds, as expected of the scalability for small-scale matrices. Note that once again
the GMRES time completion gives slightly longer results than the PCG method.

The slow time completion can be verified by looking at the time for the AMG-method to solve
a single linear system of equation Table 10.

3.4.3 Details of scalability

On the side, smaller scalability test were run over two important sections of the code to give a
better understanding of the previous results. A time measuring command has been introduced in
the Hypre algorithm to give further details in the following parts of the code

• Initialization of the matrices and vectors
This part contains the start of the algorithm; from allocating memory space to the different
variables, to building the matrices and vectors with the text file provided. This is not a
part of the instructions as it is a preliminary step required for the programming language,
essential to Hypre but not necessary in Matlab.

• Setup of the first iterative solver, instruction A
This method is instantaneous for unpreconditionned method but could be expensive in the
case of setting up an abusive (but very effective) preconditionner. This matter can be verified
by checking the time spent in this step.

• Solving of the first iterative solver, instruction A
This step is heavily dependent on the previous, and the scalability of a solver is generally
measured with the implication of both. But, the solvers are Krylov subspace methods, known
to be scalable with or without the usage of a preconditionner.

A similar time measurement test was run over all other operations of the algorithm. Except for
the matrix-vector product, all operations are embarrassingly parallel, thus they are not time con-
suming as they demand little to no communication between each processors. The computational
time measured is around the smallest time unit of 0.01 second.

The initialization of the matrices and vectors are inherent operations in an Hypre algorithm.
The results are shown in the following table for different problems dimension.

25

3.4 Hypre’s code results 3 RESULTS

#Processors/#unknowns 4,208 29,113 93,468 216,023 415,528 710,733 1,120,388
2 0.39 1.63 5.1 12.01 23.88 41.24 66.56
4 0.29 0.98 2.85 6.48 12.38 21.44 34.49
8 0.26 0.64 1.74 3.44 6.45 12.6 17.65
16 0.28 0.51 1.04 2.07 3.67 6.59 9.42
32 0.43 0.62 1.03 1.64 2.9 4.49 6.34

Table 8: Time consumption [s] of matrix/vector initialization by the dimension of the problem

The initialization does not show great scalability results, the best speedup factor is around 10.5
for 32 processors. Thought it is an essential step that cannot be evaded and the time spent is
relatively small compared to the time spent solving a single linear system of equation.

The appropriate preconditioner has to be chosen to fasten the rate of convergence. The last
subsection analyzes the results of scalability of the different methods implemented to solve saddle-
point problems. The conclusion obtained in the previous subsections should be retrieved here as
the same results should be seen for solving a single linear system of equation.

Only the solving time computation is reproduced in each step since the preconditionner is
reused. This gives us an approximation to how much time is being saved, as seen in the following
table for different matrix sizes for both preconditioners ParaSails and AMG. The computational
time for matrices larger than 89,373 unknowns were not done with AMG preconditioner due to
the excessive computational time.

unknowns ParaSails AMG
3,993 0.04 0.28
27,783 0.09 0.54
89,373 0.24 1.03
206,763 0.43 -
397,953 0.73 -
680,943 1.14 -

1,073,733 1.77 -

Table 9: Setup Precondiditioner time [s] for all matrix sizes at 16 processors

Since the solving of the linear system of equation has to be reproduced in each iteration, the
difference in the computational time to perform Uzawa is explained by the results of the following
table. This table shows the time completion over solving the first linear system of equation Ku = f
with respect to their preconditioner-solver method.

unknowns ParaSails-PCG ParaSails-GMRES AMG-PCG AMG-GMRES
3,993 0.01 0.01 0.28 0.33
27,783 0.06 0.08 0.74 0.74
89,373 0.48 0.61 7.03 7.03
206,763 0.87 1.01 - -
397,953 2.12 2.82 - -
680,943 4.42 5.59 - -

1,073,733 14.7 28.99 - -

Table 10: Solving time computation [s] for all matrix sizes at 16 processors

The ParaSails-PCG method gives small time results to solve a linear system of equation. The
ParaSails-GMRES methods is close behind and the gap increase with the matrix size as expected
from the previous results Table 6.

26

4 CONCLUSION

4 Conclusion

A Matlab interface is used to communicate and send instructions to a saddle-point solver in hypre.
The Uzawa algorithm has been implemented in hypre and performs the solution in a parallel
scheme. This code has a range of configurations to leave some flexibility to the user in running the
solution. These parameters can be directly configured from the interface.

For the moment, the number of processors and the methods to solve the saddle-point problems
are directly configurable from the Matlab interface. Matlab sequentially splits the matrices and
vectors and provides them to the parallel solver. The Hypre code loads the data per processor
and solves the scattered problem with the method chosen. Then it writes the split solution once
finished. Information about the convergence is directly given through the Matlab interface and the
solution can be loaded in order to perform post-process analysis. The preconditioner building has
been dropped in each iteration, resulting into saved computational resources and reducing the run
time.

A series of tests were run to solve saddle-point problems arising from Stokes equation with
highly variable viscosity. The scalability of the code has been tested on a set of matrices over
a large set of dimensions, from 4,208 to 1,120,388 unknowns. From the performed simulations,
ParaSails-PCG and ParaSails-GMRES provided the best numerical performance. The optimal
tuning of GMRES and AMG will be the subject of further investigations.

27

5 FURTHER IMPROVEMENTS

5 Further Improvements

This subsection is dedicated to remarks regarding the efficiency of the Hypre parallel implementa-
tion. Some points were notified through the thesis and can be addressed here.

The efficiency of GMRES over large scale matrices and the preconditioner AMG should be
further analyzed. The method features a high number of parameters involved in the configuration
that require proper tuning to obtain efficient results. This is especially important when considering
non-symmetric matrices for which ParaSails may present limitations.

The context of implementation of the Uzawa algorithm in hypre was to perform the code on
a small amount of processors. As the data of the split matrices and vectors are all saved on disk
memory, being accessed by too many processors at the same time can affect the scalability of the
algorithm and severely impact the performance of the software. For very large number of proces-
sors, the considered algorithm should be designed an run on distributed memory.

The split matrices and vectors are read by each corresponding processor but this is not per-
formed as part of a Hypre preprocess. The splitting of the matrices and vectors over the folder
can be time consuming. For large matrices and 32-processors computations, this splitting opera-
tion can represent more than 10% of the all run time. The scalability of the complete process of
assembling the linear system and solving it is impacted if the splitting of the matrices is not being
taken care of in a parallel scheme.

The matrix-vector product communication in a row-wise data decomposition depends on the
sparsity of the matrix. The communication between processors can be a potential bottleneck and
should be kept minimal. This communication could be reduced by switching lines/rows in the
matrices via a pre-process function. Thus further reducing the runtime of the algorithm.

28

REFERENCES REFERENCES

References

[1] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” ACTA
NUMERICA, vol. 14, pp. 1–137, 2005.

[2] B. L. Buzbee, G. H. Golub, and C. W. Nielson, “On direct methods for solving poisson’s
equations,” SIAM Journal on Numerical analysis, vol. 7, no. 4, pp. 627–656, 1970.

[3] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices. Oxford
University Press, 2017.

[4] J. Scott, Sparse Direct Solvers 1: The Challenge. 43th Woudschoten Conference, 10 2018.
STFC Rutherford Appleton Laboratory and the University of Reading.

[5] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, “Mumps multifrontal massively parallel solver
version 2.0,” 1998.

[6] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2nd ed., 2003.

[7] K. J. Arrow, L. Hurwicz, and H. Uzawa, “Studies in linear and non-linear programming,”
1958.

[8] Lawrence Livermore National Laboratory, hypre Reference Manual, 2.11.2 ed. version 2.6.0b.

[9] T. Rauber and G. Rnger, Parallel Programming: For Multicore and Cluster Systems. Springer
Publishing Company, Incorporated, 2nd ed., 2013.

[10] G. Hager and G. Wellein, Introduction to high performance computing for scientists and en-
gineers. CRC Press, 2010.

[11] P. Ciarlet Jr, J. Huang, and J. Zou, “Some observations on generalized saddle-point problems,”
SIAM J. Matrix Analysis Applications, vol. 25, pp. 224–236, 03 2003.

[12] J. Donea and A. Huerta, Finite Element Methods for Flow Problems. Finite Element Methods
for Flow Problems, Wiley, 2003.

[13] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers: With
Applications in Incompressible Fluid Dynamics. Numerical mathematics and scientific com-
putation, Oxford University Press, 2014.

[14] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising
from lagrangian multipliers,” Publications mathématiques et informatique de Rennes, no. S4,
pp. 1–26, 1974.

[15] A. Quarteroni and S. Quarteroni, Numerical models for differential problems, vol. 2. Springer,
2009.

[16] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
vol. 49. NBS Washington, DC, 1952.

[17] F. Milicchio and W. A. Gehrke, Distributed services with OpenAFS: for enterprise and edu-
cation. Springer Science & Business Media, 2007.

[18] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica®. Cambridge university press, 2003.

[19] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite systems of linear equations,”
SIAM journal on numerical analysis, vol. 12, no. 4, pp. 617–629, 1975.

[20] A. Greenbaum, Iterative methods for solving linear systems, vol. 17. Siam, 1997.

29

REFERENCES REFERENCES

[21] S. Schaffer, “A semicoarsening multigrid method for elliptic partial differential equations with
highly discontinuous and anisotropic coefficients,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 228–242, 1998.

[22] K. Stuben, “Algebraic multigrid (amg): an introduction with applications,” Multigrid, 2000.

[23] S. C. Hawkins and M. Ganesh, “Sparse approximate inverse preconditioners for electromag-
netic surface scattering simulations,” ANZIAM Journal, vol. 49, pp. 155–169, 2007.

[24] The Mathworks, MATLAB Documentation, version 2019a ed.

30

