

Treball realitzat per:

José Raúl Bravo Martínez

Dirigit per:

Prof. Riccardo Rossi

Codirigit per:

Prof. Joaquín A. Hernandez Ortega

Màster en:

Computational Mechanics

Barcelona, 14-06-2019

Departament d 'Enginyeria Civil i Ambiental

 T
R

EB
A

LL
 F

IN
A

L
D

E
M

À
ST

ER

Development of Reduced Order
Models in application to thermal
problems within the Kratos
framework

Development of Reduced Order Models
in application to thermal problems within
the Kratos framework

BSc Jose Raul Bravo Martinez

Academic year
2017 – 2019

Master thesis submitted under the supervision of
Prof. Riccardo Rossi

the co-supervision of
Prof. Joaquín A. Hernandez Ortega

in order to be awarded the Degree of
Master of Science in Computational Mechanics

text

This is done in order to skip the first half of the page

The author(s) gives (give) permission to make this master dissertation available for consultation
and to copy parts of this master dissertation for personal use. In all cases of other use, the copy-
right terms have to be respected, in particular with regard to the obligation to state explicitly the
source when quoting results from this master dissertation.

14/June/2019

Title: Development of Reduced Order Models in application to thermal problems
within the Kratos framework
Author: BSc Jose Raul Bravo Martinez
Master of Science in Computational Mechanics
Academic year: 2017 – 2019

Abstract

Problems in science and engineering solved using the Finite Element Method (FEM) can
produce large systems of equations that demand considerable computer power and/or a
long time to be computed. One of the techniques to overcome this barrier are the so-called
Reduced Order Models (ROM), which allow to obtain accurate representations of the so-
lution of a large model, incurring a fraction of the computational burden.

The aim of this work is to implement a ROM application in the FEM program Kratos
Multiphysics. More precisely, the Python interface, as well as the C++ scripts required
to train and run ROM simulations using the Proper Orthogonal Decomposition (POD)
within the Kratos framework, are presented. Validation of the methodology is performed
for simple geometries in 2D and 3D for thermal problems. A study on the accuracy and
performance of the implementation is also performed.

Keywords: Reduced Order Models, Proper Orthogonal Decomposition, Singular Value
Decomposition, Finite Elements, Kratos Multiphysics

I

Acknowledgements
First off, I would like to acknowledge the European Union for its selfless aid to inter-

national students in Europe. Thank you for granting me the Erasmus Mundus Scholarship,
which allowed me to complete this program, one of the best for Computational Mechanics
in the world. This represented one of the most important and positively impacting expe-
riences of my life.

I feel privileged for the quality of the professors I had during these two years of stud-
ies, both at Swansea University, Wales, and Universitat Politécnica de Catalunya, Spain. I
would especially like to thankDr. Rubén Sevilla, the director of the program in Swansea
University, thank you for your guidance and professionalism. Dr. Antonio Gil, one of
the most passionate professors I have had, thank you for your unconditional support. To
my supervisors, Prof. Riccardo Rossi and Prof. Joaquín Hernandez, thank you for
your patience and all the lessons taught during the months I worked in this project. I
would also like to thank Ms. Lelia Zielonka, secretary of the masters, who was always
there to help with anything, even before arriving in Europe.

One of the parts that I value the most from this experience has been the chance to
interact with some of the most talented and sincerely good people I have met. To Sai
Praneeth, Prashanth Lakshmi Narasimhan, and Mohanad Agamy; thank you for
friendship, I learned lots from you. To Shushu Qin, the brightest mind I know, but also
a very kind human being, and to Arthur Lustman, one of my dearest friends; both of
whom were with me these two years, thank you for your continuous help, I would not have
been able to do it without you.

Finally, to my family, specially to my parents Rosa Martínez and Rubén Bravo.
Thank you for your unconditional support and love. All of my achievements are yours,
because you taught me to set myself goals, and to work with humility and honesty to
achieve them.

II

Table of Contents
Abstracts I

Abstract . I

Table of Contents IV

List of Figures VI

List of Tables VI

Main Content VII

1 Introduction 1
1.1 Objectives . 1

2 Theoretical Background 2
2.1 Singular Value Decomposition . 2

2.1.1 Image Decomposition . 2
2.2 Proper Orthogonal Decomposition . 5
2.3 Bar Example . 5

2.3.1 Time Integration Method: Newmark 6
2.3.2 Modal Analysis . 7
2.3.3 Proper Orthogonal Decomposition 9
2.3.4 Nonlinear Bar . 10
2.3.5 Nonlinear Bar ROM . 13
2.3.6 Frobenius Norm . 15

3 Methodology 16
3.1 GiD . 16
3.2 Kratos Multiphysics . 18

3.2.1 General Structure . 18
3.3 Parts of a Kratos Problem . 19

3.3.1 MainKratos.py . 20
3.3.2 ProjectParameters.json . 20
3.3.3 Part_name.mdpa . 21
3.3.4 Python Solver . 21

3.4 Inside Kratos . 22
3.4.1 Builder and Solver . 22
3.4.2 Solution Strategy . 23

3.5 Implementing ROM in Kratos . 23
3.5.1 Creating the Snapshots . 24
3.5.2 Selecting the Modes . 25
3.5.3 Implementation in the Builder and Solver 26

4 Results 30
4.1 Linear Problems . 30

4.1.1 Cube with Dirichlet BCs . 31
4.1.2 Simplified Radiator with Dirichlet and Neumann BCs 34

III

4.2 Non-Linear Problems . 38
4.2.1 Square with Dirichlet, Neumann and Radiation BCs 38

5 Discussion 47
5.1 Accuracy of the ROM . 47
5.2 Improvement in Time . 48

6 Conclusion 49
6.1 Future Work . 49

6.1.1 Training the ROM . 49
6.1.2 Efficient SVD . 50
6.1.3 Hyper-reduction . 50

Bibliography 51

Appendices 52

A Python Code. Modal Analysis 1D Bar 52

B Python Code. ROM linear 1D Bar 55

C Python Code. ROM Nonlinear 1D Bar 58

IV

List of Figures

2.1 Original picture to obtain a decomposition from 3
2.2 Reconstruction of picture using 5% of modes 3
2.3 Reconstruction of picture using 10% of modes 4
2.4 Reconstruction of picture using 25% of modes 4
2.5 Reconstruction of picture using 50% of modes 4
2.6 1D bar system . 5
2.7 Solution for displacement of the 1D bar using Newmark method . . . 7
2.8 Solution obtained for the full-order model, compared to the reconstruc-

tion using different amounts of modes from eigen-value decomposition 8
2.9 Visualization of the individual modes of modal analysis 9
2.10 Solution for the full-order model, compared to the reconstruction using

different amounts of modes from SVD 9
2.11 Visualization of the individual SVD modes 10
2.12 Results for displacement . 11
2.13 Results for velocity . 12
2.14 Results for acceleration . 12
2.15 Comparison of results for displacement 14
2.16 Comparison of results for velocity . 14
2.17 Comparison of results for acceleration 14
2.18 Singular values for the nonlinear bar system 15

3.1 Sketch of the GiD on the working flow 16
3.2 Thermic Applications available in Kratos 17
3.3 Example of visualization of a model in GiD 17
3.4 Main classes in Kratos . 18
3.5 Layer structure in Kratos. Programming expertise decreases from bot-

tom to fop, while FEM skills increase 19
3.6 Files for a Kratos problem . 19
3.7 System size using the classical Builder and Solver, and the ROM one. 23
3.8 Work flow of the creation of reduction basis. 24
3.9 The modes vectors are imported to the corresponding nodes by the

MainKratosROM.py . 26
3.10 Flowchart of the BuildAndSolve() function in the ROM builder and

solver . 28
3.11 The complete workflow to train and run the ROM in Kratos 29
3.12 Sketch of the parallelism of the execution by COMPSs. The blue

circles are the individual simulations, while the red hexagon is the
synchronization point . 29

4.1 Singular values for Cube model . 32
4.2 Comparison ROM vs full-order Model 32
4.3 Radiator sketch . 34
4.4 Singular values Radiator model . 35

V

4.5 Different meshes for Radiator model 36
4.6 Sketch of square with radiation . 38
4.7 Snapshots matrix Coarse Square model 39
4.8 Singular values Coarse Square model 40
4.9 Different meshes for the square with radiation 40
4.10 Snapshots matrix Refined Square model 41
4.11 Singular values Refined Square model 41
4.12 ROM 1 mode. Error 178.66 . 42
4.13 ROM 2 modes. Error 36.873 . 43
4.14 ROM 3 modes. Error 2.964 . 43
4.15 ROM 4 modes. Error 1.132e−4 . 43
4.16 ROM 5 modes. Error 6.582e−6 . 44
4.17 ROM 6 modes. Error 8.676e−6 . 44
4.18 ROM 7 modes. Error 3.610e−5 . 44
4.19 ROM 8 modes. Error 4.150e−7 . 45
4.20 ROM 16 modes. Error 1.76e−5 . 45
4.21 ROM 24 modes. Error 0.056 . 45
4.22 ROM 30 modes. Error 0.320 . 46
4.23 ROM 50 modes. Error 0.927 . 46
4.24 ROM 100 modes. Error 3.626 . 46

5.1 L2 error calculated using 4.3 for the ROM using different amounts of
modes for example 4.2.1 . 47

List of Tables

4.1 Characteristics of the finite element model: Cube 31
4.2 Error of the ROM with respect to the full-order model in L2 taking

different amounts of modes . 33
4.3 Characteristics of the finite element model: Radiator 34
4.4 Training cases for the linear problem of the Radiator with Dirichlet

and Neumann BCs. 35
4.5 Cases to test the example Radiator 35
4.6 Error of the ROM with respect to the Full-Order model in L2 for the

different test cases in Table 4.5. 36
4.7 Data of the refinement of the Radiator model 36
4.8 Time comparison. ROM vs full-order model for the Radiator model . 37
4.9 Characteristics of the finite element model: Square radiation 39
4.10 Characteristics of the refined finite element model: Refined Square

Radiation . 40
4.11 Cases to test the example Square with Radiation 41
4.12 Error for different cases studied. ROM vs full-order model 42

VI

.

VII

Chapter 1

Introduction
For many years, experiments had been the tool to understand the mechanics dictating the
behavior of phenomena in science. Industry, on the other hand, has used experiments to
validate designs under working conditions. However, for many applications, it is either
very expensive to carry out an experiment, for example a wind tunnel test; or it is impos-
sible to do it, for example weather forecasting, or testing a new stent on a living person.
Numerical simulations are an alternative to experiments based on mathematical modeling
of the phenomenon to study, numerical solution of the discretized model, and analysis of
the results.

With the increase in computer power, and the development of numerical methods in
engineering; numerical simulations have gained presence in all the sectors of industry and
in science. They provide a cheaper alternative, and allow to obtain a lot more data, when
compared to an experiment[1].

However, the increase in complexity of the problems and in sophistication of the numer-
ical techniques also increases the size of the problems to be solved by the computer. One
of the techniques to overcome this barrier is to submit the corresponding data to a process
commonly referred to as dimensionality reduction. This process attempts to extract a few
dominant structures or modes from a larger data set. In the specific field of computational
mechanics, the process of dimensionality reduction is more commonly known as model
reduction [2], which is capable of obtaining accurate representations of the solution of a
large model, incurring a fraction of the computational burden.

1.1 Objectives

Kratos is a powerful and large multiphysics software. It is open source and it counts with
a modular design that has allowed the incorporation of many universities and companies
into its further development.

The main objective of this work is the implementation from scratch in the software
Kratos Multiphysics of a Reduced Order Model application based on the Proper Orthogo-
nal Decomposition technique. All the required scripts have to be created in the program-
ming languages of Kratos Multiphysics (C++ and Python).

The final ROM application must be able to solve linear and nonlinear problems, for
thermal applications. A hyper-reduction method is to be employed to further reduce the
size of the system; as well as techniques to perform the singular value decomposition in an
efficient manner.

1

Chapter 2

Theoretical Background
This chapter presents the main theory used throughout this document. The Singular Value
Decomposition is presented in an illustrative way. Then, more formalism is introduced,
followed by the Proper Orthogonal Decomposition theory.

The final part of this chapter deals with an example of a finite element 1D bar. By
contrasting the modal analysis technique with ROM, the bar example is indented to high-
light the main features of the ROM applied to a linear and nonlinear problem. The code
used for this example can be found in the appendix.

2.1 Singular Value Decomposition

Theorem 1 Every matrix A ∈ Cm×n has a singular value decomposition with singular
values σ and vectors v and u, which are grouped respectively in the matrices U , Σ and V ∗

[3].
A = UΣV ∗

It can be shown that the SVD is related to the eigenvalue decomposition. However,
notice the greater applicability of the SVD, since it does not require any characteristic on
the matrix A.

When dealing with real numbers only, Theorem 1 can be specialized, and the complex
conjugate of the matrix V becomes simply its transpose. For the rest of this thesis, the
form used for the singular value decomposition of a matrix A is:

A = UΣV T (2.1)

where U is the matrix of left singular vectors, Σ is the diagonal matrix of singular
values, and V T is the matrix of right singular vectors.

In order to illustrate the fundamental idea of the SVD and demonstrate its wide appli-
cability, the following example on decomposing a picture is presented:

2.1.1 Image Decomposition

An electronic image is nothing but a matrix containing the information of the pixels. In
this example, the SVD of a JPEG image shown in figure 2.1 is taken. This picture is
in grey scale, but the same procedure can be applied to color pictures, with some extra
treatment.

The file was loaded to MATLAB and a SVD was performed. Then, one can select
different amounts of "modes" to reconstruct the picture. Modes here refer to the columns
of the matrix of left singular vectors U .

2

CHAPTER 2. THEORETICAL BACKGROUND 3

Figure 2.1: Original picture to obtain a decomposition from

(a) (b)

Figure 2.2: Reconstruction of picture using 5% of modes

Figures 2.3, 2.4, and 2.5 are obtained when reconstructing the original matrix via a
truncated SVD. In all figures, a) is a representation of the decomposition and b) is the
obtained pictured.

4 2.1. SINGULAR VALUE DECOMPOSITION

(a) (b)

Figure 2.3: Reconstruction of picture using 10% of modes

(a) (b)

Figure 2.4: Reconstruction of picture using 25% of modes

(a) (b)

Figure 2.5: Reconstruction of picture using 50% of modes

CHAPTER 2. THEORETICAL BACKGROUND 5

2.2 Proper Orthogonal Decomposition

Most concepts mentioned in this section, including the format of the equations are taken
from the lectures on the POD and SVD from prof. Kutz, University of Washington [3].

The main problem is to solve a space and time dependent unknown, with boundary
and initial conditions. Namely:

du(t)
dt = L(u(t)) +N(u(t))

u = u0 at t = 0

u = uD in ∂Ω

(2.2)

Classical Finite Element Method (FEM) can be used to solve the problem. This is
called the "High Fidelity" or "High Resolution" model. In this thesis the term full-order
model is used to refer to it. On every time step, one must obtain the value of the unknown
at the nodes, and store it as a column in an arrange called Snapshot Matrix. Namely:

X = [u(t = 1),u(t = 2), ...,u(t = p)] ∈ Rn×p (2.3)

The model reduction consists on taking the Singular Value Decomposition of the snap-
shot matrix X. And as was done in the case of the picture, only take some modes to
approximate the solution:

u(t) ≈ φrq(t) q ∈ Rr (2.4)

Where r << n.
Finally, one solves for

dq(t)

dt
= φT

r Lφ
T
r q(t) + φT

r Nφ
T
r q(t) (2.5)

2.3 Bar Example

Formulations taken mainly from [4]. A simple model of a 1-D Bar is designed to understand
the concepts applied to the finite element context.

Figure 2.6: 1D bar system

The equation for the dynamic system is:

Mü+Cu̇+Ku = f (2.6)

Ignoring the matrix C, related to damping effects, one is left with a system of the form:

6 2.3. BAR EXAMPLE

Mü+Ku = f (2.7)

2.3.1 Time Integration Method: Newmark

In order to perform the time integration, the Newmark method is employed.

Newmark Method defines seven coefficients and uses them to update the solution in
time. One must choose the value of the parameters α and β, and obtain the coefficients:

α0 =
1

αdt2
α1 =

β

αdt
α2 =

1

αdt
α3 =

1

2α
− 1 (2.8)

α4 =
β

α
− 1 α5 =

dt

2

(
β

α
− 2

)
α6 = dt(1− β) α7 = βdt

For α = 0.25 and β = 0.5 numerical stability is ensured, as this is the trapezoidal rule
or constant acceleration method. The accuracy is of O(dt2). The key is to solve the system
for K̂ and F̂ , as:

K̂ = K + α0M (2.9)

F̂ = F +M(α0un + α2u̇n + α3ün) (2.10)

The solution for displacement is obtained by solving the system:

K̂un+1 = F̂ (2.11)

The expression for velocity and acceleration are obtained as:

ün+1 = α0(un+1 − un)− α2u̇n − α3ün (2.12)

u̇n+1 = u̇n + α6ün + α7ün+1 (2.13)

Finally, the initial values are updated and the next time step is computed (·)n = (·)n+1.
The algorithm to simulate the bar proceeds as follows:

Data: dt, NumberElements, α and β;
Obtain Newmark Coefficients;
Obtain Mass and Stiffness Matrices;
Initialize u, u̇, and ü to zero;
Obtain K̂;
while current time < final time do

Calculate F̂ ;
Solve the system K̂un+1 = F̂ ;
Obtain ¨un+1 = α0(un+1 − un)− α2u̇n − α3ün ;
Obtain ˙un+1 = u̇n + α6ün + α7 ¨un+1;
Update: un = un+1, u̇n = ˙un+1, ün = ¨un+1

end
Algorithm 1: Simulate a 1D bar using Newmark Method

CHAPTER 2. THEORETICAL BACKGROUND 7

Figure 2.7 shows the solution when running a script for 20 elements, dt=0.01, total
time = 10, and a static force applied at the end of the bar of 0.2.

Figure 2.7: Solution for displacement of the 1D bar using Newmark method

2.3.2 Modal Analysis

One can easily obtain the eigenvalues and eigenvectors of this system, which in turn are
the reduced basis for the analysis. The eigenvector matrix contains the modes, and the
eigenvalues are an indicator of the influence of those modes on the response of the system.

Equation 2.7 is completely equivalent to:

(φTMφü) + (φTKφ)u = φTf (2.14)

Where φ is the matrix of eigen vectors. If one takes only some eigenvectos, the resulting
system is an approximation of smaller dimensions than the original. The reduced version
of the matrices are:

M∗ = φTMφ; K∗ = φTMφ; f∗ = φTF (2.15)

The reduced system is then:

M∗q̈ +K∗q = f∗ (2.16)

Algorithm 1 can be applied on the reduced system by only substituting the matrices,
by the reduced versions and projecting back to the fine scale at the end of each time step,
see Algorithm 2.

8 2.3. BAR EXAMPLE

Data: dt, NumberElements, α and β;
Obtain Newmark Coefficients;
Obtain Mass and Stiffness Matrices;
Obtain Eigenvectors and Eigenvalues;
Obtain Reduced Matrices;
Initialize q, q̇, and q̈ to zero;
Obtain K̂ using K∗andM∗;
while current time < final time do

Calculate F̂ ;
Solve the system K̂ ˙qn+1 = F̂ ;
Obtain ¨qn+1 = α0(qn+1 − qn)− α2q̇n − α3q̈n ;
Obtain ˙qn+1 = q̇n + α6q̈n + α7 ¨qn+1;
Update: qn = qn+1, q̇n = ˙qn+1, q̈n = ¨qn+1;
Project to fine basis: u = φq, u̇ = φq̇, ü = φq̈

end
Algorithm 2: Simulate a 1D bar using Newmark Method and Modal Analysis

One can select to use different amounts of modes in the simulation with modal analysis.
The resulting displacement when using from 1 to 4 modes is compared to the original model
in Figure 2.8.

Figure 2.8: Solution obtained for the full-order model, compared to the reconstruction
using different amounts of modes from eigen-value decomposition

The influence of the first modes is more important than the influence of the last modes.
Moreover, the amplitude of the first modes is larger and their frequency is smaller. It is
possible to visualize each of the modes by running a simulation using only the selected
mode for the reduction. Figure 2.9 shows the modes for the modal analysis.

CHAPTER 2. THEORETICAL BACKGROUND 9

Figure 2.9: Visualization of the individual modes of modal analysis

2.3.3 Proper Orthogonal Decomposition

The first step, as already discussed, is running the simulation with the full-order model,
and obtaining the snapshot matrix. The SVD is applied to the matrix, and a given amount
of vectors of the matrix U are employed for projecting the system onto, and solving it.

The resulting system is exactly the same as Equation 2.16. And although the modes φ
are obtained following very different approaches, the same algorithm can be used to solve
the system (Algorithm 2).

Figure 2.10: Solution for the full-order model, compared to the reconstruction using dif-
ferent amounts of modes from SVD

Similarly to modal analysis, the modes obtained from the SVD decrease in amplitude
and increase in frequency. Notice however that the frequencies do not match as much as
they do with modal analysis.

Notice that the reconstruction using only 1 SVD mode matches better the amplitude of
the full-order model solution, than that of 1 Modal Analysis mode. However, the frequency
of the full-order model is better captured with modal analysis than with SVD.

10 2.3. BAR EXAMPLE

Figure 2.11: Visualization of the individual SVD modes

2.3.4 Nonlinear Bar

Under a scenario, in which the bar presents a non-linear response, the modal analysis rea-
soning fails. However, the POD is still valid element by element.

In order to solve the full-order model with a nonlinear response, it is convenient to
rewrite the system in residual form:

Mü− r(x, t) = 0; r = f ext(u, t)−K(u)u (2.17)

To solve the nonlinearity, a Newton Raphson technique can be used, for which the
tangent matrix has to be derived.

Defining a dynamic residual as:

ψ(un+1) = rn+1 −Mün+1 (2.18)

The tangent matrix is obtained by differentiating ψ as:

Kdyn
tan := − ∂ψ

∂un+1
= − ∂rn+1

∂un+1
+
∂Mün+1

∂un+1
(2.19)

The first term in (2.19) is simply the static tangent operatorK. Mass, can be assumed
to be constant and using:

∂ü

∂un+1
=

1

α∆t2
I = α0I (2.20)

The derivative of mass is readily computed. The dynamic tangent operator is then:

Kdyn
tan = Ktan + α0M (2.21)

The algorithm for solving the non linear 1D bar is then:

CHAPTER 2. THEORETICAL BACKGROUND 11

Data: dt, NumberElements, α and β;
Obtain Newmark Coefficients;
Obtain the Mass Elemental Matrix;
Initialize un, u̇n, ün,un+1, u̇n+1, and ün+1 to zero;
while current time < final time do

Set u̇n = u̇n+1, ün = ün+1, and un+1 = un + (u̇∆t);
Obtain ün+1 = α0(un+1 − un)− α2u̇n − α3ün ;
Obtain u̇n+1 = u̇n + α6ün+1 + α7ün+1;
while residual > Tolerance do

for Number of elements do
Obtain the elemental external and internal forces F ext, Ku;
Obtain the elemental residual ψel = F ext −Ku−Mel ∗ üeln+1;
Obtain the elemental dynamic Tangent
Kel

tan
dyn = Kelstatic + α0Mel;

Assemble to Kdyn and ψ

ΠKtan
dyn = Kel

tan
dyn;

Πψ = ψel;
end
Correct uk+1

n+1 = uk
n+1 + (Ktan

dyn)−1ψ;
Obtain ük+1

n+1 = α0(uk
n+1 − un)− α2u̇n − α3ün ;

Obtain u̇k+1
n+1 = u̇n + α6ün + α7ü

k
n+1;

Check Convergence;
end
Update: un = un+1,

end
Algorithm 3: Simulate a 1D bar using Newmark Method for a nonlinear bar

Figures 2.12, 2.13, and 2.14 show the solution obtained for displacement, velocity and
acceleration respectively on a 1D bar under the nonlinear response assumption: f int =

u2 − 1.

Figure 2.12: Results for displacement

12 2.3. BAR EXAMPLE

Figure 2.13: Results for velocity

Figure 2.14: Results for acceleration

CHAPTER 2. THEORETICAL BACKGROUND 13

2.3.5 Nonlinear Bar ROM

The POD can be applied to the nonlinear system by taking the snapshot matrix from the
full-order model solution and from it, applying the SVD, and obtaining the reduced basis φ.

Algorithm 4 presents the steps necessary to carry out the ROM simulation:

Data: dt, NumberElements, α and β, Snapshot Matrix;
Obtain Newmark Coefficients;
Obtain the Mass Elemental Matrix;
Obtain the SVD of the Snapshot Matrix;
Truncate matrix U and use it as basis;
Initialize qn, q̇n, q̈n,qn+1, q̇n+1, and q̈n+1 to zero;
while current time < final time do

Set q̇n = q̇n+1, q̈n = q̈n+1, and qn+1 = qn + (q̇∆t);
Obtain q̈n+1 = α0(qn+1 − qn)− α2q̇n − α3q̈n ;
Obtain q̇n+1 = q̇n + α6q̈n+1 + α7q̈n+1;
while residual > Tolerance do

for Number of elements do
Obtain the elemental reduction basis φel;
Obtain ueln+1 = φqn+1;
Obtain u̇eln+1 = φq̇n+1;
Obtain the elemental external and internal forces F ext, Kun;
Obtain the elemental reduction basis φel;
Obtain the elemental residual psiel = F ext −Ku−Mel ∗ üeln+1;
Obtain the ROM elemental residual ψROM+ = φTψelφ;
Obtain the elemental dynamic Tangent
Kel

tan
dyn = Kelstatic + α0Mel;

Obtain the ROM elemental dynamic Tangent
KROM

tan
dyn = φTKel

tan
dynφ;

end
Correct qk+1

n+1 = qkn+1 + (Ktan
dyn)−1ψ;

Obtain q̈k+1
n+1 = α0(qkn+1 − qn)− α2q̇n − α3q̈n ;

Obtain q̇k+1
n+1 = q̇n + α6q̈n + α7q̈

k
n+1;

Check Convergence;
end
Update: qn = qn+1,

end
Algorithm 4: Simulate a 1D bar using Newmark Method for ROM nonlinear bar

Figures 2.15, 2.16, and 2.17 show the a comparison of the solutions obtained for the
full-order model and ROM.

14 2.3. BAR EXAMPLE

Figure 2.15: Comparison of results for displacement

Figure 2.16: Comparison of results for velocity

Figure 2.17: Comparison of results for acceleration

CHAPTER 2. THEORETICAL BACKGROUND 15

2.3.6 Frobenius Norm

The selection of the number of modes to accurately perform the simulations can be done
following different criteria [5]. In this thesis, the Frobenius Norm is used. It is defined as:

||A||FR =

√∑
i

∑
j

A2
ij (2.22)

In the context of Reduced Order Models, the values of the diagonal matrix Σ, which
are such that σi > σi+1, can be used to obtain the minimum number of modes to represent
the behavior of the full-order system. Such a measure is of the following form:√√√√∑end

i=N+1 σ
2
i∑N

i=1 σ
2
i

≤ tol (2.23)

Where N is the number of modes to take.

In the bar example, the plot of the matrix Σ is shown in Figure 2.18

Figure 2.18: Singular values for the nonlinear bar system

Notice that there are as many singular values as degrees of freedom in the full scale
system. Small singular values correspond to modes that are not only not influencing the
system, but polluting the representation of it [6]. This is demonstrated in the results sec-
tions.

By applying 2.23, one can see that the minimum number of modes to use is 6, provided
a tolerance of 1e− 6.

The Python codes for the 1D bar can be found in the appendix.

Chapter 3

Methodology
In this chapter, the software and tools employed in this thesis are described. The two
programs most widely used during the development of this thesis have been Kratos Mul-
tiphysics and GiD.

On the one hand, the role GiD had for this thesis has been a pre- and postprocessor.
It has been used to obtain the geometries, and observe the results, but no development or
implementation was undertaken on it.

On the other hand, Kratos Multiphysics, the solver, has been extended, taking advan-
tage of its existing structures, to be able run ROM simulations. The general structure of
the code, and the implementations performed are explained in this chapter.

Other tools explained in this chapter include COMPSs, a program developed at the
Barcelona Supercomputer Center for parallel computing . This has been used to create
training cases for the ROM.

3.1 GiD

The Software GiD is a pre- and postprocessor developed at CIMNE. In this thesis it is used
to create the geometries, mesh them, and to display the results obtained in Kratos. The
selection of GiD over similar programs, is due to its complete compatibility and support
for Kratos.

Figure 3.1: Sketch of the GiD on the working flow

From GiD one can lauch the "Kratos Problemtype". This is the graphical user interface
of Kratos-Multiphysics that the user of the software can enter to create a model, solve it
using Kratos, and visualize the results.

16

CHAPTER 3. METHODOLOGY 17

In this thesis, the Kratos application of interest is the Convection-Diffussion applica-
tion, both 2D and 3D.

Figure 3.2: Thermic Applications available in Kratos

Inside the Convection-Diffusion application interface, one can follow all the steps to
prepare a model: generation of geometry, imposition of boundary conditions, meshing, etc.
Alternatively, it is also possible to press the "Example" button, which builds a test case.
After that, when one presses "solve" all the necessary files to run a Kratos problem are
created (MainKratos.py, specific_problem.mdpa, and ProjectParameter.json). The soft-
ware GiD runs the MainKratos.py file and the results files are generated. One can then
switch to the post-process interface and visualize the results.

Figure 3.3 shows the results obtained when solving the example problem for the convec-
tion diffusion application in 2D. The boundary conditions for this example are prescribed
temperature on the left side, prescribed flux on the upper and lower sides, and prescribed
radiation condition on the right side. The same model is solved at the end of the results
section, using the ROM solver implemented (statically).

Figure 3.3: Example of visualization of a model in GiD

18 3.2. KRATOS MULTIPHYSICS

3.2 Kratos Multiphysics

Kratos is a powerful FEM code written in C++. It is open source and counts with
an extensive Python interface. It started as a project at the International Centre for
Numerical Methods in Engineering (CIMNE) in 2002. Over the years, many companies
and universities incorporated to the development of Kratos. Today, Kratos Multiphysics
is a mature and large code with more than 2.5 million lines, and it is supported by many
companies and universities, among which are: The Technical University of Munich (TUM),
Airbus, Siemens, Altair. The code is available in GitHub1.

3.2.1 General Structure

Kratos is coded in an Object Oriented fashion. Object orientation consists on developing
objects that count with a number of attributes and an interface to interact with them.
The design of Kratos aims for modularity and extensibility, as well as efficiency, good per-
formance and team-work-promptness.

The main classes of Kratos can be seen in figure 3.4

Figure 3.4: Main classes in Kratos

The design is based on the Finite Element Method basic structure. The selection of
such a layout is due to the fact that the original idea when developing Kratos was to cre-
ate a multidisciplinary FEM code; moreover, people working in the first versions were in
general already familiar with FEM [7] [8].

Kratos employs a multi-layer structure, in which each layer interacts only with objects
in its layer or in layers below it. This feature allows for users with different programming
skills and different needs, to interact with the least amount of layers possible. Figure 3.5
shows the basic layer structure in Kratos.

1https://github.com/KratosMultiphysics/Kratos

CHAPTER 3. METHODOLOGY 19

Figure 3.5: Layer structure in Kratos. Programming expertise decreases from bottom to
fop, while FEM skills increase

3.3 Parts of a Kratos Problem

Several files are created automatically when running a Kratos example from the GiD inter-
face. Some of those files are only needed by the GUI, however each Kratos problem must
count at least with the three files shown in figure 3.6.

Figure 3.6: Files for a Kratos problem

These files contain specific data about the problem to be solved with Kratos; like the
geometry, material, or tolerances. This architecture allows for changes of parameters to be
performed quickly without having to enter and re-compile Kratos. These three main files
are explained further in the next sections.

Another important component is the Python solver. Each Kratos problem uses a
Python solver, however unlike the MainKratos.py, ProjectParameters.json, and Part_name.mdpa;
the Python solver is not usually contained in the folder of the specific problem. Rather,

20 3.3. PARTS OF A KRATOS PROBLEM

it is in the Kratos application folder, and unless one needs to modify how the problem is
being solved (which is the case here), the general user of Kratos does not modify it.

3.3.1 MainKratos.py

The main tasks the MainKratos.py performs are:

• Load Kratos and the applications needed

• Read the problem data, project parameters and create the model part in Kratos:
mesh, elements, materials, variables, degrees of freedom...

• Define the BuilderSolver used

• Call the solver

• Write a file with the mesh and results

The MainKratos.py that is produced by GiD is simple and it performs only the men-
tioned taks. On top of that, one can edit the MainKratos.py to perform modifications in
the model before running, select a solver different to the default one, print a given value
at a given node, or save to a file the nodal solution values.

For the implementation of ROM in Kratos, this flexibility has been exploited, as is
discussed in the section 3.5.

3.3.2 ProjectParameters.json

The ProjectParameters.json file contains information on the tolerances, start and end time
for the simulation, the name of the model, the processes, and any other parameter.

The term "processes" here means scripts in Python that are called, not from the
MainKratos.py; but from the ProjectParameters.json. The most common processes are:

• Assign scalar quantity: This is used for example to impose a fixed temperature or a
flux on a certain face.

• Assign vector quantity: In this thesis, these kinds of quantities are not dealt with,
but this process can be used to impose a certain displacement.

• Apply thermal face: This is the process used when applying a radiation condition
on a certain face. It takes as inputs ambient temperature, emissivity and convection
coefficient.

• Generate the GiD or VTK output: The creation of the output files to be read with
GiD or Paraview, for example. Other outputs like HDF5 are also possible.

CHAPTER 3. METHODOLOGY 21

3.3.3 Part_name.mdpa

The .mdpa file (the extension name comes from "model part") contains information on the
nodal coordinates and connectivities. It also declares the elements and conditions, as well
as the materials assigned to them.

In Kratos, the terms Elements and Conditions are used to define similar entities. El-
ements are self explanatory, since they match the classical finite element definition. Con-
ditions, on the other hand, are not so obvious. In Kratos, Conditions refer to elements of
one spatial dimension less than the number of spatial dimensions of the problem at hand.
That is, the face or line elements on the boundaries of the domain.

Many types of elements and conditions are defined in Kratos, which vary not only in
their geometry, but also in the methods to calculate their contribution to the global system.
In this thesis the elements and conditions used are declared in the Part_name.mdpa; and
they are Laplacian Elements, and ThermalFace Conditions.

3.3.4 Python Solver

The PythonSolver is responsible for everything related to the physics of the problem (e.g.
how to setup the system of equations). It declares the Kratos Variables(e.g. "TEMPER-
ATURE", "DISPLACEMENT_X"), sets the Builder and Solver and Solution strategy to
follow.

During the development of this thesis project, a simple static Python solver was cre-
ated, and new functionalities were added as they were needed and more understanding of
Kratos was achieved. This static solver was called to run the problems to train the ROM;
and obtain the snapshots.

A Python rom solver was also created. This solver calls the specific rom builder and
solver inside kratos, which is coded in C++. More details on the C++ sections of the
Kratos that were used in this thesis are mentioned in the next sections.

22 3.4. INSIDE KRATOS

3.4 Inside Kratos

The Python interface is useful to develop and modify models in an quick and flexible way.
However, as it is the case for any interpreted language, it has the disadvantage of not being
fast.

The computations in Kratos are performed by the compiled C++ code, therefore being
very fast and efficient in comparison. Two very important classes in Kratos are the Builder
and Solver and the Solution Strategy, which are described in the following subsections.

3.4.1 Builder and Solver

The builder and solver class is responsible for looping over the elements, assemble the
global system and solving it.

One way to implement ROM in Kratos is to take advantage of this existing structure,
and although other ways to do it exist, they would also be more intrusive. Therefore given
the resources available, in this thesis the BuilderAndSolver class is the place where the
ROM was implemented.

Static solver : ResidualBasedBlockBuilderAndSolver.h

This is the builder and solver that is used by the static_solver.py. It is also used by many
Kratos applications, as it follows the classical computation of the stiffness matrix K, and
forcing vector f by looping on the elements. It contains a method to apply Dirichlet
boundary conditions, and to calculate the RHS, which is useful for residual calculations
during convergence-dependent processes like solving a nonlinear equation.

ROM solver: ROMBuilderAndSolver.h

The ROMBuilderAndSolver is derived from the base class BuilderAndSolver. Many char-
acteristics of the base are kept, however, the global system is not assembled in the classical
way. The system is composed of a dense matrix with dimensions equal to the number of
modes selected. See figure 3.7.

Details on the implementation of ROM in the ROMBuilderAndSolver.h are given in
section 3.5.3.

CHAPTER 3. METHODOLOGY 23

Figure 3.7: System size using the classical Builder and Solver, and the ROM one.

3.4.2 Solution Strategy

The solution strategy is the class that calls the builder and solver. It can be either linear,
in which case the solution of the algebraic system is performed once; or nonlinear, for
which iterations are performed until a suitable convergence criterion is converged.

In this thesis, the same solution strategy is used for both, the full-order model and the
ROM. Such solution strategy is linear or nonlinear depending on the case studied. The
builder and solver used is the only variation between the two models.

Both, the "builder and solver" and the "solution strategy" to use are declared at Python
level by the solver.

3.5 Implementing ROM in Kratos

The process to have a reduced order model working in Kratos consists of many steps. First,
one must obtain from the full-order model the information of the variable of interest in
each node. For this thesis, the variable of interest is temperature.

There are some approaches for building the snapshot matrix. For dynamic problems,
the information is captured at every time step, as it was done in the 1D bar example. For
static problems, like the ones that are treated in this thesis using Kratos, the information
is to be obtained for different values of the boundary conditions.

The section on Creating the Snapshots describes how the matrix of snapshots is created
from Kratos, after which a SVD of it is to be taken, a further explanation is presented
in the section Performing the SVD. While the selection of the number of modes and how
they are imported back to Kratos is explained in the section Selecting the Modes.

Finally, section 3.5.3 explains how the ROM is implemented in Kratos. Which is done
at the Builder and Solver level.

24 3.5. IMPLEMENTING ROM IN KRATOS

3.5.1 Creating the Snapshots

The format chosen to obtain and store the snapshot matrix is HDF5. HDF5 is a data
format that is well suited to work with large and complex data.

There exists already an HDF5 application in Kratos, and taking advantage of it, an
HDF5 process was created in a Python script. So that everything one needs to add to a
given simulation´s ProjectParameters.json are the following lines:

1 {
2 "Python_module" : " create_snapshots_hdf5_process " ,
3 "kratos_module" : " KratosMult iphys ic s " ,
4 "Parameters " : {
5 "model_part_name" : "ThermalModelPart " ,
6 "variable_name" : "TEMPERATURE"
7 }
8 }

Three different strategies were followed to obtain the snapshot matrix. The first one
was to set a pseudo time to modify the boundary conditions at each time step.

A second approach was to manually enter in the ProjectParameters.json the boundary
conditions values, run one instance of the simulation, then enter again in the Project-
Parameters.json to change the parameter, and run a second simulation. This is suitable
when the number of simulation needed for training is not large, as it is the case for linear
problems.

Figure 3.8: Work flow of the creation of reduction basis.

The third way for the creation of the snapshots is employed for nonlinear problems,
where the number of simulations required to train the model is orders of magnitude larger
than for linear ones. In this case, it is clear the importance of a tool to set and run simu-
lations more efficiently. In this thesis the training of large amounts of simulations is done

CHAPTER 3. METHODOLOGY 25

via the program COMPSs.

COMPSs

COMPS Superscalar (COMPSs) is a framework developed at the Barcelona Supercomput-
ing Center (BSC). Its purpose is to facilitate the running in parallel of codes programmed
following a sequential paradigm, by taking care of data distribution.

COMPSs is only available for Linux, and it was used to launch the training cases for
the nonlinear problems studied.

When using COMPSs, the simulation is sent to many processors, and only at the end,
one knows the information of them all. Figure 3.12, at the end of the chapter, demonstrates
this idea.

Therefore, for the nonlinear simulation, only one HDF5 file is created containing the
snapshot matrix with as many rows as DOFs and as many columns as cases studied.

3.5.2 Selecting the Modes

The way to select the number of modes to take into consideration in the simulation is via
the Frobenius norm introduced already in section 2. The equation (Eq. 2.23, repeated
here) dictating the number of modes to use is:√√√√∑end

i=N+1 σ
2
i∑N

i=1 σ
2
i

≤ tol

That is, one has to take enough modes to ensure that the sum of the square of the
singular values from N+1 to the end, divided by the sum of the square of the singular
values from 1 to N, where N is the number of modes to use, is less than a tolerance.

A Python script was created to build the reduced basis and save it in a NodalModes.json
file. Then a modified version of MainKratos.py, say MainKratosROM.py, including the
function ModifyInitialGeometry(), reads the NodalModes.json file, and imports the corre-
sponding mode vector to each node in the geometry.

Notice some differences with the 1D bar example. Here, the ROM basis is imported
to each node, while in the bar example the basis was multiplied directly by the elemental
matrices. The building of the elemental reduced matrix is done in the Builder and Solver.

Another important point to have in mind is that, since the quantity of interest for the
cases studied is a scalar, a vector is imported to each node. If the quantity of interest was
vectorial, a matrix would be imported to each node, with as many columns as dimensions
has the vectorial nodal quantity.

Figure 3.8 shows a sketch of the work-flow followed in order to obtain the snapshot
matrix and the modes.

26 3.5. IMPLEMENTING ROM IN KRATOS

Figure 3.9: The modes vectors are imported to the corresponding nodes by the
MainKratosROM.py

3.5.3 Implementation in the Builder and Solver

The ROM builder and solver was created taking advantage of the existing structure in
Kratos.

A simple sketch of the class created is shown in the following chart:

ROMBuilderAndSolver.h

• Inherits from: BuilderAndSolver

• Inherits by: None

• Attributes:

− Arom The reduced LHS matrix

− brom The reduced RHS vector

− xrom The reduced solution vector

− Dx The solution vector

• Method:

− AssembleContribution()

− ProjectToFineBasis()

− BuildAndSolve()

CHAPTER 3. METHODOLOGY 27

The ROM builder and solver is working as any other builder and solver inside Kratos.
It is called by the solution strategy, and given the information of the Elements and Con-
ditions it solves an algebraic system and returns a vector with the nodal solution. The
process to produce such solution is, however, not standard.

AssembleContribution()
This function takes the elemental contribution to the LHS and RHS and performs the
multiplication by the elemental reduced basis.

Ae
ROM = φeTAeφe (3.1)

beROM = φeTbe (3.2)

Then it assembles the elemental contribution to the global system. For this case, the
assembling consists on the sum of all the elemental matrices. The global matrix has the
same dimension as the elemental ones.

AROM+ = Ae
ROM (3.3)

bROM+ = beROM (3.4)

A very important aspect of the implementation is the way to treat the Fixed degrees of
freedom. Usually, ROM is performed only on the free degrees of freedom. In this Kratos
implementation the fixed degrees of freedom are not considered when constructing the el-
emental matrix φ from the nodal basis vectors.

All of the elements have been assigned a reduced basis vector, including those with
prescribed Dirichlet BCs. Using the Kratos flag that tells whether or not a certain degree
of freedom is fixed, one can add the nodal basis vector to the elemental matrix, or add
a vector of zeros, if the degree of freedom is fixed. This ensures to obtain a non-singular
matrix AROM .

ProjectToFineBasis()
This functions takes care of returning the nodal value of the unknown T on each step,
starting from the reduced variable xROM .

T = φxROM (3.5)

BuildAndSolve()
The main function of the class. Figure 3.10 shows the flowchart of it. Notice that the
system solved is the reduced system, but at each step, the solution is projected back to
the fine scale.

28 3.5. IMPLEMENTING ROM IN KRATOS

Figure 3.10: Flowchart of the BuildAndSolve() function in the ROM builder and solver

CHAPTER 3. METHODOLOGY 29

F
ig
ur
e
3.
11

:
T
he

co
m
pl
et
e
w
or
kfl

ow
to

tr
ai
n
an

d
ru
n
th
e
R
O
M

in
K
ra
to
s

F
ig
ur
e
3.
12

:
Sk

et
ch

of
th
e
pa

ra
lle

lis
m

of
th
e
ex
ec
ut
io
n
by

C
O
M
P
Ss
.
T
he

bl
ue

ci
rc
le
s
ar
e
th
e
in
di
vi
du

al
si
m
ul
at
io
ns
,
w
hi
le

th
e
re
d
he

xa
go
n
is

th
e

sy
nc
hr
on

iz
at
io
n
po

in
t

Chapter 4

Results
This section presents the results obtained when running test examples on the ROM solver.
There are two sections in this chapter dedicated to linear and nonlinear problems.

Linear and nonlinear problems are clearly different in the way to solve the equations,
either the linear system arising from the discretization of the model is to be solved once,
or iterations are needed until a convergence criterion is fulfilled. On top of that, in the
ROM context, a much larger set of data for training is needed in the case of nonlinear
problems, as compared to that needed for linear problems. As discussed in section 3, in
order to perform the training of the nonlinear problems, the program COMPSs has been
used to obtain the snapshot matrix. See figure 3.11.

The models presented are two 3D linear models, as well as a nonlinear 2D model. The
absence of a nonlinear 3D model is due to lack of computer power to perform the training, a
cluster is required for this task. The 3D nonlinear model is a pending task as is mentioned
in the section 6.

4.1 Linear Problems

Linear problems are simple to treat in any context. For ROM, it can be said that the
training cases needed are relatively few. Moreover, the exact solution is to be retrieved
when using the right amount of modes.

The importance of starting the study of the ROM with linear models, is to precisely be-
ing able to observe such properties; before moving to larger and more complex applications.

The geometries studied are a cubic domain with Dirichlet boundary conditions on all
its faces, and a simplified radiator that incorporates Neumann boundary conditions. The
comparison is made of the full-scale model against the ROM model.

30

CHAPTER 4. RESULTS 31

4.1.1 Cube with Dirichlet BCs

The first example is a cubic domain Ω = [0, 1]3 with Dirichlet boundary conditions on all
the faces ∂Ω = ΓD. The equation solved is:{

∇ · (κ∇T) = 0 in Ω,

T = TD(t) on ΓD,
(4.1)

Where the function to impose the Dirichlet boundary condition is:

TD(t) = x2 + y2 + z2 − 2t (4.2)

Clearly, t is not time, since the problem being solved is a Poisson equation. However,
giving this information to Kratos in the ProjectParameters.json, and computing a given
amount of "time steps" allows to obtain several simulations and arrange the results (via
the create_snapshot_hdf5_process) into the snapshot matrix.

The information of the Kratos model is shown in table 4.1.

Cube with Dirichlet BCs
Number Type

Nodes 4020 -
Elements 18144 LaplacianElement3D4N

Table 4.1: Characteristics of the finite element model: Cube

In order to train the ROM for this simulation, 10 "time steps" are computed. In reality,
although one is dealing with a 3D model, with a quadratic distribution of temperatures,
when taking the singular value decomposition of the snapshot matrix, it is expected to see
that there is only one driving parameter, that is, one dominant mode, and the rest of the
modes should be small in comparison.

After running the 10 simulations, obtaining the snapshot matrix, and taking the SVD;
the resulting singular values are:

Matrix of singular values SIGMA:

diag(1952.5 , 54.3 , 2.8e−6 , 1.43e−11 , 2.3e−12 , 1.1e−12 , 3.4e−13 , 5.5e−14 , 4.0e−14 , 0.0)

Figure 4.1 shows the plot of the singular values σi, of the diagonal matrix Σ.

Following the Frobenius norm (Eq. 2.23) with a tolerance of 1e−6, two modes are to
be taken.

Afterwards, a simulation was run in Kratos using the same parameters as for the
full-order model, but using the ROM builder and solver described in section 3.5.3 with
different amounts of modes. Figure 4.2 shows a comparison of the simulations of the full-
order model, and ROM using 1 mode.

32 4.1. LINEAR PROBLEMS

Figure 4.1: Singular values for Cube model

(a) ROM, 1 mode (b) Full-Order Model

Figure 4.2: Comparison ROM vs full-order Model

The error is measured using the L2 norm:

||TF − TROM ||Ω

Which is: √∫
Ω (TF (x, y)− TROM (x, y))2 dΩ∫

Ω dΩ

Which in the discrete case, can be expressed as:

CHAPTER 4. RESULTS 33

√∑
Ai (TF i − TROMi)

2∑
Ai

(4.3)

Where TF is the nodal temperature in the full-order model, TROM is the nodal tem-
perature in the ROM model, and Ai is the nodal area of influence.

Table 4.2 shows the L2 error of the simulation by employing different amounts of modes.

L2 Error
Number of Modes Error

1 0.240
2 1.645e−08

5 6.318e−08

10 6.320e−08

Table 4.2: Error of the ROM with respect to the full-order model in L2 taking different
amounts of modes

34 4.1. LINEAR PROBLEMS

4.1.2 Simplified Radiator with Dirichlet and Neumann BCs

The second linear example is a 3D geometry that reassembles a radiator. The values to
be changed in this geometry are the heat flux applied on three of the faces, while the
temperature is prescribed fixed on four faces. The rest of the faces of the geometry have a
zero prescribed normal flux. That is:

∇ · (κ∇T) = 0 in Ω,

T = TD on ΓD,

q · n = q1,2,3 on ΓN 1,2,3,

q · n = 0 on ∂Ω \ (ΓD ∪ ΓN 1,2,3),

(4.4)

Figure 4.3: Radiator sketch

The information of the Kratos model is shown in table 4.3.

Radiator with Dirichlet and Neumann BCs
Number Type

Nodes 3094 -
Elements 14121 LaplacianElement3D4N
Conditions 518 ThermalFace3D3N

Table 4.3: Characteristics of the finite element model: Radiator

Eight simulations were run in the full-order model using different boundary conditions.
The imposed temperature was kept fixed to a given value, while the values for the imposed
heat flux q1, q2, and q3 were varied with the combinations shown in table 4.4.

From these simulations, the following matrix of singular values was obtained:

Matrix of singular values SIGMA:

diag(15, 201.40 , 688.77 , 216.96 , 90.00 , 2.74e−04 , 4.10e−05 , 1.95e−05 , 0.00)

Figure 4.4 shows the plot of the singular values σi, of the diagonal matrix Σ.

The Frobenius norm (Eq. 2.23) with a tolerance of 1e−6 indicates that 4 modes are to
be used. Using the recommended amount of modes, one can run the test cases indicated
in Table 4.5.

CHAPTER 4. RESULTS 35

Training Cases
Case q1 q2 q3
1 0 0 0
2 q1 0 0
3 q1 q2 0
4 q1 q2 q3

5 q1 0 q3

6 0 q2 0
7 0 0 q3

8 0 q2 q3

Table 4.4: Training cases for the linear problem of the Radiator with Dirichlet and Neu-
mann BCs.

Figure 4.4: Singular values Radiator model

Test Cases
Case q1 q2 q3
1 q1/2 q2/2 q3/2
2 q1/5 4q2/5 q3

3 2q1 2q2 2q3

4 −q1 −q2 −q3

Table 4.5: Cases to test the example Radiator

36 4.1. LINEAR PROBLEMS

The error committed using the recommended amount of modes (4) was calculated using
Equation 4.3, for each one of the test cases shown in Table 4.5.

L2 Error
Case Error
1 2.470e−06

2 4.245e−06

3 5.435e−06

4 6.377e−06

Table 4.6: Error of the ROM with respect to the Full-Order model in L2 for the different
test cases in Table 4.5.

Speed of computations

A set of simulations were run for the same problem, using three different levels of mesh
refinement. The data of the meshes can be seen in Table 4.7.

Cube with Dirichlet BCs
Mesh 1 Mesh 2 Mesh 3

Nodes 3094 9819 22188
Elements 14121 48618 114614
Conditions 518 1190 2030

Table 4.7: Data of the refinement of the Radiator model

For reference, the meshes are shown in Figure 4.5.

(a) (b)

(c)

Figure 4.5: Different meshes for Radiator model

CHAPTER 4. RESULTS 37

The time that each of the different sections of the simulation takes was recorded. Some
data of the computer in which the simulations were run are: Kratos Multiphysics version
7.0 in Debug mode, running on Windows on an 8GB RAM Laptop with processor AMD
A10 at 1.8GHz. The time obtained for the simulations is shown in Table 4.8.

Cube with Dirichlet BCs
SystemMatrixResize SystemConstruction Solve

Mesh 1
ROM 0.0001 s 1.5 s 0.00025 s

Full-order 3.5 s 5.5 s 0.2 s
Mesh 2
ROM 0.0004 s 5.5 s 0.00025 s

Full-order 12.4 s 17.6 s 0.9 s
Mesh 3
ROM 0.0005 s 13.0 s 0.0004 s

Full-order 28.0 s 42.0 s 1.3 s

Table 4.8: Time comparison. ROM vs full-order model for the Radiator model

38 4.2. NON-LINEAR PROBLEMS

4.2 Non-Linear Problems

As mentioned in section 3.4.2, the Solution Strategy class is the one that calls the Builder
and Solver. The solution strategy used for nonlinear problems is the Newton-Raphson
strategy with suitable convergence criterion. Both, the full-scale model and the ROM use
the same Solution Strategy, and both do converge. However, unlike for linear problems, the
results are expected to differ when using the full-scale or the ROM solver [9]. The difference
can be observed in Table 4.12, and a further discussion on this can be found on Section 5.1.

On top of that, the necessary training cases have been run on a virtual Linux machine
in the writer´s personal laptop. In order to further investigate the performance of the code,
and to simulate more complicated geometries in 3D, more computer power is needed.

4.2.1 Square with Dirichlet, Neumann and Radiation BCs

The nonlinear example considered is solved on a square domain Ω = [0, 1]2 whose boundary
conditions are imposed temperature on one face, imposed flux on two faces, and a Stefan-
Boltzmann radiation condition on the last face. The problem is:

∇ · (κ∇T) = 0 in Ω,

T = TD on ΓD,

q · n = q1 on ΓN 1,

q · n = q2 on ΓN 2,

q · n = qSB(T) = σε(T 4 − T 4
∞) on ΓR,

(4.5)

Where ε = emissivity, σ = SB constant, and T∞ = ambient temperature.

Figure 4.6: Sketch of square with radiation

CHAPTER 4. RESULTS 39

The information of the Kratos model is shown in table 4.9.

Square with Dirichlet, Neumann and Radiation BCs
Number Type

Nodes 251 -
Elements 444 LaplacianElement2D3N
Conditions 56 ThermalFace2D2N

Table 4.9: Characteristics of the finite element model: Square radiation

In order to train the ROM, many case are needed. In particular, the training parameters
that were used for the problem at hand are shown next:


q1 = [−2000.0,−1500.0,−1000.0, 0.0, 1000.0, 1500.0, 2000.0]

q2 = [−2000.0,−1500.0,−1000.0, 0.0, 1000.0, 1500.0, 2000.0]

Ambient Temperature = [5.0, 10.0, 15.0, 20.0]

Imposed Temperature = [50.0, 75.0, 100.0, 125.0]

As can be seen, all possible combination of conditions produce 784 training cases.
Therefore, it was not viable to run them manually. The COMPSs tool explained in section
3.5.1 was used to set and run the cases. The snapshot matrix obtained is shown in Figure
4.7. Recall that the columns are the nodal temperature values.

Figure 4.7: Snapshots matrix Coarse Square model

The SVD of this matrix was taken. Figure 4.8 shows the plot of the singular values σi,
of the diagonal matrix Σ.

40 4.2. NON-LINEAR PROBLEMS

Figure 4.8: Singular values Coarse Square model

The Frobenius norm (Eq. 2.23) indicates that 6 modes are to be used.

The same problem was solved using a refined model. Table 4.10 shows the data of the
refined Kratos model.

Refined Square with Dirichlet, Neumann and Radiation BCs
Number Type

Nodes 1316 -
Elements 2498 LaplacianElement2D3N
Conditions 132 ThermalFace2D2N

Table 4.10: Characteristics of the refined finite element model: Refined Square Radiation

The models are shown in figure 4.9.

(a) (b)

Figure 4.9: Different meshes for the square with radiation

Consequently, the snapshot matrix of the refined model for the 784 training cases was
obtained and is shown in Figure 4.10.

CHAPTER 4. RESULTS 41

Figure 4.10: Snapshots matrix Refined Square model

The SVD of this matrix was taken. Figure 4.11 shows the plot of the singular values
σi, of the diagonal matrix Σ.

Figure 4.11: Singular values Refined Square model

The Frobenius norm (Eq. 2.23) with a tolerance of 1e−6 indicates that 4 modes are to
be used.

As test cases, one can use values that have not been trained, but lay in between trained
values (as already done for the simplified radiator example). For this case, the training
cases are:

Test Cases
Case q1 q2 Ambient Temperature Imposed Temperature
1 500 500 12 60
2 -1300 1300 7 110
3 700 -700 7 110
4 0 0 7 110
5 700 700 7 110

Table 4.11: Cases to test the example Square with Radiation

42 4.2. NON-LINEAR PROBLEMS

The L2 error is calculated using Equation 4.3 and is shown in table 4.12.

L2 Error
Case 1
Fine 0.461

Coarse 2.675

Case 2
Fine 1.132e−4

Coarse 9.264e−6

Case 3
Fine 1.141e−4

Coarse 7.137e−6

Case 4
Fine 0.128e−4

Coarse 5.26e−6

Case 5
Fine 0.645

Coarse 3.7451

Table 4.12: Error for different cases studied. ROM vs full-order model

In order to study the error in the ROM when taking a different amount of modes,
the refined model was used. The case studied is the Case 2 in table 4.11. The number
of modes is varied from 1 to 8, and the relative L2 using 4.3 error is observed. Further
discussion is found in section 5.1.

(a) full-order model (b) ROM 1 mode

Figure 4.12: ROM 1 mode. Error 178.66

CHAPTER 4. RESULTS 43

(a) full-order model (b) ROM 2 modes

Figure 4.13: ROM 2 modes. Error 36.873

(a) full-order model (b) ROM 3 modes

Figure 4.14: ROM 3 modes. Error 2.964

(a) full-order model (b) ROM 4 modes

Figure 4.15: ROM 4 modes. Error 1.132e−4

44 4.2. NON-LINEAR PROBLEMS

(a) full-order model (b) ROM 5 modes

Figure 4.16: ROM 5 modes. Error 6.582e−6

(a) full-order model (b) ROM 6 modes

Figure 4.17: ROM 6 modes. Error 8.676e−6

(a) full-order model (b) ROM 7 modes

Figure 4.18: ROM 7 modes. Error 3.610e−5

CHAPTER 4. RESULTS 45

(a) full-order model (b) ROM 8 modes

Figure 4.19: ROM 8 modes. Error 4.150e−7

(a) full-order model (b) ROM 16 modes

Figure 4.20: ROM 16 modes. Error 1.76e−5

(a) full-order model (b) ROM 24 modes

Figure 4.21: ROM 24 modes. Error 0.056

46 4.2. NON-LINEAR PROBLEMS

(a) full-order model (b) ROM 30 modes

Figure 4.22: ROM 30 modes. Error 0.320

(a) full-order model (b) ROM 50 modes

Figure 4.23: ROM 50 modes. Error 0.927

(a) full-order model (b) ROM 100 modes

Figure 4.24: ROM 100 modes. Error 3.626

Chapter 5

Discussion
This chapter analyses the results obtained in section 4. First, the difference or the error
obtained by comparing the full-order model against the ROM using 4.3, is covered. The
time improvement with respect to the full-order model, is also treated.

5.1 Accuracy of the ROM

For linear problems, the results using the ROM solver implemented in Kratos were ex-
pected to match those obtained using full-order model. Tables 4.2 and 4.6, do confirm
that, when using the amounts of modes dictated by the Frobenius norm (Eq. 2.23), the
ROM solver is capable of reproducing the solution of the full-order model.

The case is not the same for nonlinear problems solved using ROM, for which the solu-
tion, even using the recommended amounts of modes, can differ (within a given tolerance)
from the full-order model. The difference can be observed in Table 4.12.

On the other hand, by changing the amount of modes used, one can observe that the
accuracy of the solution improves up to a certain point. After this point, the inclusion of
more modes is polluting the solution, as was observed in the case of the linear cube (Table
4.2). In this example, 1 mode is producing a not-so-accurate solution. By incorporating
1 more mode, the solution is improved, but after including more, the solutions worsens.
Since the cube example is linear on temperature; this behavior is not so evident. In the
nonlinear example studied, this same characteristic is observed. Figures 4.12 to 4.24 show
the comparison of the temperature fields of the ROM and the full-order model using from
1 to 100 modes. Figure 5.1 evidently shows the mentioned characteristic.

Figure 5.1: L2 error calculated using 4.3 for the ROM using different amounts of modes
for example 4.2.1

47

48 5.2. IMPROVEMENT IN TIME

5.2 Improvement in Time

While Table 4.8 does demonstrate the significant improvement in time of specific opera-
tions inside Kratos when comparing the full-order model to the ROM, the whole story is
not that shocking.

A Kratos simulation is composed by many other processes for which time is not varying
that substantially. In general, for the problems considered, the total time that the ROM
simulation required to be completed is about half of the time of the full-order model.

It was observed that the gaining in time was not amazing. It could be said that one
of the limitations of POD methods is that they reduce the dimension of the problem, but
not necessarily its complexity [10]. The largest reduction in time is obtained when using
a technique called hyper-reduction. In order to implement a ROM application in Kratos,
this second reduction stage is necessary.

Chapter 6

Conclusion
The main objective of the present work was to carry out the implementation in the software
Kratos Multiphysics of a Reduced Order Model application based on the Proper Orthogo-
nal Decomposition technique. This task proved to be challenging, specially due to the fact
that the implementation was done from scratch, creating all the infrastructure necessary.
At the end of the time allotted, this main objective was not completely fulfilled (The final
sketch of the implemented infrastructure can be seen in figure 3.11). However, firm steps
have been taken in order to add the mentioned application to Kratos.

In this work, chapter 2 presented the main theory related to the Singular Value Decom-
position. Moreover, a 1D example in Python, which is included in the appendix, served to
highlight the properties of the Proper Orthogonal Decomposition. Chapter 3 presented the
tools that have been employed, that is GiD and COMPSs. This chapter also introduced
all of the necessary steps to have a ROM solver working in Kratos.

Chapter 4 served to check the correctness and efficiency of the implementation per-
formed. Simple geometries were studied for this purpose. Chapter 5 presented a discussion
of the results obtained.

Based on the results and discussion presented, it can be concluded that the created
infrastructure is capable of training, and running a correct ROM simulation. Moreover,
the implemented Reduced Order Model solver (section 3.5) is capable of obtaining fast and
accurate solutions for linear and nonlinear problems for static thermal applications.

6.1 Future Work

There are a number of tasks required to take the implemented infrastructure presented in
this work, from its current state, to a robust and fully functional ROM application to be
incorporated in future releases of Kratos Multiphysics.

6.1.1 Training the ROM

As it was observed in the case of linear problems (Table 4.4), the amount of training
cases necessary to capture the dominant modes in linear problems is small. In the case
of nonlinear problems, orders of magnitude more cases and computational power is needed.

The program COMPSs (see section 3.5.1) was used to train the nonlinear 2D model
presented (section 4.2.1). However, the hardware limitations did not allow the training of
3D nonlinear models.

Therefore, in order to implement the ROM application in Kratos, it is imperative to
gain access to more computational power. This will allow also to study more complex
geometries, which are of interest for industrial applications.

49

50 6.1. FUTURE WORK

6.1.2 Efficient SVD

In this thesis, the SVD has been treated as a black-box, the implementation used is that
of numpy. In the beginning of the work done for this project, this approach was sufficient.
But it is important to highlight that the SVD is an expensive operation and that in order
to obtain an efficient ROM application, other alternatives must be considered.

The classical algorithm performs the SVD in two steps. The first one consists on the
reduction of the original matrix into a bidiagonal one,and the second step is to compute
the SVD of the bidiagonal matrix, this is done iteratively. The overall cost is of O(mn2)[11].

An important step to deal with is the implementation of a more efficient way to calcu-
late the SVD for large matrices. A very feasible option is to implement the Ramdomized
SVD.

6.1.3 Hyper-reduction

A very important step is the implementation of the hyper-reduced model (HROM), as it
is known that the largest saving in computational burden when running the model is ob-
tained from this step. Implementing the HROM is crucial because, unlike the case of the
randomized SVD mentioned in last section, whose greater advantage is perceived during
the training stage, the HROM is immediately translated into orders of magnitude less time
for calculating a given simulation[12].

Bibliography
[1] Zienkiewicz OC, Taylor RL, Nithiarasu P, Zhu J. The finite element method. vol. 3.

McGraw-hill London; 1977.

[2] Hernández Ortega JA, Oliver Olivella X, Huespe AE, Caicedo MA. High-performance
model reduction procedures in multiscale simulations. Centre Internacional de Mè-
todes Numèrics en Enginyeria (CIMNE); 2012.

[3] Reduced Order Modeling Course;. Accessed: 2019-06-06. https://faculty.
washington.edu/kutz/rom/rom.html.

[4] Rossi R. Light weight structures: structural analysis and coupling issues. Doktorar-
beit, University of Bologna. 2005;.

[5] Falkiewicz NJ, S Cesnik CE. Proper orthogonal decomposition for reduced-
order thermal solution in hypersonic aerothermoelastic simulations. AIAA journal.
2011;49(5):994–1009.

[6] Polansky J, Wang M, Faraj Y. Proper Orthogonal Decomposition as a technique for
identifying multiphase flow regime based on Electrical Impedance Tomography. In:
7th International Symposium on Process Tomography. Leeds; 2015. .

[7] Dadvand P. A framework for developing finite element codes for multi-disciplinary
applications. Barcelona, Spain: Universitat Politècnica de Catalunya; 2007.

[8] P Dadvand RR, Oñate E. An object-oriented environment for developing finite ele-
ment codes for multi-disciplinary applications. Archives of computational methods in
engineering. 2010;17(3):253–297.

[9] Pinnau R. Model reduction via proper orthogonal decomposition. In: Model order
reduction: theory, research aspects and applications. Springer; 2008. p. 95–109.

[10] Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical
interpolation. SIAM Journal on Scientific Computing. 2010;32(5):2737–2764.

[11] Trefethen LN, Bau III D. Numerical linear algebra. vol. 50. Siam; 1997.

[12] Hernandez JA, Caicedo MA, Ferrer A. Dimensional hyper-reduction of nonlinear finite
element models via empirical cubature. Computer methods in applied mechanics and
engineering. 2017;313:687–722.

51

https://faculty.washington.edu/kutz/rom/rom.html
https://faculty.washington.edu/kutz/rom/rom.html

Appendix A

Python Code. Modal Analysis 1D Bar
1 #Jose Raul Bravo Martinez
2 #MSc Computational Mechanics
3

4 ##
5 # This code c a l c u l a t e s the v i b r a t i on o f a 1D bar us ing
6 # the f u l l model and modal a n a l y s i s
7

8 import numpy as np
9 from sc ipy . l i n a l g import e igh

10 from sc ipy import l i n a l g
11 from matp lo t l i b import pyplot as p l t
12 from numpy import zeros , dot
13

14

15 #Function to assemble the g l oba l Mass and S t i f f n e s s Matr ices . Also obta ins
the

16 #Eigenva lues and Eigenvector s f o r Modal Ana lys i s
17 de f bar (num_elems) :
18 r e s t ra ined_do f s = [0 ,]
19

20 # element mass and s t i f f n e s s matr i ce s f o r a bar
21 m = np . array ([[2 , 1] , [1 , 2]]) / (6 . ∗ num_elems)
22 k = np . array ([[1 , −1] , [−1 , 1]]) ∗ f l o a t (num_elems)
23

24 # cons t ruc t g l oba l mass and s t i f f n e s s matr i ce s
25 M = np . z e r o s ((num_elems+1,num_elems+1))
26 K = np . z e ro s ((num_elems+1,num_elems+1))
27

28 # assembly o f e lements
29 f o r i in range (num_elems) :
30 M_temp = np . z e ro s ((num_elems+1,num_elems+1))
31 K_temp = np . z e ro s ((num_elems+1,num_elems+1))
32 M_temp[i : i +2, i : i +2] = m
33 K_temp [i : i +2, i : i +2] = k
34 M += M_temp
35 K += K_temp
36

37 # remove the f i x ed degree s o f freedom
38 f o r dof in r e s t ra ined_do f s :
39 f o r i in [0 , 1] :
40 M = np . d e l e t e (M, dof , ax i s=i)
41 K = np . d e l e t e (K, dof , ax i s=i)
42

43 # eigenva lue problem
44 eva l s , evecs = e igh (K,M)
45 f r e qu en c i e s = np . sq r t (e va l s)
46 re turn M, K, f r equenc i e s , evecs
47

48

49 #Function to c a l c u l a t e the newmark c o e f f i c i e n t s f o r time i n t e r g r a t i o n
50 de f Newmark_coef f ic ients (dt) :

52

APPENDIX A. PYTHON CODE. MODAL ANALYSIS 1D BAR 53

51 alpha =0.25
52 beta =0.5
53

54 a0=1/(alpha ∗(dt ∗∗2))
55 a1=beta /(alpha ∗dt)
56 a2=1/(alpha ∗dt)
57 a3=(1/(2∗ alpha))−1
58 a4=(beta / alpha)−1
59 a5=(dt /2) ∗ ((beta / alpha)−2)
60 a6=dt∗(1−beta)
61 a7=beta ∗dt
62

63 re turn a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7
64

65 #Set t ing cond i t i on s
66 t t=10
67 dt=0.01 #Time step
68 Ntp=in t (t t /dt) #Number o f time s t ep s
69 #Ntp=1000
70 NT=20 #Number o f e lements
71 pr in t (’Number o f e lements : ’ , NT)
72 M, K, f r equenc i e s , evecs = bar (NT)
73 C=ze ro s ((M. shape [0] , M. shape [1]))
74 F= ze ro s ((M. shape [0] , 1))
75 F[NT−1]=.2 #Force
76 a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7= Newmark_coef f ic ients (dt)
77

78 ##################################
79 #Ful l Model
80 ##################################
81

82 KH=K+a0∗M+a1∗C
83

84 U=np . array (z e ro s ((M. shape [0] , 1)))
85 Ud=np . array (z e r o s ((M. shape [0] , 1)))
86 Udd=np . array (l i n a l g . s o l v e (M, F))
87

88 r e s u l t s = []
89

90 f o r j in range (0 ,Ntp) :
91 V1=(a1∗U + a4∗Ud +a5∗Udd)
92 V2=(a0∗U + a2∗Ud +a3∗Udd)
93 CV=dot (C,V1)
94 MA=dot (M,V2)
95 FH=F+MA+CV
96 #Solve f o r d i sp lacements
97 Un=l i n a l g . s o l v e (KH, FH)
98 #Solve f o r a c c e l e r a t i o n
99 Uddn=a0 ∗(Un−U)−a2∗Ud−a3∗Udd

100 #Solve f o r v e l o c i t y
101 Udn=Ud+a6∗Udd+a7∗Uddn
102

103 #Update_Acc , Vel , Disp
104 U=Un
105 Ud=Udn
106 Udd=Uddn
107 r e s u l t s . append ((j , U[NT−1]))
108

54

109

110 ##################################
111 #Modal Ana lys i s
112 ##################################
113

114 #Set t ing cond i t i on s
115 Phi=evecs
116 Phi=Phi [: , 0 : 1] #Se l e c t the number o f modes to use
117 #Reduced Matr ices
118 F_star=np . matmul (Phi . t ranspose () ,F)
119 K_star=np . matmul (Phi . t ranspose () , (np . matmul (K, Phi)))
120 M_star=np . matmul (Phi . t ranspose () , (np . matmul (M, Phi)))
121 C=ze ro s ((M_star . shape [0] , M_star . shape [1]))
122

123 KH=K_star+a0∗M_star+a1∗C
124

125 U=np . array (z e ro s ((M_star . shape [0] , 1)))
126 Ud=np . array (z e r o s ((M_star . shape [0] , 1)))
127 Udd=np . array (l i n a l g . s o l v e (M_star , F_star))
128

129 r e s u l t s 1 = []
130

131 f o r j in range (0 ,Ntp) :
132 V1=(a1∗U + a4∗Ud +a5∗Udd)
133 V2=(a0∗U + a2∗Ud +a3∗Udd)
134 CV=dot (C,V1)
135 MA=dot (M_star ,V2)
136 FH=F_star+MA+CV
137 #Solve f o r d i sp lacements
138 Un=l i n a l g . s o l v e (KH, FH)
139 #Solve f o r a c c e l e r a t i o n
140 Uddn=a0 ∗(Un−U)−a2∗Ud−a3∗Udd
141 #Solve f o r v e l o c i t y
142 Udn=Ud+a6∗Udd+a7∗Uddn
143

144 #Update_Acc , Vel , Disp
145 U=Un
146 Ud=Udn
147 Udd=Uddn
148 Converted=dot (Phi ,U)
149 r e s u l t s 1 . append ((j , Converted [NT−1]))
150

151 # plo t the r e s u l t s
152 Displacement = np . array ([x [1] f o r x in r e s u l t s])
153 Time_Steps = np . array ([x [0] f o r x in r e s u l t s])
154 Time_Steps=dt∗Time_Steps
155

156 p l t . t i t l e (’ Displacement at End Node ’)
157 l ine_1 , =p l t . p l o t (Time_Steps , Displacement , ’ rs ’ , l a b e l =’ Fu l l Model ’)
158 Displacement1 = np . array ([x [1] f o r x in r e s u l t s 1])
159 l ine_2 , =p l t . p l o t (Time_Steps , Displacement1 , ’b ’ , l a b e l =’Modal Analys is ’)
160 p l t . l egend (handles=[l ine_1 , l ine_2])

Appendix B

Python Code. ROM linear 1D Bar
1 #Jose Raul Bravo Martinez
2 #MSc Computational Mechanics
3

4 ##
5 # This code c a l c u l a t e s the v i b r a t i on o f a 1D bar us ing
6 # the f u l l model and proper orthogona l decomposit ion
7

8 import numpy as np
9 from sc ipy . l i n a l g import e igh

10 from sc ipy import l i n a l g
11 from matp lo t l i b import pyplot as p l t
12 from numpy import zeros , dot
13 from sc ipy . l i n a l g import svd
14

15 #Function to assemble the g l oba l Mass and S t i f f n e s s Matr ices . Also obta ins
the

16 #Eigenva lues and Eigenvector s f o r Modal Ana lys i s
17 de f bar (num_elems) :
18 r e s t ra ined_do f s = [0 ,]
19

20 # element mass and s t i f f n e s s matr i ce s f o r a bar
21 m = np . array ([[2 , 1] , [1 , 2]]) / (6 . ∗ num_elems)
22 k = np . array ([[1 , −1] , [−1 , 1]]) ∗ f l o a t (num_elems)
23

24 # cons t ruc t g l oba l mass and s t i f f n e s s matr i ce s
25 M = np . z e r o s ((num_elems+1,num_elems+1))
26 K = np . z e ro s ((num_elems+1,num_elems+1))
27

28 # assembly o f e lements
29 f o r i in range (num_elems) :
30 M_temp = np . z e ro s ((num_elems+1,num_elems+1))
31 K_temp = np . z e ro s ((num_elems+1,num_elems+1))
32 M_temp[i : i +2, i : i +2] = m
33 K_temp [i : i +2, i : i +2] = k
34 M += M_temp
35 K += K_temp
36

37 # remove the f i x ed degree s o f freedom
38 f o r dof in r e s t ra ined_do f s :
39 f o r i in [0 , 1] :
40 M = np . d e l e t e (M, dof , ax i s=i)
41 K = np . d e l e t e (K, dof , ax i s=i)
42

43 # eigenva lue problem
44 eva l s , evecs = e igh (K,M)
45 f r e qu en c i e s = np . sq r t (e va l s)
46 re turn M, K, f r equenc i e s , evecs
47

48

49 #Function to c a l c u l a t e the newmark c o e f f i c i e n t s f o r time i n t e r g r a t i o n
50 de f Newmark_coef f ic ients (dt) :

55

56

51 alpha =0.25
52 beta =0.5
53

54 a0=1/(alpha ∗(dt ∗∗2))
55 a1=beta /(alpha ∗dt)
56 a2=1/(alpha ∗dt)
57 a3=(1/(2∗ alpha))−1
58 a4=(beta / alpha)−1
59 a5=(dt /2) ∗ ((beta / alpha)−2)
60 a6=dt∗(1−beta)
61 a7=beta ∗dt
62

63 re turn a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7
64

65 #Set t ing cond i t i on s
66 t t=10
67 dt=0.01 #Time step
68 Ntp=in t (t t /dt) #Number o f time s t ep s
69 #Ntp=1000
70 NT=20 #Number o f e lements
71 pr in t (’Number o f e lements : ’ , NT)
72 M, K, f r equenc i e s , evecs = bar (NT)
73 C=ze ro s ((M. shape [0] , M. shape [1]))
74 F= ze ro s ((M. shape [0] , 1))
75 F[NT−1]=.2 #Force
76 a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7= Newmark_coef f ic ients (dt)
77

78 ##################################
79 #Ful l Model
80 ##################################
81

82 KH=K+a0∗M+a1∗C
83

84 results_SVD= ze ro s ((M. shape [0] , Ntp))
85 U=np . array (z e ro s ((M. shape [0] , 1)))
86 Ud=np . array (z e r o s ((M. shape [0] , 1)))
87 Udd=np . array (l i n a l g . s o l v e (M, F))
88

89 r e s u l t s = []
90

91 f o r j in range (0 ,Ntp) :
92 V1=(a1∗U + a4∗Ud +a5∗Udd)
93 V2=(a0∗U + a2∗Ud +a3∗Udd)
94 CV=dot (C,V1)
95 MA=dot (M,V2)
96 FH=F+MA+CV
97 #Solve f o r d i sp lacements
98 Un=l i n a l g . s o l v e (KH, FH)
99 #Solve f o r a c c e l e r a t i o n

100 Uddn=a0 ∗(Un−U)−a2∗Ud−a3∗Udd
101 #Solve f o r v e l o c i t y
102 Udn=Ud+a6∗Udd+a7∗Uddn
103

104 #Update_Acc , Vel , Disp
105 U=Un
106 Ud=Udn
107 Udd=Uddn
108 r e s u l t s . append ((j , U[NT−1]))

APPENDIX B. PYTHON CODE. ROM LINEAR 1D BAR 57

109 results_SVD [: , j]=U. t ranspose ()
110

111 Displacement = np . array ([x [1] f o r x in r e s u l t s])
112

113 #################################
114 # Proper Orthogonal Decomposition
115 #################################
116 # Taking the SVD
117 U, s , VT = svd (results_SVD)
118 Phi=U
119 Phi=Phi [: , 0 : 1] #Se l e c t the number o f modes to use
120 #Reduced Matr ices
121 F_star=np . matmul (Phi . t ranspose () ,F)
122 K_star=np . matmul (Phi . t ranspose () , (np . matmul (K, Phi)))
123 M_star=np . matmul (Phi . t ranspose () , (np . matmul (M, Phi)))
124 C=ze ro s ((M_star . shape [0] , M_star . shape [1]))
125

126 KH=K_star+a0∗M_star+a1∗C
127

128 U=np . array (z e ro s ((M_star . shape [0] , 1)))
129 Ud=np . array (z e r o s ((M_star . shape [0] , 1)))
130 Udd=np . array (l i n a l g . s o l v e (M_star , F_star))
131

132 r e s u l t s 1 = []
133

134 f o r j in range (0 ,Ntp) :
135 V1=(a1∗U + a4∗Ud +a5∗Udd)
136 V2=(a0∗U + a2∗Ud +a3∗Udd)
137 CV=dot (C,V1)
138 MA=dot (M_star ,V2)
139 FH=F_star+MA+CV
140 #Solve f o r d i sp lacements
141 Un=l i n a l g . s o l v e (KH, FH)
142 #Solve f o r a c c e l e r a t i o n
143 Uddn=a0 ∗(Un−U)−a2∗Ud−a3∗Udd
144 #Solve f o r v e l o c i t y
145 Udn=Ud+a6∗Udd+a7∗Uddn
146

147 #Update_Acc , Vel , Disp
148 U=Un
149 Ud=Udn
150 Udd=Uddn
151 Converted=dot (Phi ,U)
152 r e s u l t s 1 . append ((j , Converted [NT−1]))
153

154 # plo t the r e s u l t s
155 Displacement = np . array ([x [1] f o r x in r e s u l t s])
156 Time_Steps = np . array ([x [0] f o r x in r e s u l t s])
157 Time_Steps=dt∗Time_Steps
158

159 p l t . t i t l e (’ Displacement at End Node ’)
160 l ine_1 , =p l t . p l o t (Time_Steps , Displacement , ’ rs ’ , l a b e l =’ Fu l l Model ’)
161 Displacement1 = np . array ([x [1] f o r x in r e s u l t s 1])
162 l ine_2 , =p l t . p l o t (Time_Steps , Displacement1 , ’b ’ , l a b e l =’POD’)
163 p l t . l egend (handles=[l ine_1 , l ine_2])

Appendix C

Python Code. ROM Nonlinear 1D
Bar

1 #Jose Raul Bravo Martinez
2 #MSc Computational Mechanics
3

4 ##
5 # This code c a l c u l a t e s the v i b r a t i on o f a 1D bar with a non l in ea r
6 # response us ing the f u l l model and proper orthogona l decomposit ion
7

8 import numpy as np
9 from sc ipy import l i n a l g

10 from matp lo t l i b import pyplot as p l t
11 from numpy import zeros , dot
12 from sc ipy . l i n a l g import svd
13

14 #Function to c a l c u l a t e the newmark c o e f f i c i e n t s f o r time i n t e r g r a t i o n
15 de f Newmark_coef f ic ients (dt) :
16 alpha =0.25
17 beta =0.5
18

19 a0=1/(alpha ∗(dt ∗∗2))
20 a1=beta /(alpha ∗dt)
21 a2=1/(alpha ∗dt)
22 a3=(1/(2∗ alpha))−1
23 a4=(beta / alpha)−1
24 a5=(dt /2) ∗ ((beta / alpha)−2)
25 a6=dt∗(1−beta)
26 a7=beta ∗dt
27

28 re turn a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7
29

30 #Set t ing cond i t i on s
31 NT=20#Number o f e lements
32 t t=10#t o t a l time
33 dt=0.01 #Time step s i z e
34 Ntp=180 #Number o f time s t ep s
35

36 a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7= Newmark_coef f ic ients (dt) #Gett ing Newmark
Co e f f i c i e n t s

37 r e s t ra ined_do f s =[0 ,] #Restra ined degreee s o f freedom
38 deltaX= np . z e ro s ((NT+1 ,1))
39 t o l=1e−6 #Set t i ng t o l e r an c e
40

41

42 ##################################
43 #Ful l Model
44 ##################################
45

46 U=np . z e ro s ((NT+1 ,1)) #pred i c t ed disp lacement 1
47 Un=U

58

APPENDIX C. PYTHON CODE. ROM NONLINEAR 1D BAR 59

48 Ud=np . z e ro s ((NT+1 ,1))#i n i t i a l i z i n g Ve loc i ty
49 Udn=Ud
50 Udd=np . z e ro s ((NT+1 ,1)) #i n i t i a l i z i n g a c c e l e r a t i o n
51 Uddn=Udd
52 F= np . z e ro s ((l en (U) , 1)) #c r e a t i n g the f o r c e o f z e r o s
53 F[NT]=0.2 #Applying a f o r c e at the end o f the bar
54 K_static_el=(np . array ([[2 , 0] , [0 , 2]]) ∗ f l o a t (NT)) #For non l inea r case f=u

∗∗2 −1
55 M_el= np . array ([[2 , 1] , [1 , 2]]) / (6 . ∗ NT)
56 results_U= ze ro s (((l en (U)) , Ntp))
57 results_Ud= ze ro s (((l en (U)) , Ntp))
58 results_Udd= ze ro s (((l en (U)) , Ntp))
59

60 #Time step loop
61 f o r CurrentTime in range (Ntp) :
62 pr in t (" time step " , CurrentTime)
63

64 Ud=Udn
65 Udd=Uddn
66 Un=U+(Ud∗dt)
67

68 #Newmark f o r time step
69 #Solve f o r a c c e l e r a t i o n
70 Uddn=a0 ∗(Un−U)−a2∗Ud−a3∗Udd
71 #Solve f o r v e l o c i t y
72 Udn=Ud+a6∗Udd+a7∗Uddn
73

74 deltaX [NT−1]=50 #Set t i ng a high value o f dx to ente r loop
75 i t e r=0
76

77 whi le abs (sum(deltaX))>t o l :
78 i t e r+=1
79 pr in t (" i t e r a t i o n " , i t e r)
80

81 #Creat ing the g l oba l K and R f o r NR
82 Res idual_global = np . z e r o s ((NT+1 ,1))
83 K_dynamic_global = np . z e ro s ((NT+1,NT+1))
84

85 #Assemble c on t r i bu t i on s f o r every element
86 f o r i in range (NT) :
87 F_ext_el=F[i : i +2 ,0]
88 Un_el=Un[i : i +2 ,0]
89 Uddn_el=Uddn [i : i +2 ,0]
90

91 F_int_el=np . power (Un_el , 2)−1 #This i s the non l in ea r term f (x)
92 Residual_element=F_ext_el−F_int_el−(dot (M_el , Uddn_el))
93 K_dynam_el=K_static_el+(a0∗M_el)
94 K_dyn_temp=np . z e ro s ((NT+1,NT+1))
95 Residual_temp=np . z e ro s ((NT+1 ,1))
96 K_dyn_temp [i : i +2, i : i +2]=K_dynam_el
97 Residual_temp [i : i +2 ,0]=Residual_element
98 K_dynamic_global+=K_dyn_temp
99 Res idual_global+=Residual_temp

100 #Remove f i x ed degree s o f freedom
101 f o r dof in r e s t ra ined_do f s :
102 K_dynamic_global = np . d e l e t e (K_dynamic_global , dof , ax i s =0)
103 K_dynamic_global = np . d e l e t e (K_dynamic_global , dof , ax i s =1)
104 Res idual_global= np . d e l e t e (Res idual_global , dof , ax i s =0)

60

105

106 #Solve g l oba l system
107 dx=l i n a l g . s o l v e (K_dynamic_global , Res idual_global)
108

109 #Correct d i sp lacement
110 deltaX [1 :NT+1,0]=dx . t ranspose ()
111 Un=Un + deltaX
112

113 #Newmark f o r i t e r a t i o n
114 #Solve f o r a c c e l e r a t i o n
115 Uddn=a0 ∗(Un−U)−a2∗Ud−a3∗Udd
116 #Solve f o r v e l o c i t y
117 Udn=Ud+a6∗Udd+a7∗Uddn
118 #Check convergence
119 #Go to next t imestep
120 pr in t ("")
121 results_U [: , CurrentTime]=Un. t ranspose ()
122 results_Ud [: , CurrentTime]=Udn . t ranspose ()
123 results_Udd [: , CurrentTime]=Uddn . t ranspose ()
124 U=Un
125

126 #################################
127 # Proper Orthogonal Decomposition
128 #################################
129 Usvd , Sigma , VTsvd =svd (results_U)
130

131 Phi=Usvd
132 Phi=Phi [: , 0 : 4] #Se l e c t the number o f modes to use
133 NumberOfDOF=in t (Phi . shape [1])
134 deltaQ= np . z e r o s ((NumberOfDOF, 1))
135 q=np . z e ro s ((NumberOfDOF, 1)) #pred i c t ed disp lacement 1
136 qn=q
137 qd=np . z e ro s ((NumberOfDOF, 1))#i n i t i a l i z i n g Ve loc i ty
138 qdn=qd
139 qdd=np . z e ro s ((NumberOfDOF, 1)) #i n i t i a l i z i n g a c c e l e r a t i o n
140 qddn=qdd
141 F= np . z e ro s ((l en (U) , 1)) #c r e a t i n g the f o r c e o f z e r o s
142 F[NT]=0.2 #Applying a f o r c e at the end o f the bar
143 #K_static_el=(np . array ([[1 , −1] , [−1 , 1]]) ∗ f l o a t (NT)) #K s t a t i c i s the

same as be f o r e
144 M_el= np . array ([[2 , 1] , [1 , 2]]) / (6 . ∗ NT)
145 results_U_svd= ze ro s (((l en (U)) , Ntp))
146 results_Ud_svd= ze ro s (((l en (U)) , Ntp))
147 results_Udd_svd= ze ro s (((l en (U)) , Ntp))
148

149 #Time step loop
150 f o r CurrentTime in range (Ntp) :
151 pr in t (" time step " , CurrentTime)
152

153 q=qn
154 qd=qdn
155 qdd=qddn
156 qn=q+(qd∗dt)
157 #Newmark f o r time step
158 #Solve f o r a c c e l e r a t i o n
159 qddn=a0 ∗(qn−q)−a2∗qd−a3∗qdd
160 #Solve f o r v e l o c i t y
161 qdn=qd+a6∗qdd+a7∗qddn

APPENDIX C. PYTHON CODE. ROM NONLINEAR 1D BAR 61

162

163 deltaQ [(NumberOfDOF−1) ,0]=50 #Set t i ng a high value o f dx to ente r loop
164 i t e r=0
165

166 whi le abs (sum(deltaQ))>t o l :
167 i t e r+=1
168 pr in t (" i t e r a t i o n " , i t e r)
169

170 #Creat ing the g l oba l K and R f o r NR
171 Res idual_global = np . z e r o s ((NumberOfDOF, 1))
172 K_dynamic_global = np . z e ro s ((NumberOfDOF,NumberOfDOF))
173

174 #Assemble c on t r i bu t i on s f o r every element
175 f o r i in range (NT) :
176 Phi_elem = Phi [i : i +2 , :]
177 F_ext_el=(F [i : i +2 ,0 :1])
178 Un_el=dot (Phi_elem , qn)
179 Uddn_el=dot (Phi_elem , qddn)
180

181 #Calcu la t e Res idua l
182 F_int_el=np . power (Un_el , 2)−1 #This i s the non l in ea r term f (x)
183 Residual_element=F_ext_el−F_int_el−(dot (M_el , Uddn_el))
184 Residual_element_svd=dot (Phi_elem . t ranspose () , Residual_element)
185

186 #Calcu la t e Tangent
187 K_dynam_el=K_static_el+(a0∗M_el)
188 K_dynam_el_svd=np . matmul (Phi_elem . t ranspose () , (np . matmul (

K_dynam_el , Phi_elem)))
189 K_dynamic_global+=K_dynam_el_svd
190 Res idual_global+=Residual_element_svd
191

192 #Solve g l oba l system
193 dx=l i n a l g . s o l v e (K_dynamic_global , Res idual_global)
194

195 #Correct d i sp lacement
196 deltaQ=dx
197 qn=qn + deltaQ
198

199 #Newmark f o r i t e r a t i o n
200 #Solve f o r a c c e l e r a t i o n
201 qddn=a0 ∗(qn−q)−a2∗qd−a3∗qdd
202 #Solve f o r v e l o c i t y
203 qdn=qd+a6∗qdd+a7∗qddn
204

205 #Check convergence
206 #Go to next t imestep
207 pr in t ("")
208 results_U_svd [: , CurrentTime]=(dot (Phi , qn)) . t ranspose ()
209 results_Ud_svd [: , CurrentTime]=(dot (Phi , qdn)) . t ranspose ()
210 results_Udd_svd [: , CurrentTime]=(dot (Phi , qddn)) . t ranspose ()
211

212

213 ###
214 # Plo t t i ng
215 ##
216 Xaxis=np . array (np . l i n s p a c e (0 , tt , Ntp))
217 nodeToPrint=NT−1
218

62

219 p l t . f i g u r e ()
220 l ine_up , = p l t . p l o t (Xaxis , results_U [nodeToPrint , :] , ’ r−o ’ , l a b e l =’Disp Fu l l

Model ’)
221 line_down ,= p l t . p l o t (Xaxis , results_U_svd [nodeToPrint , :] , ’ go ’ , l a b e l =’Disp

SVD 5 modes ’)
222 p l t . t i t l e (’ Displacement U’)
223 p l t . l egend (handles=[line_up , line_down])
224

225 p l t . f i g u r e ()
226 l ine_up , =p l t . p l o t (Xaxis , results_Ud [nodeToPrint , :] , ’ r−o ’ , l a b e l =’Vel Fu l l

Model ’)
227 line_down , =p l t . p l o t (Xaxis , results_Ud_svd [nodeToPrint , :] , ’ go ’ , l a b e l =’Vel

SVD 5 Model ’)
228 p l t . t i t l e (’ Ve loc i ty ’)
229 p l t . l egend (handles=[line_up , line_down])
230

231 p l t . f i g u r e ()
232 l ine_up , =p l t . p l o t (Xaxis , results_Udd [nodeToPrint , :] , ’ r−o ’ , l a b e l =’Acc Fu l l

Model ’)
233 line_down , =p l t . p l o t (Xaxis , results_Udd_svd [nodeToPrint , :] , ’ go ’ , l a b e l =’Acc

SVD 5 Modes ’)
234 p l t . t i t l e (’ Acce l e ra t ion ’)
235 p l t . l egend (handles=[line_up , line_down])
236

237 p l t . f i g u r e ()
238 Sigma_Plot_X=np . l i n s p a c e (0 , 1 , l en (Sigma))
239 l ine_up ,= p l t . p l o t (Sigma_Plot_X , Sigma , ’ ro − ’ , l a b e l =’ S ingu la r Values ’)
240 p l t . t i t l e (’ Sigma ’)
241 p l t . l egend (handles=[line_up])

	Abstracts
	Abstract

	Table of Contents
	List of Figures
	List of Tables
	Main Content
	Introduction
	Objectives

	Theoretical Background
	Singular Value Decomposition
	Image Decomposition

	Proper Orthogonal Decomposition
	Bar Example
	Time Integration Method: Newmark
	Modal Analysis
	Proper Orthogonal Decomposition
	Nonlinear Bar
	Nonlinear Bar ROM
	Frobenius Norm

	Methodology
	GiD
	Kratos Multiphysics
	General Structure

	Parts of a Kratos Problem
	MainKratos.py
	ProjectParameters.json
	Part_name.mdpa
	Python Solver

	Inside Kratos
	Builder and Solver
	Solution Strategy

	Implementing ROM in Kratos
	Creating the Snapshots
	Selecting the Modes
	Implementation in the Builder and Solver

	Results
	Linear Problems
	Cube with Dirichlet BCs
	Simplified Radiator with Dirichlet and Neumann BCs

	Non-Linear Problems
	Square with Dirichlet, Neumann and Radiation BCs

	Discussion
	Accuracy of the ROM
	Improvement in Time

	Conclusion
	Future Work
	Training the ROM
	Efficient SVD
	Hyper-reduction

	Bibliography
	Appendices
	Python Code. Modal Analysis 1D Bar
	Python Code. ROM linear 1D Bar
	Python Code. ROM Nonlinear 1D Bar

