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Abstract

Actin turnover plays a fundamental role in cell motility. The actin flow

acts as an engine for the affective motion of motile cells by means of

protrusive and retractile mechanisms conditioned also by myosin motors.

Different mathematical and numerical models have appeared in literature

to model the actin flow. In this work, one of the analytical models in

literature will be used to include it in a finite element coupling procedure

for time-dependent diffusion-convection-reaction equations governing the

actin flow.
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Chapter 1

Introduction

Cellular motility is fundamental for a large number of biological processes such as

embryonic development, wound healing, immune responses and development of tis-

sues. Cells achieve motility by performing a cycle shown in Figure 1.1 that involves:

protrusion of the lamellipodium’s leading edge, adhesion to the substrate, retraction

of the rear and de-adhesion [3].

Figure 1.1: Representation of the four steps involved in cell motility. The actin
network pushes the leading edge of the cell’s lamellipodium, which gets adhered to
the substrate. The rest of the cell’s body follows the movement by retracting and
then the rear part de-adheres from the substrate in order to advance. Figure adopted
from [1].

This work focuses on the first step in cell locomotion. To achieve the protrusion

of the leading edge a network of actin filaments pushes the leading edge forward with

forces of an order of magnitude of pN . These forces allow cells to move at rates of

up to µm/s.
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To form the actin network, nucleation factors bind the molecular complex Arp2/3

to the side of a mother actin filament. This creates a new barbed end that elongates as

actin monomers (G-actin) spontaneously polymerize into the actin filaments (F-actin)

[2]. This process is represented at Figure 1.2.

Figure 1.2: Biochemical process for which a new barbed end is created and elongated
by the polymerization of actin monomers. The nucleation-promoting factor WASP
binds actin monomers to the Arp2/3 complex, which then get binded to a pre-existing
mother filament creating a new barbed end. The new filament elongates as new
monomers polymerizes into it.Figure adopted from [2].

The elongation of the barbed end in the new filament pushes the membrane for-

ward. The other end of the actin filament recieves the name of pointed end. The elon-

gation of the filaments is terminated by capping proteins when they achieve lengths

of about 0.5µm. If the actin filaments were to grow longer, it is speculated that they

would buckle. As the filaments age, they get severed by the protein ADF/cofilin.

Therefore, the pointed ends that remain uncapped depolymerize at the rear in a

tread-milling process. The dissassembly of actin filaments creates a pool of ADP

actin monomers that undergo association-dissociation reactions enhanced by the pro-

tein profilin. ADP actin gets exchanged to ATP actin complexes that get recycled

for subsequent polymerization [5]. This process is represented at Figure 1.3.
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Figure 1.3: Representation of the steps involved of the polymerization and depoly-
merization of the actin network that regulates the protrusion of the lamellipodium.
The growth of the actin network by branching pushes the membrane forward. Elon-
gation of the network filaments is terminated at the pointed ends by capping proteins.
As filaments age and get severed, they depolymerize into a pool of monomers ready
to elongate the barbed ends. Figure adopted from [3].

This actin-based mechanism of motility has been observed experimentally and

several models have been proposed in order to quantify it [4] [6]. Still, there are many

open issues regarding the principles that govern such a complex mechanism. The

combination of experimental mesurements with mathematical modelling is essential

in order to characterize properly this phenomena. Furthermore, mathematical models

help to rationalize and conceptualize the mechanisms, which many times are not

understood experimentally.
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Figure 1.4: Representation of different models of actin turnover. In (i), the polymer-
ization occurs at the barbed ends and the depolymerization occurs in the pointed
ends of the filament. In (ii), the polymerization occurs at the barbed ends but the
depolymerization is distributed along the lamellipodium. Finally, in (iii), both the
polymerization and depolymerization occur throughout the lamellipodium. Figure
adopted from [4].

In this work, a mathematical model describing the actin dynamics in a type of

cell called keratocyte will be studied and discretized in order to perform numerical

simulations. In Chapter 2, the theoretical model and the derivation of its analytic

solution through approximations is presented. Next, in Chapter 3, the spatial and

temporal discretization of the non-linear system of equations will be obtained. The

results from the numerical simulations performed with the discretized system are

presented in Chapter 4. Finally, the discussion and conclusions of this work will be

stated in Chapter 5 and Chapter 6 respectively.

4



Chapter 2

Description and analysis of the
theoretical model

The mathematical model was developed by Mogilner and Edelstein-Keshet [6] and

describes the actin dynamics associated with cell motility through a set of partial

differential equations in order to characterize the edge density of barbed ends, the

concentrations for the sequestered actin complexes (G-Actin), the density of pointed

(both capped and uncapped) ends, and the fluxes describing the polymerization at

the barbed ends and depolymerization at the pointed ends. By introducing several

approximations, the model can be solved analytically and a dependence between the

protrusion velocity and the number of barbed ends pushing the membrane can be

obtained.

Variables Units Description

B µm
−1

leading edge density of uncapped barbed ends

m(x) µm
−2

density of uncapped pointed ends

mc(x) µm
−2

density of capped pointed ends

Jd(x) µM s
−1

depolymerization flux
s(x) µM density of ADP-G-actin sequestered by ADF/cofilin CAD
p(x) µM density of ADP-G-actin-profilin PAD
β(x) µM density of ATP-G-actin-thymosin β4 TβAT
a(x) µM density of ATP-G-actin-profilin PAT

Jp(x) µM µm s
−1

Polymerization flux

V µm s
−1

protrusion velocity

Table 2.1: Variables used in the model
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2.1 Geometry of the model

The model simplifies the geometry of the cell lamellipodium as a 1D strip of length

L = 10µm, with the leading edge located at x = 0.

2.2 Distribution of uncapped barbed ends

The nucleation of barbed ends along preexisting filaments as branches due to the

activation of the molecular complex Arp2/3 occurs at the leading edge of the lamel-

lipodium, in a zone with a width of hundreds of nm. Since the length scale of the

lamellipodium is in terms of µm, the differential equation describing the density of

barbed ends does not take into account spatial dependencies and assumes that all

barbed ends are located at the leading edge:

dB

dt
= n − γB. (2.1)

This differential equation describes the branching of new barbed ends in terms of

the nucleation rate n and the loss of barbed ends in terms of the capping rate γ. The

first approximation taken into account in order to solve the model analytically is to

omit the time-dependent terms and study the system once it has reached the steady

state. Therefore the steady state density of barbed ends is the following:

B =
n
γ . (2.2)

In this model, both the nucleation and capping rates are assumed to be constants.

2.3 Distribution and dynamics of the pointed ends

Pointed ends get described in this model in terms of those capped by Arp2/3 and

those that remain free. The equation describing the dynamics of the capped ends is

the following:

mct = −V mcx −
mc
t1
, (2.3)
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and with the following boundary condition:

mc(0) = n

V
. (2.4)

The spatial derivative appears in order to keep the leading edge at the origin.

Therefore the coordinate system of the model is moving with the edge at the protru-

sion velocity, since no slippage is being considered. The second term in the right hand

side of (2.3) describes the uncapping of pointed ends, assumed to be a slow Poisson

process characterized by the rate 1/t1. The boundary condition arises from assuming

that capped minus ends are nucleated at the front edge with the same rate as barbed

ends, meaning that the density of capped minus ends will be equal to the nucleation

rate divided by the protrusion velocity.

The uncapping process leads to the creation of free pointed ends, while the com-

plete disassembly of actin filaments, which have a lifetime characterized by the pa-

rameter t2, causes their elimination. Thus the differential equation describing the free

end density can be written as:

mt = −V mx +
mc
t1
−
m
t2
, (2.5)

with the boundary condition assuming that all minus ends at the leading origin

are capped:

m(0) = 0. (2.6)

Considering the steady state, the solution of (2.3) is straightforward to obtain by

integrating with respect to x and applying the corresponding boundary condition:

mc(x) = n

V
e
− x

V t1 . (2.7)

Once mc(x) is known, the solution of (2.5) can also be easily computed:

m(x) = n

V

t2
t1
[e−

x
V t1 − e

− x
V t2 ]. (2.8)

From this distribution, two characteristic lenght scales can be defined. The first

one, l = V t1, describes the average distance advanced over the time that takes for a

new pointed end to be created and it has an estimaded order of magnitude of ∼10 µm.

The second one l̃ = V t2 describes the spatial scale on which the density of F-actin

decreases and is estimated to have a value of ∼1 µm.
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2.4 Definition of the depolymerization flux

The dissassembly of F-actin filaments regulates the recycling of actin monomers from

the rear to the front of the lamellipodium. To describe this, the model defines a source

of G-actin due to the dissassembly of F-actin as a flux proportional to the density of

uncapped pointed ends:

Jd(x, t) =
Vdep
δη

m(x, t). (2.9)

This specific form of the depolymerization flux is stated to be a speculation, since

the details of the depolymerization phenomena are not well understood. Considering

the profile of uncapped pointed ends obtained analytically in (2.8), Jd gets re-written

in terms of the F-actin dissassembly rate r = 1/t1, the average F-actin concentration

P , and the two approximated spatial length scales l and l̃ discussed in the previous

section:

Jd(x) ≃
P
t1
(e−x/l − e−x/l̃) = rP (e−x/l − e−x/l̃). (2.10)

This approximation decouples the explicit dependency of Jd(x) on m(x). It needs

to be noted that, in [6], it is not clear how (2.10) is obtained from (2.9).

2.5 Dynamics of sequestered actin complexes

In order to study the concentrations of actin monomers inside the lamellipodium, the

complexes get modeled using convective terms to account for the moving coordinate

system, diffusion terms to simulate the transport of the monomers along the lamel-

lipodium and reactive terms to account for the reaction processes between monomers.

Four types of complexes are considered in this model: cofilin-ADP-actin (CAD) s(x),
profilin-ADP-actin (PAD) p(x), thymosin β4-ATP-actin (TβAT) β(x), and profilin-

ATP-actin (PAT) a(x). The differential equations for the monomer concentrations

are expressed as:

st = −V sx +Dsxx − k1s + k−1p + Jd(x) (2.11)

pt = −V px +Dpxx + k1s − (k−1 + k2)p (2.12)

βt = −V βx +Dβxx − k−3β + k3a (2.13)

at = −V ax +Daxx + k2p + k−3β − k3a (2.14)

8



where V represents the protrusion velocity, D is the diffusion coefficient and the

k-parameters are the reaction rates.

No-flux boundary conditions are considered at the front and the end of the lamel-

lipodium for all complexes with the exception of PAT a(x) complexes, since they are

used up at the front edge to polymerize new actin chains:

(−D∂a

∂x
+ V a)

»»»»»»»»x=0

= −Jp, (2.15)

where Jp is the polymerization flux, which will be defined in Section 2.6.

As in the previous sections, to solve the equations analytically, the time dependent

terms get neglected. The second approximation to solve this system is to neglect

the convective terms since the protrusion velocity is estimated to be two orders of

magnitude smaller than the diffusion coefficient. Therefore the system to be solved

is the following:

Dsxx − k1s + k−1p + Jd(x) = 0 (2.16)

Dpxx + k1s − (k−1 + k2)p = 0 (2.17)

Dβxx − k−3β + k3a = 0 (2.18)

Daxx + k2p + k−3β − k3a = 0 (2.19)

The convective term also gets neglected from the boundary condition thus:

da

dx

»»»»»»»x=0
=
Jp
D

(2.20)

The last approximation comes from doing numerical simulations with (2.16),

(2.17) and (2.10) that show that even though Jd(x) depends on x, the results for

the concentrations remain constant. Mogilner and Edelstein-Keshet do not specify

how these numerical simulations were performed. With this result, the depolymer-

ization flux gets approximated as a constant Jd ≃ rP .

Since the equations for the concentrations of CAD s(x) and PAD p(x) are not

coupled with the equations for TβAT β(x) and PAT a(x), the system to be solved

analytically is the following:

Dsxx − k1s + k−1p + Jd = 0 (2.21)

Dpxx + k1s − (k−1 + k2)p = 0 (2.22)

9



Which leads to a solution were the variables are constant along x:

s(x) = s = k−1 + k2

k−1k2
Jd, (2.23)

p(x) = p = Jd
k2
, (2.24)

Substituting the result obtained in (2.24) in the second term of (2.19), the system

to be solved for β(x) and a(x) can be expressed as:

Dβxx − k−3β + k3a = 0 (2.25)

Daxx + Jd + k−3β − k3a = 0 (2.26)

The solution of the system without having applied boundary conditions is the

following:

β(x) = c1 + c2x

k−3
−

k3Jd
(k3 + k−3)2

−
k3Jdx

2

2D(k3 + k−3)
− c3e

λx
+ c4e

−λx
. (2.27)

a(x) = c1 + c2x

k−3
+

k3Jd
(k3 + k−3)2

−
k3Jdx

2

2D(k3 + k−3)
+ c3e

λx
− c4e

−λx
. (2.28)

where the parameter λ is defined as:

λ =

√
k3 + k−3

D
. (2.29)

Applying the no flux boundary conditions and the one stated at (2.20), the coef-

ficient c2 has the value of:

c2 =
k3k−3

k3 + k−3

Jp
D
. (2.30)

From this result, another condition appears in order to make the system consis-

tent stating that at the steady state the fluxes describing the polymerization and

depolymerization of F-actin must balance:

Jp = JdL. (2.31)

10



Coefficients c3 and c4 then get determined as:

c3 = 0 and (2.32)

c4 =
k3

k3 + k−3

Jp
Dλ

. (2.33)

The fact that the total amount of actin is equal to the amount of F-actin plus the

amount of G-actin is the last condition needed in order to obtain the parameter c1.

Recalling the approximation of Jd ≃ rP and using (2.31), the total amount of G-actin

can be written as:

A = P + [G] =
Jp
rL

+ [G] → [G] = (ā + β̄ + s + p) = A −
Jp
rL
. (2.34)

where s and p are the concentrations obtained in (2.23) and (2.24), and ā + β̄

is the average amount of PAT and TβAT complexes a(x) + b(x) integrated over the

lamellipodium:

ā + β̄ ≡
1

L
∫

L

0

(a(x) + b(x))dx = c1

k3 + k−3

k3k−3
+
JpL

3D
. (2.35)

Substituting (2.35) in (2.34), the coefficient c1 gets expressed as:

c1 =
k3k−3

k3 + k−3
(A − (τdep + τcof + τdif)

Jp
L
). (2.36)

In which the τ coefficients are expressed in terms of the model parameters:

τdep =
1
r , τcof =

k1 + k−1 + k2

k1k2
, τdif =

L
2

3D
. (2.37)

With all the approximations and assumptions mentioned, an analytic dependency

of the monomer concentrations in space is found in terms of the depolymerization

flux Jd (taken as a constant), and the variables V and Jp which are yet to be defined.
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2.6 Definition of the polymerization flux

At the leading edge, the available concentration of PAT a(x) monomers regulates

the polymerization of actin filaments. Thus, the flux created by these complexes is

defined as the polymerization flux Jp, used as a boundary condition in the previous

section. The magnitude of this flux is defined in the model as:

Jp =
V B

δη
, (2.38)

in which the term V /δ represents the rate of monomer addition per filament and

the term 1/η is used as a conversion factor from concentration units µM to number

of monomers per µm
2

.

2.7 Derivation of the protrusion velocity

Once the dependance of the variables of model in x has been found, the last step

is to obtain the profile of the protrusion velocity. The model starts by defining a

free polymerization velocity in terms of the polymerization rate constant kon and the

concentration of PAT available on the leading edge a(x = 0):

V0 = konδa(x = 0). (2.39)

The actual protrusion velocity needs to be written in terms of V0 and in terms of

a resistance force per unit of length at the leading edge F . The expression relating

these variables is formulated from previous theoretical work, since there were no ex-

perimental measurements available at the time this theoretical model was developed:

V = V0exp(
−Fδ
kBTB

). (2.40)

This expression considers the protrusion velocity to be the free polymerization

velocity weighted by a Boltzmann factor in which the exponent represents the work

done against the membrane by a population of filaments B in units of thermal energy.

To obtain the final V (F,B) dependency, the concentration profile of PAT a(x)
obtained in (2.28) gets evaluated at x = 0 and the boundary condition in (2.38) gets

applied, thus:

12



a(x = 0) = k−3

k3 + k−3
(A −

Jpτ

L
) = k−3

k3 + k−3
(A − V Bτ

δηL
), (2.41)

where τ depends on the coefficients defined in (2.37) and a further parameter τthy:

τ = τdep + τcof + τdif + τthy, (2.42)

τthy =
k3

k−3(k3 + k−3)
[
√
L2(k3 + k−3)

D
− 1]. (2.43)

Combining expressions (2.39) and (2.41) with (2.40), the model yields to the

equation linking the protrusion velocity with the number of barbed ends:

V =
V̄

κexp(w/B) + αB
, (2.44)

where:

V̄ = konδA, κ = (1 +
k3

k−3
), w =

Fδ

kBT
, α = (konτ

ηL
) and B =

n
γ (2.45)
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2.8 Implications from the theoretical model

Several conclusion can be drawn from the analytic expressions obtained by solving

the system through approximations. The value of the parameters used to plot the

analytic expressions are stated at Table 2.2.

Parameters Values Description

n ∼100 µm
−1

s
−1

Nucleation rate

γ ∼1 s
−1

Barbed end capping rate (c)
t1 ∼30 s Average time of uncapping of minus ends
t2 ∼1 s Average filament lifetime

Vdep ∼0.1 µm s
−1

Effective rate of depolymerization
δ 2.2 nm Filament length increment per monomer

η 100 µM
−1
µm

−2
Conversion factor to units of concentration

r=1/t1 ∼1/30 s
−1

F-actin dissassembly rate
P ∼200 µM Average F-actin concentration
l ∼10 µm Defined in Section 2.3

l̃ ∼1 µm Defined in Section 2.3
A ∼250 µM Total actin concentration
P ∼200 µM Average F-actin concentration
L ≃10 µm Length of the lamellipodium

D 30 µm
2
s
−1

Diffusion coefficent of G-actin complexes

k1 2 s
−1

CAD → PAD reaction rate

k−1 10 s
−1

PAD → CAD reaction rate

k2 20 s
−1

PAD → PAT reaction rate

k3 2 s
−1

PAT → TβAT reaction rate

k−3 2 s
−1

TβAT → PAT reaction rate

Table 2.2: Variables and parameters used in the model
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Regarding the F-actin variables, the density of barbed ends B pushing the mem-

brane is found to be a constant depending on the nucleation rate n and the capping

rate at the leading edge γ. The density for this type of cells is estimated to have a

value of B ∼ 50−250µm
−1

. On the other hand, the density of the pointed ends, both

capped and uncapped, has a dependency on x as shown in Figure 2.1.

The model predicts an exponential decay of capped ends mc(x) from the front

to the the rear of the lamellipodium, starting from the value at x = 0 given by the

boundary condition in (2.4). For the pointed ends that remain uncapped, the density

increases exponentially away from the leading edge up until a certain distance and

then decays exponentially toward the end. It can be noted that the density of capped

ends is an order of magnitude greater than the ends that remain uncapped.

For the G-actin monomers, Figure 2.2 shows how the stationary concentrations for

s(x) and p(x) are constants, whereas the concentration for β(x) and a(x) decrease

from the rear to the front of the lamellipodium. This concentration gradient indicates

that in the leading edge, the monomers are being used to extend the length of the

F-actin chains by polymerizing into them.

It needs to be stated that in [6], the plots for variables β(x) and a(x) do not

showcase the same behaviour that is presented in Figure 2.2. Still, in Section 4.1 it

will be shown how the numerical simulations lead to the behaviour shown in Figure

2.2. Therefore, it remains unclear how these variables are being plotted in [6].
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Figure 2.1: Analytic densities along the lamellipodiumium of the pointed ends, both
capped and uncapped, for B = 100µm

−1
, F = 100 pN/µm and Jd = 7µMs

−1
.
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The dependency of the protrusion velocity on the number of barbed ends predicts

an optimal value of B for which the cell achieves a maximum velocity for a given

value of the protrusion resistance force. For a number of barbed ends smaller than

the optimal value, the velocity drops dramatically. Whereas, for a number of barbed

ends greater than the optimal value, the velocity also drops but at a lower rate. This

result can be appreciated in Figure 2.3. Furthermore, it can be appreciated how the

protrusion velocity is inversely proportional to the resistance force.

Again, some discrepancies have been found between Figure 2.3 and the figure

where this dependency is presented in [6]. Although the dependency is the same in

both plots, the maximum values for the velocity shown in Figure 2.3 are slightly larger

than the values presented in [6]. For instance, in [6] the maximum for F = 50pN/µm
appears to be at V ≃ 0.39µm/s, whereas in Figure 2.3 the maximum is found to be at

V ≃ 0.42µm/s. The source of this differences also remains unclear, since the values

for the parameters that are being used to plot the expressions in the present work are

the same that are stated in [6].
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Figure 2.3: Analytic dependency of the protrusion velocity on the number of barbed
end B and the resistance force F .

17



Chapter 3

Finite element formulation of the
model

Once the theoretical model has been proposed and an analytical solution has been ob-

tained through approximations and assumptions, the aim of this work is to discretize

the coupled nonlinear system of equations to solve it numerically without having to

use simplifications.

3.1 Strong form

Defining the spacial domain as the lenght of the lamellipod Ω ≡ [0, L], the strong

form of the problem is:

Bt = n − γB in ]0,T[,

mct = −V mcx −
mc
t1

in Ω × ]0,T[,

mt = −V mx +
mc
t1
−
m
t2

in Ω × ]0,T[,

st = −V sx +Dsxx − k1s + k−1p +
Vdep
δη

m in Ω × ]0,T[, (3.1)

pt = −V px +Dpxx + k1s − (k−1 + k2)p in Ω × ]0,T[,

βt = −V βx +Dβxx − k−3β + k3a in Ω × ]0,T[,

at = −V ax +Daxx + k2p + k−3β − k3a in Ω × ]0,T[,

with boundary conditions:

18



mc =
n

V
on ΓD × ]0,T[,

m = 0 on ΓD × ]0,T[,

sn = pn = βn = 0 on ΓN × ]0,T[, (3.2)

−D
∂a

∂x
+ V a = −Jp on ΓR × ]0,T[,

where the Dirichlet domain is set at the leading edge ΓD = {0} for the F-actin

variables, the Neumann domain is set at ΓN = {0, L} for the G-actin variables s, p, β,

and the Robin domain is set at ΓR = {0} for the G-actin variable a. The initial

conditions are set arbitrarily.

3.2 Weak form

The weak form of the problem is obtained in terms of test and trial function spaces,

V and St which get defined over the Sobolev space H1
to ensure square integrable

functions and derivatives [7].

The functions in V satisfy homogeneous boundary conditions on ΓD and do not

depend on time:

V ≡ {w ∈ H1(Ω) ∣w = 0 on ΓD}. (3.3)

On the other hand, the functions in St need take into account the time dependency

of the approximate solution and need to verify the Dirichlet boundary conditions:

St ≡ {u∣u(⋅, t) ∈ H1(Ω), t ∈ [0, T ] andu(x, t) = uD for x ∈ ΓD}. (3.4)

Thus, the weak form of the problem defined in Section 3.1 will have variables

mc(x, t), m(x, t), s(x, t), p(x, t), β(x, t), a(x, t) ∈ St such that ∀w ∈ V :
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Bt = n − γB

(w,mct) = −c(V ;w,mc) − (w, 1
t1
mc)

(w,mt) = −c(V ;w,m) + (w, 1
t1
mc) − (w, 1

t2
m)

(w, st) = −c(V ;w, s) − a(w, s) − (w, k1s) + (w, k−1p) + (w,
Vdep
δη

m) (3.5)

(w, pt) = −c(V ;w, p) − a(w, p) + (w, k1s) − (w, (k−1 + k2)p)
(w, βt) = −c(V ;w, β) − a(w, β) − (w, k−3β) + (w, k3a)
(w, at) = −c(V ;w, a) − a(w, a) + (w, k2p) + (w, k−3β) − (w, k3a) − (w, V a + Jp)ΓR

,

where the second order terms have been reduced to first order terms by integrating

by parts and applying the divergence theorem. The notation used for the integral

forms stands for:

(w, u) = ∫
L

0

wudx, (w, V a + Jp)ΓR
= w(ΓR)[V a(ΓR) + Jp]

c(V ;w, u) = ∫
L

0

w V
du

dx
dx, a(w, u) = ∫

L

0

dw

dx
D
du

dx
dx,

in which u is any variable that can be multiplied by a constant.

3.3 Spatial discretization

Once the weak form of the problem has been obtained, the domain gets discretized in

a finite element mesh with a set of nodes η, where ηD is the subset of nodes belonging

to the Dirichlet boundary. The semi-discrete Galerkin formulation of the problem is

obtained by restricting S and V to the finite dimensional spaces Sh and Vh. Then,

the trial solution can be written in terms of a shape function NA associated to a node

A in the finite element mesh and the nodal unknown uA(t):

u
h(x, t) = ∑

A∈η\ηD
NA(x)uA(t) + ∑

A∈ηD

NA(x)uD(xA, t). (3.6)

In the Galerkin formulation the test functions w
h

get defined as:

w
h
∈ Vh ≡ span

A∈η\ηA
{NA}. (3.7)
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The assembly of each element contribution to the discrete weak form into the complete

system allows to write the weak form in terms of a matrix equation:

Bt = n − γB

M ṁc + (C +
1
t1

M)mc = −
nen

∑
b=1

(c(V ;Na, Nb)Ωe
+

1
t1
(Na, Nb)Ωe) n

V

M ṁ + (C +
1
t2

M)m −
1
t1

M mc = 0

M ṡ + (C +K + k1M) s − k−1M p −
Vdep
δη

M m = 0 (3.8)

M ṗ + (C +K + (k−1 + k2)M)p − k1M s = 0

M β̇ + (C +K + k−3M)β − k3M a = 0

M ȧ + (C +K + k3M) a − k2M p − k−3Mβ = −(Na, V a + Jp)∂Ωe∩ΓR
.

The vectors representing each variable contain the nodal values of said variable and

its time derivative. The matrices C, K, M represent the convection, stiffness and

mass matrix respectively, and are defined as the topological assembly A
e

of element

contributions of length l
e

as follows:

C ≡ A
e ∫

le
NaV

dNb

dx
dl K ≡ A

e ∫
le

dNa

dx
D
dNb

dx
dl M ≡ A

e ∫
le
NaNbdl. (3.9)

The previous expressions stand for a semi-discrete Galerkin scheme, since the

temporal discretization has still to be performed.

3.4 Temporal discretization

Commonly used methods to discretize in time are the θ family of methods, which

compute the unknown u
n+1

at time t
n+1

from the value of u
n

at time t
n
. Solving for

the incremental unknown ∆u = u
n+1 − un, the θ scheme can be written as:

(w, ∆u

∆t
) − θ(w,∆ut) = (w, unt ) (3.10)

This scheme is applied to the weak form of the system, where the time derivatives

are substituted by the expressions in (3.6). The value of the θ parameter determines

the properties of the scheme. The θ-method that has been implemented to discretize

the temporal derivatives is Forward Euler, which implies that θ = 0. This leads to a

conditionally stable scheme that decouples the whole system.

21



Implementing the temporal discretization in (3.10) with θ = 0 to the space dis-

cretized system in (3.9), at each time step the equations to be solved will be:

B
n+1

= B
n
+ dt(n − γBn)

M

dt
∆mc = −(C +

M
t1

)mcn

M

dt
∆m = −(C +

M
t2

)mn
+

M
t1
mc

n

M

dt
∆s = −(C +K + k1M)sn + k−1Mp

n
+
Vdep
δη

Mm
n

(3.11)

M

dt
∆p = −(C +K + (k−1 + k2)M)pn + k1Ms

n

M

dt
∆β = −(C +K + k−3M)βn + k3Ma

n

M

dt
∆a = −(C +K + k3M)an + k−3Mβ

n
+ k2Mp

n
,

where the boundary conditions will be applied at the corresponding nodes. The

initial conditions have been set arbitrarily, since the system should converge to a

steady state.

3.5 Linearization

As stated in (2.39) and (2.40), the protrusion velocity depends on the concentration

of PAT a(x, t) at the front of the lamellipodium, thus making the system non-linear.

In order to compute the solution, the system has been linearized using a fixed point

iteration, defined by the following algorithm:

Algorithm 1 Fixed point algorithm
1: Set a tolerance ε and a maximum number of iterations k
2: Set an initial guess for the vector of unknowns ξ

0
= [mc0 m0

s
0
p
0
β
0
a
0]T

3: Compute V
0

with the concentration a
0

4: while ∣∣ξk − ξk−1 < ε∣∣ do
5: Solve the linear system in (3.9) as A(ξk−1)ξk = b
6: Compute V

k
with the result a

k

7: Update the variables
8: end while
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Chapter 4

Numerical simulations

Several numerical cases have been run in order to study the F-actin density, G-

actin concentrations and velocity of fast moving cells. To compute the numerical

simulations, the 1D domain representing the lamellipodium gets discretized using

100 linear elements, that is two-noded elements. The quadrature used to compute

the integrals numerically is a two-point Gauss quadrature.

4.1 Steady case with a constant depolymerization

flux Jd

The analytic solution for the steady case obtained through the approximations dis-

cussed in Chapter 2, can be used as a way to test the code in order to ensure that

the discretization and linearization of the system have been implemented properly.

Therefore, the first numerical simulation that was run considers the system in which

the time dependant and convective terms have been neglected and Jd is taken as a

constant. While this is a system that has an analytic solution, solving it numerically

is not possible because the matrix arising from the discretization is singular. This

issue appears because the only variables in which Dirichlet boundary conditions are

being applied are mc(x) and m(x). Recalling the approximations in Chapter 2, the

equations for the F-actin variables, mc(x) and m(x), get decoupled from the equa-

tions for the G-actin variables s(x), p(x), β(x) and a(x). Furthermore, the Robin

boundary condition for a(x = 0) in (2.15) gets approximated to a Neumann boundary

condition as in (2.20), while no-flux Neumann boundary conditions get applied for

variables s(x), p(x), β(x). Therefore, the coupled system for the G-actin variables

lacks a Dirichlet condition to avoid singularities in the discretization.
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Due to this issue, the system for the steady case with Jd taken as a constant needs

to include the convective terms to ensure that the Robin boundary condition gets

applied to make the system non-singular. Figure 4.1 and Figure 4.2 show the results

for the density of the F-actin variables and concentration of the G-actin monomers in

the lamellipodium for a number of barbed ends B = 100µm
−1

and a resistance force

F = 100 pN/µm. The value for the velocity obtained by the numerical simulations is

shown in Table 4.1.

For the capped ends, the exponential decay from the front to the rear of the

lamellipodium is clearly showcased. For the uncapped ends, the exponential increase

of the density and then subsequent exponential decrease is also obtained. As for

the G-actin variables, on one hand, the numerically obtained concentrations for s(x)
and p(x) remain constant along x and have the same value that is predicted by the

analytic model. On the other hand, the concentrations computed for β(x) and a(x)
showcase the same gradient from the rear to the front as expected by the analytic

model, but the values achieved are larger than expected. Regarding the protrusion

velocity, the value obtained by the numerical simulation presents a larger value with

a 10% difference compared to the expected analytic value.

Although the analytic and numerically obtained dependencies exhibit a similar

behaviour, they present differences in their values for the variables mc(x), m(x),
β(x) and a(x). This differences can be explained in terms of the protrusion velocity.

First, the system that is being solved numerically is not the same that is being solved

analytically due to the inclusion of convective terms that depend on the protrusion

velocity. This convective terms affect both the system equations and the boundary

conditions for a(x). Furthermore, the computed protrusion velocity is larger than

expected, and since the system is coupled this discrepancy ends up affecting other

variables. An explanation for these differences will be presented in Section 4.4.
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Figure 4.1: Computed densities along the lamellipodium of the pointed ends, both
capped and uncapped, compared to the analytic expressions derived from the model
for B = 100µm

−1
, F = 100 pN/µm and Jd = 7µMs

−1
.
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Computed Analytic
Front velocity V (µm/s) 0.1708 0.1548

Table 4.1: Computed front velocity compared to the expected analytic value for
B = 100µm

−1
, F = 100 pN and Jd = 7µMs

−1
.

To study the V (F,B) dependency, the code has been used to solve the system for

several values of B. Figure 4.3 shows the dependency obtained with the simulations.

Unlike the densities and concentrations computed for the case in which B = 100µm
−1

and F = 100 pN, the dependency obtained by the numerical simulation is not the one

that is expected by the analytic results. The numerical results show how the velocity

increases with the number of barbed ends, Instead of showing an optimal value of

B for which the velocity is maximum. The rate at which the velocity increases

gets diminished as the number of barbed ends grows. While this result appears to

be unexpected, it has been found that it can be explained in terms of the analytic

model. The discussion will be presented in sections 4.4 and 4.5.
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Figure 4.3: Comparison between the computed and analytic protusion velocity with
respect to the number of barbed ends for F = 100 pN/µm−1

.
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4.2 Steady case with a depolymerization flux Jd =

Jd(m(x))
Considering the results in Section 4.1, the simulations for the current section have

been computed just for B = 100µm
−1

, which is a value for B where the numerical

results showed similarities with the analytic results. Recalling the definition of the

depolymerization flux:

Jd(x, t) =
Vdep
δη

m(x, t). (4.1)

With this definition, now the system to be solved couples the F-actin variable

m(x) to the G-actin monomer s(x). This is a system that has not been solved

analytically in [6]. Still, as a reference, the numerical results will be compared to

the analytic solution presented in Chapter 2 for a constant depolymerization flux.

The numerical results for this case are not expected to be exactly as the analytic

results predict because the definition of the depolymerization flux is different. Still,

the order of magnitude and behaviour of the variables should bare some similarities

in both cases since the equations are describing the same physical system.

The numerical results for the F-actin densities and G-actin concentrations are

shown in Figure 4.4 and Figure 4.5 respectively, and the computed value for the

protrusion velocity is stated in Table 4.2.
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Figure 4.4: Computed densities along the lamellipodium of the pointed ends, both
capped and uncapped, compared to the analytic expressions derived from the model

for B = 100µm
−1

, F = 100 pN/µm and Jd =
Vdep

δη
m(x, t).
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Computed Analytic
Front velocity V (µm/s) 6.7823 0.1548

Table 4.2: Computed front velocity compared to the expected analytic value for

B = 100µm
−1

, F = 100 pN and Jd =
Vdep

δη
m(x, t).

The numerical results are showcasing a big discrepancy in both the order of mag-

nitude and dependency that are expected for each variable.

For the density of capped ends, the computed values are two orders of magnitude

smaller than expected and the exponential decay form the from the front to the

rear cannot be appreciated. Likewise, the density for the pointed ends obtained

numerically is also two orders of magnitude smaller than expected and appears to be

increasing from the front to the rear of the lamellipodium. This results contradicts

the several implications from the model. The first one states that the density of

capped ends should be two orders of magnitude larger than the density of pointed

ends. The second one states that the density of capped ends shows and exponential

decrease from the front to the rear of the lamellipodium. And the third one that

describes the density of uncapped ends as having an exponential increase away from

the leading edge up to a certain distance, and then presents an exponential decay

towards the end.

Regarding the monomer concentrations, the numerical results are also contradict-

ing the implications from the model. While it is true that the computed concentra-

tions for s(x) and p(x) remain constant along the lamellipodium, their values are

close to zero, which is not what the analytic model predicts. On the other hand, the

concentrations for β(x) and a(x) do not show any gradient from the rear to the front

of the lamellipodium and their dependencies overlap reaching concentration values

two orders of magnitude higher than expected.

As for the protrusion velocity, the computed result presents a 40% error leading

to a value that is one order of magnitude larger than expected.

This results seem to indicate that the definition of the depolymerization flux used

in this section may be an issue. A further discussion regarding the fluxes will be

presented in Section 4.5.
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4.3 Unsteady case

To finish the numerical simulations, the time dependant terms have been included so

that the discretized problem obtained in (3.9) is solved, thus solving the equations

from the model without imposing any simplification. As it has been noted in Section

4.2, the steady case using a depolymerization flux defined as in (4.1) is not leading

to proper results. Therefore it is likely that the unsteady case will also fail to deliver

an adequate solution.

As expected by the bad results shown in the previous section, this scheme does

not converge: the computed velocities increase to very large numbers as the time

advances and a steady state is never reached. The stability of the forward Euler

scheme is conditioned by the Péclet number and the Courant number. But neither

the Péclet nor the Courant number can be the source of this oscillations since they

are not large enough to destabilize the system. Therefore, the divergence could be

caused by the same issue regarding the fluxes as in the case presented in Section 4.2.

4.4 Discrepancies in the V (F,B) dependency for

the steady case

Most of the numerical simulations are showing a strong disagreement with the theo-

retical results, meaning that the implementation of the numerical discretization could

be incorrect. Still, it can be shown how the numerical results in Section 4.1 can be

explained in terms of the theoretical results, thus proving that the implementation of

the numerical model is correct. In the following sections, the source of the differences

between theoretical and numerical results will be discussed.

To understand the differences between the theoretical and the computed velocity

profiles shown in Figure 4.3, it is essential to recall how the velocity profile is obtained

analytically, as opposed to how the code computes it.

As explained in Section 2.7, the V (F,B) dependency is obtained by evaluating

the amount of a(x) at the leading edge:

V = konδexp(
−Fδ
kBTB

)a(x = 0). (4.2)

The analytic expression of a(x = 0) is written in terms of Jp:
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V = konδ
k−3

k3 + k−3
exp( −Fδ

kBTB
)(A −

Jpτ

L
), (4.3)

and then substituting Jp by its definition in (2.38):

Jp =
V B

δη
, (4.4)

leading to the following expression:

V = konδ
k−3

k3 + k−3
exp( −Fδ

kBTB
)(A − V Bτ

δηL
). (4.5)

Therefore, the variable Jp is what it is determining the final dependency. Its

definition requires to send the right hand side term depending on V to the left hand

side in order to obtain the final V (F,B) dependency:

V =
V̄

κexp(w/B) + αB
, (4.6)

here written in terms of parameters that have already been defined in Chapter 2.

On the other hand, the code used to obtain the numerical results presented at

Section 4.1, where Jd is taken as a constant, is not computing the polymerization

flux Jp as in (4.4). Instead, the condition that is being imposed is the one where the

fluxes balance as:

Jp = JdL. (4.7)

Working with the analytic solution, if the definition of Jp in (4.4) is not imposed

anywhere, the V (F,B) dependency is found to be similar to the one obtained by

the numerical simulations. The comparison of V (F,B) between the analytic solution

where conditions (4.4) and (4.7) are imposed, the analytic solution where just (4.7)

is imposed, and the numerical solution is presented in Figure 4.6. It can be seen how

the analytic solution where just (4.7) is imposed shows how the velocity increases

with the number of barbed ends B. The rate of this velocity increase is reduced as

the B increases. The numerical results show the same behaviour but the values for

the velocity are slightly larger.

From the results in Figure 4.6 it can be noted that although the profiles for the

velocity when the definition of Jp in (4.4) is imposed to when its not are very different,
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they share a common solution for B = 96µm
−1

. Since the first simulations where

computed for B = 100µm
−1

, a point close to the common solution, the concentration

profiles that were being obtained appeared to match the profiles predicted by the

theoretical model. It was not until the simulations were computed for values of B

away from the common solution that the discrepancies that arise from not imposing

(4.4) where appreciated.

Table 4.4 presents the comparison between the protrusion velocity values for B =

100µm
−1

and F = 100 pN/µm obtained numerically, and by the two analytic solutions

that can be derived from the same model by imposing different conditions regarding

the fluxes. It can be appreciated how the computed value of the protrusion velocity

presents a 4% error when compared to the analytic solution obtained by just imposing

(4.7).

Therefore, the numerical results can be explained in terms of the theoretical model:

if Jp is computed as a constant that balances with Jd, the analytic dependency ob-

tained through approximations can be obtained in a numerical framework where the

convective terms are included. The inclusion of the convective terms may be the rea-

son why the numerical result is still presenting a 4% error with the analytic solution

that just imposes balance of fluxes. This reasoning comes from observing the be-

haviour of the computed and analytic solution just imposing balance of fluxes shown

in Figure 4.6. The computed results match the analytic curve when the velocity

is small. As the number of barbed ends increases and the cell moves faster, the

differences between results become more apparent. Since the convective terms are

proportional to the protrusion velocity, the differences between the computed results

and the analytic results should increase with the velocity.
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Figure 4.6: Comparison between the computed and analytic protrusion velocity with
respect to the number of barbed ends for F = 100 pN/µm. The analytic expressions
are the ones obtained when both the condition Jp =

V B

δη
and the balance of fluxes are

imposed, and when only the balance of fluxes is imposed.

Computed
Analytic imposing

(4.4) and (4.7)
Analytic imposing

just (4.7)
Front velocity V 0.1708 0.1548 0.1640

Table 4.3: Computed value of the front velocity compared to the analytic values when
different conditions regarding the fluxes are imposed.
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It has been established that the code computes a solution that can be obtained

from the theoretical model by not imposing the definition in (4.4). The results from

the densitites for the F-actin variables and concentrations for the G-actin monomers

have been plotted in Figure 4.7 and Figure 4.8. The comparison of the numerical

results is being done against the analytic solution that just imposes balance of fluxes.

It can be appreciated how the differences are reduced between the computed and

the analytic results that are being considered currently. This is due to the fact that

the differences in the computed velocity has been reduced to a 4%, reducing the

differences in the other variables, since the system is coupled.
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Figure 4.7: Computed densities along the lamellipodium of the pointed ends, both
capped and uncapped, compared to the analytic expressions derived from the model
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4.5 Issues with the fluxes

The source of discrepancies between the numerical solution and the analytic solution

that is obtained by imposing (4.4) and (4.7) for the steady case taking Jd as a constant

has been determined. The code used to compute the numerical simulations does not

compute Jp imposing (4.4). Instead the polymerization flux is being computed by

just imposing balance of fluxes, which is a condition that should be satisfied in order

to make the system physically consistent.

The most straightforward way to ensure that both conditions are being imposed

would be by computing the polymerization flux as in (4.4), and then compute the

depolymerization flux as:

Jd =
Jp
L
=

1

L

V B

δη
. (4.8)

The front velocity obtained from the simulation imposing (4.4) and (4.8) has

a value of V = 8.94µms
−1

, an order of magnitude larger than expected by the

theoretical model. This result also leads to density and concentration profiles that do

not behave as expected. This seems to indicate that there is some sort of discrepancy

between the two conditions that need to be imposed regarding the fluxes.

In the case in which Jd is written in terms of the density of pointed ends m(x),
the fact that the fluxes may not be well defined can be seen through the theoretical

expressions. The value of the polymerization flux computed using (4.4) for B =

100µm
−1

is:

Jp =
V B

δη
= 70.33µMµms

−1
, (4.9)

whereas if the polymerization flux is computed as the balance of the depolymer-

ization flux written in terms of the density of pointed ends obtained in (2.8) is:

Jp = ∫
L

0

Jd(x)dx = ∫
L

0

Vdep
δη

m(x)dx = ∫
L

0

Vdep
δη

n

V

t2
t1
[e−

x
V t1 − e

− x
V t2 ]dx = (4.10)

= 38.66µMµms
−1

Therefore, the two conditions are not leading to the same value. This could be

the reason why both the steady case for Jd = Jd(m(x)) and unsteady simulations are

not reaching proper results.
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4.6 Obtaining the expected V (F,B) dependency

The numerical simulations have only been able to reproduce the theoretical results

for the densities and concentrations for B = 100µm, taking Jd as a constant and

computing Jp by imposing balance of the fluxes.

Several tests performed with the code show that the computed value of V is tied

to the value that is given to Jd at the beginning of the simulation. In [6], where the

one-dimensional model is presented, it fails to mention if the value Jd = 7µMs
−1

is

valid for all values of B, but no other value is given.

One of the authors of the model has a paper published in which finite element

numerical simulations are performed in order to obtain a two-dimensional model of

cell crawling [8]. While the numerical model presented in [8] is much more complex,

it includes a description of the actin transport based on the model that has been

presented in Chapter 2. For simplicity, the reactions for the G-actin monomers s(x, t)
and p(x, t) are omitted.

In the one-dimensional model presented in Chapter 2, the source of depolymeriza-

tion only appears in the equation describing the G-actin monomer s(x, t). Since the

two-dimensional model ignores the equation for s(x, t), the depolymerization source

is included in the equation for the G-actin monomer a(x, t). The source is written

in terms of an F-actin density variable that represents the density of barbed ends.

Since this two-dimensional model ties the depolymerization source to the number of

barbed ends. Therefore, the code could be used to find a dependency of Jd on B and

F so that the expected V (F,B) dependency is obtained.

To do so, the depolymerization flux has been tuned for each value of B so that

the computed value of V is similar to the theoretical value. The dependency that Jd

should have on B is shown in Figure 4.9 for F = 100 pN/µm.

With that dependency, the computed values of the velocity fit the theoretical

curve, as shown in Figure 4.10. It needs to be noted that the values for the flux

that have been chosen in order to get the expected dependency are just a rough

approximation. The values of the computed velocity should not fit the analytic curve

due to the inclusion of convective terms in the system that is being solved numerically.

It has already been pointed out that the inclusion of convective terms leads to higher

computed values for the velocity.

It needs to be noted that at no point the condition stating that Jp =
V B

δη
is not

being applied. As stated previously, the only constrain imposed in the polymerization

flux is that it must balance the depolymerization flux.
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Figure 4.9: Computed values of the depolymerization flux Jd in terms of the number
of barbed ends.
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Figure 4.10: Computed front velocity values using the depolymerization flux depen-
dency obtained in Figure 4.9
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Chapter 5

Discussion

Understading the actin dynamics occurring in the lamellipodium is essential in order

to describe the motility of cells. The recurring assembly and dissassembly of actin

from its monomeric form to its filament form is responsible for the protrusion of the

lamellipod, the first step of the cell crawling cycle.

The theoretical model that has been studied is described to be an initial attempt to

quantify the actin dynamics in protrusion associated with cell motility. A set of non-

linear partial differential equations are solved analytically through approximations

and simplifications that decouple the system. On one hand, these simplifications

allow the obtention of an analytic solution that characterizes the regulation of acting

dynamics in rapidly moving cells. But on the other hand, the range of validity of the

model is limited by these simplifications. Numerical simulations are a powerful tool

to study the solution of nonlinear systems of equations and to test new hypothesis

that lead to systems that cannot be solved analytically.

In this work, the system of partial differential equations that describe the theo-

retical model has been discretized and several numerical simulations have been per-

formed. The first case that has been considered assumes a time independent system

with a depolymerization flux constant along the lampellipodium. The second case

also assumes a time independent system, but the depolymerization flux is assumed

to be dependant on the variable representing the uncapped pointed ends. Finally, for

the third case, the time dependant system using the same depolymerization flux as

in the second case. The analytic solution that is presented in the theoretical model

has been used to test the validity of the numerical simulations.

For the first case, it has been found that the results from numerical simulations

generally agree with the analytic results if the polymerization flux is computed by

imposing its balance with the depolymerization flux. There is an small discrepancy

that appears due to the inclusion of convective terms in the system that is being
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solved numerically. The balance of fluxes is a condition that also gets imposed in the

theoretical model, but the polymerization flux is also defined in terms of the protru-

sion velocity and the number of barbed ends. If this definition for the polymerization

flux is imposed in the numerical simulations, the results do not agree with the ana-

lytic results predicted by the model. Therefore, although the implemententation of

the discretization and linearization of the system is correct, the numerical simulations

present an issue between the two conditions regarding the polymerization flux.

For the second and third case, the depolymerization flux is defined in terms of

the density of uncapped barbed ends. The theoretical model does not present an

analytic solution for this definition of the depolymerization flux. Therefore, the nu-

merical results have been compared to the analytic solution that is obtained when the

depolymerization flux is assumed to be a constant. The results for the second case

present a great discrepancy with the analytic results. And for the third case, which is

the transient version of the second case, the numerical solution has been found to be

divergent. In order to find an explanation for these bad results, the polymerization

flux has been computed using analytic expressions. It has been found that if the poly-

merization flux is computed by imposing its definition that depends on the number

of barbed ends, its value is different than the one obtained by imposing balance of

the fluxes. Therefore, this could be the reason why the numerical simulations lead to

results that are not correct.

During the development of this work, a later and much more complex model de-

scribing cell motility by the same author was found. In this model where numerical

simulations are performed, the depolymerization flux is tied to the variable represent-

ing the number of barbed ends. In the theoretical model that has been analyzed in

this work, the depolymerization flux is defined as a constant. But it is not specified

whether this constant value is valid for any number of barbed ends. Considering that

in later models the depolymerization flux has been described in terms of the number

of barbed ends, the code has been used as a tool to find a dependency of the depoly-

merization flux on the number of barbed ends. This dependency allows the numerical

simulations to obtain the expected dependency of the protrusion velocity on the num-

ber of barbed ends. Still, the imposition of the definition of the polymerization flux

is an issue that remains unsolved.
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Chapter 6

Conclusions

• The set of nonlinear differential equations describing a theoretical model for

actin dynamics in fast moving cells has been discretized using finite elements

and linearized using a fixed point iteration.

• The simulations have been run considering a definition of the depolymerization

flux to be a constant and a definition to be dependant of the density of uncapped

pointed ends. The steady problem has been solved for both types of fluxes. The

unsteady problem has been solved for the depolymerization flux written in terms

of the density of uncapped barbed ends.

• For the steady problem with a constant depolymerization flux, the numerical

results regarding the F-actin densities and G-actin concentrations fit the theo-

retical model but the computed value of the velocity presents a discrepancy with

the analytic value of the velocity. Furthermore, the obtained dependency of the

velocity on the number of barbed ends does not fit the analytic dependency

predicted by the model

• For the steady problem with a depolymerization flux dependant on the number

of barbed ends, the numerical results do not fit the theoretical model and the

computed value of the velocity is too large too agree with the proper analytic

value.

• The results suggest that the source of the differences between the numerical and

analytic results are due to some sort of issue between the conditions that have

to be fulfilled by depolymerization and polymerization fluxes.
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• The use of numerical simulations is essential in order to analyze cell mechanics,

since the equations describing the models cannot be solved analytically without

simplifications that may limit the validity of the model.

• The discretization of models of actin treadmilling in a finite element framework

can allow the inclusion of more complex phenomena, such as the mechanics of

the fluids inside the cell.
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