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Abstract 
 

This project focuses on particle methods, specifically on the Material Point Method (MPM). 

MPM is an hybrid mixed Lagrangian-Eulerian method which uses moving Lagrangian material 

points that store physical properties of a deforming continuum and a fixed Eulerian finite 

element mesh to solve the equations of motion at each time steps. It has been shown that this 

method is useful for the simulation of mechanical problems involving large deformations on 

history-dependent materials. 

 

MPM can be seen as a Lagrangian finite element method with moving integration points (the 

material points). The main advantages of the Material Point Method, motivates to realize its 

validation and its application to problems where different materials are in contact and large 

deformations are involved. Therefore, this thesis focus on the analysis of the MPM 

methodology, of strengths and weaknesses.  To do that, a series of simulations of standardized 

tests on concrete samples have been carried out. Their experimental behaviour is known and 

they are easily comparable with the traditional finite elements methods, FEM. Moreover, a 

preliminary application for the study of the behaviour of the method for the the specific case of 

the failure of the core of a rockfill dam in extreme conditions. 

 

The study of the method in large deformations regime is done by observing how the push rockfill 

shoulder and the water affects the dam’s core once and it is not protected anymore by the 

rockfill protection. In this regard, it should be noted that only preliminary analyzes have been 

carried out so to see the basis of the future research. 

Further research is needed to simulate large geotechnical problems such as dam’s simulations. 

For instance, contact algorithm must be implemented to solve stress transmission and friction 

problems between surfaces when different materials are involved. 
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1. Introduction and objectives 

1.1 Introduction 
 

The needs in the calculation of large structures have been changing. At present, climate change, 

strong climbs and drops in temperatures, among other extreme conditions, have caused that 

the efforts acting on these structures have changed, and now they are subject to another 

conditions and larger forces than the ones contemplated in the past. 

 

Therefore, this need arises to create a method that manages to simulate efforts and behaviours 

that extreme conditions have on structures. In engineering there exist several problems which 

involve history-dependent materials, large deformations and complex soil-structure interaction. 

The numerical simulation of these problems is challenging. 

 

The numerical methods used in continuum mechanics make use of two classical descriptions of 

motion: the Lagrangian and Eulerian description [17]. In Eulerian methods such as the Finite 

Differences Methods (FDM), the computational mesh is fixed, and the continuum moves with 

respect to the grid. Although large deformation problems can be handled with these methods, 

the Eulerian formulation contains a nonlinear convective term, which makes it hard to deal with 

history-dependent materials [22]. Traditionally Eulerian methods are used in fluid dynamics. 

 

In Lagrangian methods the mesh follows the material over time, making it easy to follow 

material free surface or multiple materials [58]. Lagrangian methods are efficient when 

calculating impact problems because are conceptually simpler, it is easy to impose boundary 

conditions and track material interfaces (element boundary coincides with material interfaces), 

and also it is easy to implement history-dependent constitutive models, but still not able to 

efficiently solve problems where large deformations are considered, because the mesh might 

get distorted.   

 

The material point method (MPM) tries to combine the advantages of Lagrangian and Eulerian 

methods. It proved to be successful in simulating problems which involve large deformations 

and history-dependent materials. MPM uses a fixed background mesh and a set of material 

points moving through the mesh to model the deforming material. In every time step, the 

equations of motion are solved numerically on the background mesh to update particle position 

and properties. The solution is approximated by a linear combination of basis functions. Integrals 

are approximated using material points as integration points. 

 

The material point method is described as a mesh-based particle method since it uses a 

background mesh and a set of material points moving through this mesh [1]. 

 

One of the earliest mesh-based particle methods is the particle-in-cell (PIC) method developed 

at Los Alamos National Laboratory by F. H. Harlow for fluid dynamics analyses [28]. In this 
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method, material points only carry information on mass and position of the continuum not on 

velocities or stresses. Dissipation of energy is characteristic for this method [10]. A next step was 

the introduction of the fluid-implicit particle method (FLIP) by Brackbill and Ruppel [10] in 1986. 

In this method, not only mass and position but also other properties such as momentum and 

energy are assigned to each particle. It has been shown in [54] that this method conserves kinetic 

energy if a consistent mass matrix is used. 

 

In 1993, the FLIP method was extended by Sulsky et al. for problems in solid mechanics that 

involve history-dependent contitutive models [55]. This new method was called the material 

point method (MPM) by Sulsky and Schreyer [56]. Within MPM, a material is represented by a 

set of particles where each particle represents a subvolume of the material. Since these material 

points store physical properties such as stresses and strains, problems involving history-

dependent material behavior can easier be simulated. Over the years, the material point method 

has been used in the simulation of a variety of problems in different fields. For example, it has 

been used to simulate multiphase flows [58] and the deformation of membranes containing soil 

[27]. Furthermore, the material point method has been used for snow simulations [53] and to 

model sea ice dynamics [57]. 

 

The objective of this project is to validate the Material Point Method implemented in Kratos 

Multiphysics through various tests carried out. On the other hand, we want to know how the 

Material Point Method behaves in the fracture of the clay core of a dam in extreme conditions. 

For this case, only preliminary analyzes have been carried out, the results obtained for now are 

shown and the future work on the subject is highlighted in order to carry out this type of 

simulations.  

1.2 Objective  
 

The main objective of this work is the validation of the Material Point Method solving for damage 

problems. For this, several analyses have been carried out using damage models, such as the 

compression, tensile and shear test in a concrete specimen. An extended comparison with 

experimental curves with FEM to verify that the method works correctly.  

 

As a future work, since the potential of the MPM relies in the solution of large deformation 

problems, it is intended to simulate the failure of a rockfill dam under extreme conditions. The 

model would be a dam in which the core of this has been uncovered and on which the push of 

the water impacts. 

1.3 Thesis outline 
 

The thesis outline is the following: Chapter 1 presents an introduction, some objectives and 

finally the state of the art. 

In the second chapter the mathematical model is described. The governing equations, theories 

of damage models and the Mohr-Coulomb constitutive law are shown. This chapter also derives 

the weak form of the problem, its linearization and spatial discretization. 
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In chapter 3, the subject is introduced, explaining the Material Point Method, the algorithm and 

the numerical difficulties of this method.  

The validation of the method is shown in chapter 4, in which all the tests carried out are exposed 

and compared and analyzed. 

The last chapter is the conclusions that reflect on the work analyzed and the results obtained. 

Future research lines are also being studied to improve the current method. 
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2. State of the art 
 

Simulation-based Engineering Science (SBES) is the third pillar of the modern science and 

engineering [52]. This science has the advantages of low cost, safety, and efficiency in solving 

various kinds of problems that are presented today. 

There are a series of extreme problems that are difficult to solve, such as hypervelocity impact, 

penetration, blast, crack propagation, and multi-phase (solid–liquid–gas) interactions involving 

failure evolution, yet effectively discretize localized large deformation, the transition among 

different types of failure modes and fragmentation remains a very difficult task.  

 

The existing spatial discretization methods can be classified into Lagrangian, Eulerian, and Hybrid 

ones, depending on the way how deformation and motion are described. 

2.1 Lagrangian methods 
 
In these methods the computational grid is embedded and deformed with the material.  There 

is no advection between the grid and material, so no advection term appears in the governing 

equations, this simplifies the solution process. The mass of each material element keeps 

constant during the solution process, but due to element deformation the element volume 

varies.  

 

The main advantages of this methods are: 

 

1) They are conceptually more simple and efficient than Eulerian methods.  The 

conservation equations for mass, momentum, and energy are simple in form 

(because there is no advection term that describes the mass flow across element 

boundaries,), and can be efficiently solved. 

 

2) It is easy to impose boundary conditions and to track material interfaces because 

element boundaries coincide with the material interfaces during the solution 

process. 

 

3) It is easy to implement history-dependent constitutive models because they track 

the flow of individual masses. 

 

To obtain a stable solution with an explicit time integration scheme, the time step must be 

smaller than a critical time step. This critical time step is controlled by the minimum 

characteristic length of all elements in the grid.  

 

The time step in a Lagrangian calculation could become smaller and smaller, and finally approach 

zero (because severe element distortion would significantly decrease the characteristic element 

length), which makes the computation impossible to be completed. 
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To complete a Lagrangian computation for an extreme loading case, a distorted grid must be 

remeshed and its result must be interpolated to the remeshed grid.  

 

In 1D and 2D problems the remesh technique has been successfully used, but rezoning a 

complicated 3D material domain is still a challenging task. For a history-dependent material, the 

history variables are also required to be interpolated from the old grid to the new grid, which 

may further cause numerical error in stress calculation.  

 

2.2 Eulerian methods 
 
An Eulerian method is appropriate for problems in which a material domain could become 

heavily distorted or problems where different materials are mixed. 

 

In these methods, the computational grid is fixed in space and does not move with the material 

such that the material flows through the grid. 

 

There is no element distortion, but the physical variables, such as mass, momentum, and energy, 

advect between adjacent elements across their interface.  

 

The volume of each element keeps constant during the simulation, but its density varies due to 

the advection of mass. These methods are suited for modelling large deformations of materials. 

Most of computational fluid dynamics codes and early hydrocodes for impact and blast 

simulation employ these methods. 

 

Eulerian methods only calculate the material quantities advected between elements without 

explicitly and accurately determining the position of material interface and free surface so that 

they are quite awkward in following deforming material interfaces and moving boundaries. 

Significant efforts have been made to develop interface reconstruction methods. 

 

2.3 Hybrid methods 
 
 
As both Lagrangian and Eulerian methods possess different shortcomings and advantages hybrid 

methods are the ones which combining both want to take advantage of both methods to better 

tackle challenging problems. The arbitrary Lagrangian–Eulerian (ALE) [19] method and the 

particle-in-cell (PIC) method [26, 28] are two representatives. 

2.3.1 Arbitrary Eulerian–Lagrangian Method and Its Variations 
 

The ALE method was adopted in the finite element context [6, 31]. The mixed Eulerian-

Lagrangian method [21] involves the Eulerian set-up with respect to one dimension and the 

Lagrangian one to the other dimension which corresponds to the direction of fluid flow.  
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The code [50] employs an Eulerian mesh for the entire region and Lagrangian meshes for the 

subregions of fluids with nonstationary boundaries approximated by Lagrangian lines. 

These methods can handle a much greater distortion of the material than a Lagrangian method, 

with a higher resolution than that provided by an Eulerian method, because they offer great 

flexibility in moving the computational mesh.  However, the convective terms still pose some 

problems and designing an efficient and effective mesh-moving algorithm for complicated 3D 

problems remains a future task. 

 

2.3.2 Particle-In-Cell Method and Its Variations 
 

In the late 1950's the PIC method was proposed and developed at Los Alamos National 

Laboratory by Harlow [26, 27, 28]. PIC makes use of both Lagrangian and Eulerian descriptions. 

The fluid is discretized as a set of Lagrangian particles that carry material position, mass, and 

species information, but the computational mesh is a uniform Eulerian one.  

 

A computational cycle is divided into two phases:  

 

-The Lagrangian phase:  all the variables, including the mesh coordinates and the particle 

positions, are advanced. This phase updates the quantities by all the processes except 

for advection. 

 

-The Eulerian (remap or rezone) phase: he mesh is mapped back into its original 

configuration, leaving the particles at their new locations. This phase moves the particles 

and accomplishes all of the advective fluxing [30]. 

 

As variations of PIC method, some new methods were proposed:   

 

The marker-and-cell (MAC) method was developed by Harlow and Welch [29, 45] to treat 

incompressible and free surface flows. In this method, particles are used as markers to define 

the location of the free-surface, and the Poisson equation for the pressure is solved to treat the 

fluid incompressibility. The MAC method was the first successful technique for simulating 

incompressible flows [35].  

 

It has to be highlighted that the original version of PIC is not a fully Lagrangian particle method 

because only the material position, mass, and species information is carried by the particles, 

while the remaining quantities are still stored in the computational grid. This transfer of 

information between the particles and the background grid produces a significant numerical 

diffusion.  

 

To reduce the numerical diffusion are two strategies: a second-order accuracy advection scheme 

[49] and fully Lagrangian particle method. A fully lagrangian particle method was developed by 

Brackbill, called FLuid-Implicit-Particle (FLIP) method [9, 10], in which each particle carries all of 

the properties of the fluid, including momentum and energy. The FLIP method preserves the 
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ability of the original PIC to resolve contact discontinuities, but eliminates this major source of 

numerical diffusion. 

 

 

2.3.3 Material Point Method 
 

 
In 1990, Zhen Chen and Buck Schreyer wanted to improve the computational fidelity and 

efficiency of the finite element method (FEM), due to its limitation in the required use of a pin-

hole in the mesh design.  In a seminar Deborah Sulsky presented the advances of the PIC 

method, based on her collaborative research on computational fluid dynamics with the 

scientists at Los Alamos National Laboratory. Since the particle motion in fluid is similar to the 

penetrator’s motion in solid from the viewpoint of hard–soft body interaction. This aspect 

opened a new direction of research and started an interdisciplinary discussion. 

 

In collaboration with Sandia National Laboratories, the team started to combine computational 

fluid dynamics with computational solid dynamics to develop a continuum-based particle 

method with its first journal paper published in 1994 [55], which was later named as the Material 

Point Method (MPM). Over the last two decades, many research teams in the world have further 

developed the MPM and combined the MPM with other numerical methods for multiphase, 

multiphysics, and multiscale simulations to advance SBES. 

 

 

2.4 Meshfree Methods and many prominent features of 
the MPM.  
 

In addition to the evolution of the MPM, different types of meshfree and particle methods for 

improved spatial discretization in different problems have also been proposed and developed in 

the SBES community.  

 

Since all these meshfree and particle methods do not use a rigid mesh connectivity compared 

with the conventional mesh-based methods such as the FEM, they have been applied to many 

problems of current interests (e.g. impact/contact, localization, crack propagation, penetration, 

perforation, fragmentation, ...) 

 

But many of the meshfree methods have a higher computational costs, and the accuracy of some 

meshfree methods is still dependent on the node regularities. 

 

One of the earliest meshfree Lagrange particle methods is the Smoothed particle hydrodynamics 

(SPH). The SPH was first proposed by Lucy [14] and Gingold and Monaghan [32] in 1977 to solve 

astrophysical problems in the 3D open space, and has been extensively studied and extended to 

solid and fluid dynamics problems with large deformations.  

 

Both the SPH and its improved versions have been successfully applied to the hypervelocity 

impact simulations. This method become some of the most popular meshfree methods in this 
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area. But it has a negative point, and it is that it is limited in simulating multiphase interactions 

involving failure evolution. 

 

The SPH basic formulation and features were compared with the ones of MPM through a 

comparative study [12], thhis comparative study showed that the MPM possesses many 

prominent features: 

 

→ The formulation of the MPM is simple and similar to the traditional FEM.  

→ The time consuming neighbor searching, which is compulsory in most meshfree 

methods, is not required in the MPM.  

→ The MPM shape functions exactly satisfy the constant and linear consistency.  

→ The MPM avoids tensile instability that is annoying in the SPH. 

→ The boundary conditions can be applied in the MPM as easily as in the FEM, and the 

contact algorithm can be efficiently implemented whose cost is linear in the number of 

material points involved. Because the same regular computational grid can be used in 

all time steps, the time step keeps constant in the MPM simulations.  Numerical studies 

have showed that the computational efficiency and stability of the three-dimensional 

MPM code are much higher than those of SPH. 

 

2.5 Recent studies on the subject. 
 

The material point method is described as a mesh-based particle method since it uses a 

background mesh and a set of material points moving through this mesh. 

One of the earliest mesh-based particle methods is the particle-in-cell (PIC) method developed 

at Los Alamos National Laboratory by F. H. Harlow for fluid dynamics analyses. In this method, 

material points only carry information on mass and position of the continuum not on velocities 

or stresses. Dissipation of energy is characteristic for this method. A next step was the 

introduction of the fluid-implicit particle method (FLIP) by Brackbill and Ruppel in 1986. In this 

method, not only mass and position but also other properties such as momentum and energy 

are assigned to each particle. It has been shown that this method conserves kinetic energy if a 

consistent mass matrix is used. 

In 1993, the FLIP method was extended by Sulsky for problems in solid mechanics that involve 

history-dependent constitutive models. This new method was called the material point method 

(MPM) by Sulsky and Schreyer. Within MPM, a material is represented by a set of particles where 

each particle represents a subvolume of the material. Since these material points store physical 

properties such as stresses and strains, problems involving history-dependent material 

behaviour can easier be simulated.  

In 2000 a model for granular materials was presented by S.G. Bardenhagen, J.U. Brackbill and 

D.Sulsky [4]. This model describes both the internal deformation of each granule and the 

interactions between grains. It is based on the FLIP-material point and particle-in-cell method 

(PIC) and solves continuum constitutive models for each grain. Interactions between grains are 

calculated with a contact algorithm that forbids interpenetration, but allows separation and 
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sliding and rolling with friction. The goal of this method was not only to allow each grain to 

deform according to continuum constitutive models, but also to describe the interactions 

between grains, including separation, sliding, and rolling. It was used an Eulerian grain-level 

continuum model. Finite difference approximations to the continuum equations were solved on 

an Eulerian mesh. Material interfaces were resolved by Interface tracking. In the development 

was considered that friction between grains is 0. The contact mixture theory was ensuresing the 

proper traction boundary conditions along the boundary. Therefore, it was argued that precise 

modelling of particle deformation was not necessary to obtain a good approximation of the 

mechanical behavior. 

In 2001 was developed an improved contact algorithm for the MPM and the application to stress 

propagation in granular material [5]. There, a new approach to contact was implemented using 

the MPM for solid mechanics. Bardenhagen, Brackbill and Sulsky described two improvements 

to the algorithm: include the normal traction in the contact logic to more appropriately 

determine the free separation criterion, and provide a numerical stability by scaling the contact 

impulse when the information of the computational grid is suspicious. This new approach takes 

advantage of MPM which tracks Lagrangian particle motion through an Eulerian grid. An 

essential modification to the physics of the algorithm is described, as well as a modification for 

numerical stability. 

Lagrangian bodies are discretized into material points, which carry all information required to 

specify the current state and advance the solution. This information includes constitutive 

parameters (such as moduli and internal variables), stress, strain, velocity  and temperature. The 

governing equations are solved on the grid, providing a computational saving and as well as 

regular, structured grid on which to apply solution techniques. Quantities are interpolated 

between the mesh and the material points such the total mass and momentum are conserved. 

Conservation of mass is satisfied implicitly in MPM. Material points are assigned fixed masses 

during the initial discretization. Conservation of momentum is solved on the grid and changes 

are interpolated to material points such that the change in momentum is the same on the grid 

and on the material points. Contact is modeled on the computational grid.  With this analysis 

was shown that MPM provides a convenient framework for the implementation of contact 

between deformable bodies. The contact calculations were computationally efficient, 

performed on the computational grid body by body, without requiring a search to identify 

neighbors.  

 

A potential numerical difficulty associated with unfortunate registration of particle information 

on the computational grid had been eliminated by scaling which retains both the efficient 

properties of the algorithm, and conservation of momentum during contact.  As future work 

they consider focusing on obtaining better measurements of the parameters, comparing 

simulation to experiment quantitatively, and simulating more complex assemblages. 

 

A little later, in 2002 Zhen Chen presented "An evaluation of the material point method" [13] , 

in which he made a detailed discussion on the treatments of boundary conditions and shock 

wave problems. Performed a direct inspection of the two-dimensional MPM code. A one-

dimensional MPM code was programmed to solve one-dimensional wave and impact problems, 

with linear elasticity and elastoplasticity models.  The advantages and disadvantages of MPM 
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were investigated compared to mesh-free methods. In addition, future research directions were 

discussed to better simulate complex physical problems such as impact / contact, location, crack 

propagation and interactions between different material phases, among others.  

 

Z. Chen concludes that the key difference among different spatial discretization methods is how 

the gradient and divergence terms are calculated, meshless methods do not use a rigid mesh 

connectivity as compared with the FEM, FDM and BEM, the interpolation in the moving domain 

of influence is the common feature of the meshless methods.   

 

Although a background mesh is used to calculate the gradient and divergence terms, the MPM 

is still based on the interpolation in the moving domain of influence, namely, the spatial 

discretization is continuously adjusted as a body deforms. Thus, the MPM can be considered as 

one of the meshless methods, understanding meshless in the sense that a rigid mesh 

connectivity is not used in spatial discretization. In comparison with the other meshless 

methods, the MPM appears to be less complex with a cost factor of at most twice that associated 

with the use of corresponding finite elements. Due to the mapping from material points to cell 

nodes and the mapping from cell nodes to material points involved in each time step, the MPM 

can simulate localized large deformations without mesh tangling. The use of the same set of 

continuous shape functions in both mappings results in a natural no-slip contact/impact scheme 

so that no inter-penetration would occur. 

 

In 2003 J.A. Nairn describe a CRAMP algorithm which extends MPM to naturally handle explicit 

cracks [48]. Conventional MPM enforces velocity and displacement continuity through its 

background grid. This approach is incompatible with cracks which are displacement and velocity 

discontinuities. By allowing multiple velocity fields at special nodes near cracks, the new method 

(CRAMP) can model cracks. When the fracture code is written efficiently, especially the new line 

crossing section, the code achieves crack calculations with very letter extra cost in calculation 

time.  

 

It is shown that CRAMP gets the correct MPM solutions and comparisons to both FEA and 

experiments show that it gets good results for crack problems. The method to detect crack 

contact is robust for internal cracks but may need some adjustment for problems involving edge 

cracks. The important problem that remains is the calculation of crack tip or fracture parameters 

followed by prediction of crack propagation. This problem will be the subject of future work and 

also an extension to 3D. 

 

In 2003 was developed and implemented an implicit integration strategy for use with the 

material point method (MPM) [24]. An incremental-iterative solution strategy was developed 

around Newton’s method to solve the equations of motion with Newmark integration to update 

the kinematic variables.  

The implicit MPM solutions were compared directly with those obtained using an explicit MPM 

code and implicit finite element (FE) code. The accuracy of the implicit solution was superior to 

the explicit MPM when compared to validated FE solutions, and by definition the implicit time 

integration is unconditionally stable. Similarities between the assembly of the implicit MPM 
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equations and those of the FE method were identified and should allow further algorithmic 

improvement. The implicit FEM will likely continue to be faster even after optimization as the 

IMPM (and EMPM) requires several additional interpolation steps between the particles and the 

computational grid that are not necessary with implicit FEM. 

In 2004 . Z. Wiezckowski  developed an analysis of the material point method in large strain 

engineering problems [62]. The method was enriched by adding the more accurate procedure 

evaluating the volume change of the analysed body which was making some problems, e.g. silo 

filling, possible to solve.   

Some problems like granular flow around a silo insert and the problem of self-contact of granular 

material could be solved in relatively easy way by the use of the material point method in 

contrast to the standard finite element method. The material point method looked very 

promising as a tool of analysis of other large strain problems like motion of avalanches and 

simulation of earth-moving processes. However, the method was time consuming and Z. 

Wiezckowski belived that the use of parallel computation technique could reduce the time 

consumption of the method. 

 

In 2006 it has been realized an analisis of the discrete and continuum modelling of silo discharge 

[15]. The Discrete Element Method (DEM) is used for discrete modelling and the Material-Point 

Method (MPM) for continuum modelling. Standard finite element methods have difficulty in 

modelling the complete discharge process unless remeshing is employed. It was shown with 

some experiments that the use of meshless methods was overcoming this problem.  DEM and 

MPM simulations were performed and the results of flow patterns and flow rates compared to 

experiments. It was concluded that both DEM and MPM can successfully model the total 

discharge process in terms of flow patterns and flow rates.  A time study shown that if a relatively 

small number of particles were used in a DEM model, the computing times were comparable to 

that of MPM. 

 

More later, in 2013 Zhen Chen studied the Combination of the MPM with Other Methods for 

Multi-physics and/or Multi-scale Simulation. He thought that the MPM could be combined with 

other numerical methods for multi-physics and multi-scale simulations in different cases with 

the least computational costs.  

 

MD simulations were performed to predict coupled rate and size effects at nanoscale, which 

provide the useful information for formulating an effective multi-scale equation of state.  

 

A multi-scale simulation procedure was developed, via hierarchical approach from MD to 

CD/rDPD and concurrent one between CD/rDPD and MPM, for modeling and simulating 

energetic composite responses, in combination with in-lab experiments.  

 

In 2013, in the 18th Conference for Soil Mechanics and Geotechnical Engineering (Paris) was 

presented the Material Point Method as a promising computational tool in Geotechnics [2]. The 

dynamic formulation of the MPM was exposed and the capability of the method was 

demonstrated to analyze in a unified mathematical framework the static-dynamic transition of 

a slope failure. 
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In 2015 Ming Gong developed his doctoral thesis on Improving the MPM [23]. The attention of 

his work was focused on the convergence properties of MPM in terms of order of accuracy and 

stability. In his thesis was shown numerically that MPM was losing convergence and was 

suffering cell crossing errors for large deformation problems.  Two remedies were proposed: the 

generalized interpolation material point method (GIMP) and the convected particle domain 

interpolation method (CPDI). Both GIMP and CPDI try to improve MPM by altering the geometry 

of the evolved material-point domain. Such changes lead to improvement of the quadrature 

part of the MPM algorithm.  In this sense there is shown a different approach to improving MPM 

by combining ideas from meshfree particle methods and finite element methods. Such an 

approach provides a general framework for improving MPM. 

 

One year later, R. Tielen presented a thesis of a high order material point method [60].  In MPM, 

the integrals resulting from the variational formulation used to solve the background grid are 

numerically approximated by using the material points as integration points. When the material 

points become unevenly distributed inside the mesh, some errors were generated because the 

quality of the numerical quadrature rule is not accurate enough.  In this thesis was shown a way 

to improve the quality of this numerical quadrature rule when this situation occurs.  In MPM is 

a common practice to adopt piecewise linear basis functions to approximate the solution of the 

variational form. A problem arises from the discontinuity of the gradients of these basis 

functions at element boundaries. Such grid crossing errors significantly affect the quality of the 

numerical solution and may lead to a lack of spatial convergence. As a remedy to these problems 

in this thesis was presented a version of the MPM making use of quadratic B-spline basis 

functions is presented. The C0-continuity of their gradients eliminates grid crossing errors. This 

in turn results in lower computational effort. To improve spatial convergence, the use of a 

consistent mass matrix instead of a lumped one commonly used with the MPM is suggested to 

project velocities from material points to the grid more accurately. 

 

Also in 2016, J. Tao, Y. Zheng, Z. Chen and H. Zhang investigated a generalized interpolation 

material point method for coupled thermo-mechanical processes, GIMP [59]. This method born 

for simulating coupled thermo-mechanical processes is developed based on the weak 

formulations of both conservation of momentum and conservation of energy. To imrpove the 

accuracy of GIMP was proposed a multi-grid approach in dealing with the Dirichlet boundary 

conditions in thermal analyses. It was shown that the proposed procedure might provide a 

robust spatial-discretization tool for multi-physics simulations. 

In 2016 was presented a comparison of a displacement-based and a stabilized mixed 

formulation within the framework of the Material Point Method [47].  A standard Galerkin 

displacement-based formulation was compared with a stabilized mixed formulation, where 

displacement and mean stress were considered as primary variables, within the framework of 

an implicit Material Point Method (MPM). Many works in the previous literature had 

demonstrated that, under the assumption of elastic and plastic near incompressibility or 

incompressibility, a displacement-based formulation was not able to evaluate in the correct 

way the deviatoric strain field, producing the volumetric locking of the solid under analysis 

and leading to non-physical results of the displacement and stress fields. In the study, a 
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stabilized mixed formulation for solid mechanics problem was implemented in a MPM code 

and validated throughout classical solid and soil mechanics benchmark examples. It was 

demonstrated that the mixed formulation was able to evaluate more accurate results not only 

under near incompressible, but also under compressible conditions. 

On January of 2017.  Y. G. Motlagh and W. M.  Coombs propose an Implicit high order MPM [37].   

As we have said before despite the MPM being promoted for its ability to solve large 

deformation problems the method suffers from instabilities when material points cross between 

elements. These instabilities are due to the lack of smoothness of the grid basis functions used 

for mapping information between the material points and the background grid. In this paper as 

R. Tielen, they performed a novel high-order MPM in order to eliminate the cell-crossing 

instability and improve the accuracy of the MPM method. 

In 2017, S. Kularathna and K. Soga developed a projection method in material point method for 

modelling incompressible materials [8]. They presented an implicit MPM formulation based on 

Chorin’s projection method for solving incompressible material problems. And they shown the 

capability of the implicit MPM formulation to solve fully incompressible material problems. 

Specially, the implicit formulation allows a large time step compared to the significantly small 

time step in explicit MPM formulation at near incompressible conditions. 

Also in 2017, Y. Bing, M. Cortis, T. Charlton, W. Coombs and C. Augarde investigated a boundary 

representation and boundary condition imposition in the material point method [36]. In their 

study a B-spline based boundary approximation method is discussed. A local cubic interpolation 

technique is employed for boundary representation. Tractions are applied through direct 

integration over the B-spline boundary and displacements are prescribed via a B-spline based 

implicit boundary method. 

Later in the same year, E. G. Kakouris, S. P. Triantafyllou present a phase‐field material point 

method for brittle fracture [14]. The material point method for the analysis of deformable bodies 

is revisited and originally upgraded to simulate crack propagation in brittle media. In this setting, 

phase‐field modelling is introduced to resolve the crack path geometry. Following a particle in 

cell approach, the coupled continuum/phase‐field governing equations are defined at a set of 

material points and interpolated at the nodal points of an Eulerian, ie, non‐evolving, mesh. The 

accuracy of the simulated crack path is thus decoupled from the quality of the underlying finite 

element mesh and relieved from corresponding mesh‐distortion errors. A staggered incremental 

procedure is implemented for the solution of the discrete coupled governing equations of the 

phase‐field brittle fracture problem. The proposed method is verified through a series of 

benchmark tests while comparisons are made between the proposed scheme, the 

corresponding finite element implementation, and experimental results. 

Also Z. P. Chen, X. Zhang, X. M. Qiu and Y. Liu developed a frictional contact algorithm for implicit 

material point method [32]. The explicit material point method (MPM) works successfully in 

modeling high frequency problems, but it is very computationally expensive in simulating low 

frequency with small time steps or quasi-static problems.  

Thus, they have developed an implicit MPM for modeling low frequency problems. Recently, a 

few attempts were undertaken to investigate the contact problems using the implicit MPM but 

the accuracy was dissatisfactory.  
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An augmented Lagrange formulation for the frictional inequality constraints is introduced. A 

discretization of the Lagrange multiplier field based on the background grid is proposed to 

establish the implicit MPM framework with the contact algorithm. To reduce the complexity of 

the solution, the Uzawa algorithm is employed to decouple the unknown variables and the 

Lagrange multipliers. Finally, the resulting sequent nonlinear equations are solved by the 

Newton method, in which the tangential matrix is assembled explicitly. By using the compressed 

sparse row (CSR) technique, the total storage of the matrix can be greatly reduced. Numerical 

studies show that the computational efficiency and accuracy of the implicit MPM with the 

proposed contact algorithm are much higher than the explicit MPM. 

In 2017, CIMNE compared the material point method and the galerkin meshfree method for the 

simulation of cohesive-frictional materials [33]. The simulation of large deformation problems, 

involving complex history-dependent constitutive laws, is of paramount importance in several 

engineering fields.  

In the study a Material Point Method (MPM) and a Galerkin Meshfree Method (GMM) were 

presnetd and verified against classical benchmarks in solid mechanics. 

The aim was to demonstrate the good behavior of the methods in the simulation of cohesive-

frictional materials, both in static and dynamic regimes and in problems dealing with large 

deformations. The techniques proposed in this work were based on implicit approaches, which 

can also be easily adapted to the simulation of static cases.  

The two methods were presented so as to highlight the similarities to rather than the differences 

from “standard” Updated Lagrangian (UL) approaches commonly employed by the Finite 

Elements (FE) community.  

Although both methods were able to give a good prediction, it was observed that, under very 

large deformation of the medium, GMM lacks robustness due to its meshfree nature, which 

makes the definition of the meshless shape functions more difficult and expensive than in MPM. 

On the other hand, the mesh-based MPM was demonstrated to be more robust and reliable for 

extremely large deformation cases. 

The objective in CIMNE is to get an implicit code because although they are more complicated, 

more expensive, they are more accurate, and stability does not depend on the wave propagation 

speed in the media. An implicit MPM can solve from static and quasi static to dynamic and 

gravity driven problems. This is more robust and more “FEM like”.  

The objective is to develop a numerical tool in the continuum mechanics framework for the 

simulation of granular flows at the macroscale focusing on dry granular material in static and 

flowing regime. This tool has to be able to handle large deformation and displacement and to 

handle history dependent material, With good conservation properties, parallelizable and 

modular (multiphase, multimaterial…) 

Last year I. Iaconeta, A. Larese, R. Rossi and E. Oñate developed an implicit material point 

method applied to granular flows [34]. The main objective of this work was the development of 

a variational implicit Material Point Method (MPM), implemented in the open source Kratos 

Multiphysics framework. The ability of the MPM technique to solve large displacement and large 
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deformation problems is widely recognised and its use ranges over many problems in industrial 

and civil engineering. 

In the current work the continuum based implicit MPM is applied to engineering applications, 

where granular material flow is involved. 

For the resolution of the length and time scale of these particular problems, both continuum 

and discrete models are typically used. Even if discrete techniques predict more feasible results, 

nowadays, their use is limited to the investigation of element tests of particles, or to the 

simulation of reduced systems, not allowing to make important decisions in the analysis and 

design of granular processes.  

During this study, some advantages of MPM over discrete methods were tested, such as, the 

ability to simulate granular flow at the large scale with acceptable computational cost and the 

capability to get information of stress and strain state in a more straightforward way. 

This year a soil-structure interaction simulation of landslides impacting a structure using an 

implicit material point method is presented by B. Chandra, A. Larese, I. Iaconeta, R. Rossi and R.  

Wüchner [12].  A soil-structure interaction simulation based on the implicit material point 

method (MPM) has been implemented within the Kratos Multiphysics framework for the 

objective of predicting structural deformation and, furthermore, structural failure caused by 

environmental flow problems such as landslides. In the current study, the soil is modeled using 

a non-associated Mohr-Coulomb-based elastoplastic law, while the structure is modeled as 

elastic and Neo-Hookean hyperelastic materials.  

In the numerical tests conducted, the equivalent stress and displacement measured on both 

rigid and flexible structures show a good qualitative agreement. In the future works, a more 

adequate consideration of the soil and structural model will be investigated before conducting 

a real-scale landslide simulation.
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3. Methodology 
 
In this chapter a short overview of continuum mechanics theory is provided as 

required in this thesis. For a detailed treatment, the reader is referred to [15].  At 

the beginning a description of the Eulerian and Lagrangian frame of reference used 

to describe the motion of a continuum is presented. After that, several definitions 

and the governing equations are introduced.  

 

3.1 Lagrangian vs. Eulerian 
 

As it is said in the introduction different frames of reference can be adopted to 

observe the motion of a continuum. In the Eulerian frame of reference, a control 

volume is considered with a fixed position in time. Material is able to move in and 

out of the control volume. Conservation equations for mass and momentum in 

describe the inflow and outflow of both mass and momentum into and out of the 

control volume which must be equal to the change of mass and momentum inside 

the control volume. 

 

In the Lagrangian frame of reference, a control volume is followed as it moves with 

time. The control volume always contains the same set of material and can deform 

in time. Conservation equations for mass and momentum are derived by using the 

fact that both mass and momentum of this control volume remain constant. 

 

The two frames of reference are illustrated in Figure 1. Note that in the Eulerian 

frame of reference, material can move in and out of the control volume. Therefore 

the ’walls’ of the control volume are permeable. In a Lagrangian frame of reference, 

this is not the case. If the control volumes are assumed to be infinitely small, this 

leads to conservation equations in differential form. In this thesis the Lagrangian 

frame of reference is considered. 

 
Figure 1: The Lagrangian (grey) and Eulerian (blue) approach illustrated [59]. 

3.2 Motion and Kinematics  
 

Consider the deformation of a continuum with initial domain Ω0 at time t = 0 s. The configuration 

Ωt represents the state of the continuum after deformation at time t and will be referred to as 
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the current configuration. The movement of a material point at initial position X ϵ Ω0 to the 

position x ϵ Ωt can be written as: 

𝒙 = 𝒙(𝑿, 𝑡)                                                                                      (1) 

Figure2 illustrates the initial and deformed configuration of a continuum for the 2D 

case. The function x(X, t ) has a unique inverse denoted by X(x, t ) which gives the 

initial position of a point situated at position x at time t . The displacement u(X, t ) at 

time t of a point intially located at position X is then defined by: 

 

𝒖(𝑿, 𝒕) = 𝒙(𝑿, 𝒕) − 𝑿(𝒙, 𝒕)                                                                         (𝟐) 

 

Velocities and accelerations can be obtained from displacements by taking the total 

derivative with respect to t : 

𝒗(𝑿, 𝒕) =
𝒅𝒖

𝒅𝒕
(𝑿, 𝒕)                                                                                  (𝟑) 

𝒂(𝑿, 𝒕) =
𝒅𝒗

𝒅𝒕
(𝑿, 𝒕)                                                                                  (𝟒) 

 

In the Eulerian description, the material derivative of a quantity F(x, t) can be obtained by using 

the chain rule : 

 

𝐷𝐹(𝑥, 𝑡)

𝐷𝑡
=

𝜕𝐹(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝐹(𝑥, 𝑡)

𝜕𝑥
·
𝜕𝑥(𝑋, 𝑡)

𝜕𝑡
=

𝜕𝐹(𝑥, 𝑡)

𝜕𝑡
+ 𝑣 · 𝛻𝐹(𝑥, 𝑡) 

 

The first term on the right-hand side of equation is the local derivative or Eulerian derivative, 

which yields the local rate of change of the quantity occurring at position x. The second term of 

the right-hand side is the convective derivative that expresses the rate of change of the quantity 

contributed by the particle motion due to the nonuniformity of the quantity in space. The 

material derivative establishes a link between the Eulerian description and Lagrangian one of 

continuum deformation. 

 

By following the motion of material points, the Lagrangian description can readily track material 

interfaces and implement history-dependent material models so that it is commonly used in 

solid mechanics.  
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Figure 2: Initial and deformed configurations of a continuum [60]. 

The strain tensor ε in incremental form is defined in the following way: 

𝜕𝜺(𝑖,𝑗)

𝜕𝑡
=

1

2
(
𝜕𝐯𝑖

𝜕𝐱𝑗
+

𝜕𝐯𝑗

𝜕𝐱𝑖
)                                                           (6) 

where i, j ϵ {1,2,3}. It defines strain increments with respect to the undeformed state. 

 

3.3 Governing Equations  
Consider the body B, which occupies a region Ω of the three-dimensional Euclidean space Ɛ with 

a regular boundary ∂Ω in its reference configuration. The deformation of this body, B is 

described by a one-to-one mapping: 

𝜑: Ω → Ɛ                                                                                   (7) 

which maps each point 𝒑 of the body B  into a spatial point x: 

 

𝑥 = 𝜑(𝒑)                                                                                 (8) 

This equation represents the location of 𝒑 in the deformed configuration of the body, B. The 

region of Ɛ occupied by B in its deformed configuration is denoted as 𝜑(Ω). 

 

This problem is governed by mass and linear momentum balance equations, shown below: 

𝐷𝜌

𝐷𝑡
+ 𝜌𝛻 · 𝑣 = 0      𝑖𝑛     𝜑(Ω)                                                                (9𝑎) 

𝜌𝑎 − 𝛻 · 𝜎 = 𝜌𝑏     𝑖𝑛     𝜑(Ω)                                                                 (9𝑏) 

 

where ρ is the mass density, 𝑎  is the acceleration, 𝑣 is the velocity, 𝜎 is the symmetric Cauchy 

stress tensor and 𝑏 is the body force.  

By definition, acceleration and velocity are the material derivatives of the velocity, 𝑣, and the 

displacement, 𝑢, respectively. If it is the case of a compressible material, the conservation of 

mass is fulfilled by: 

𝜌 =
𝜌0

det (𝑭)
                                                                                     (10) 

 

Where 𝜌0 is the density in the undeformed configuration and det (𝑭) is the determinant of the 

total deformation gradient 𝑭 = 𝑑𝑥/𝑑X  with 𝑥 and X representing respectively the current and 

initial position.  

 

The previous equation (10) holds at any point and at the sampling points where the equation is 

written, e.g., the material points. As thermal effects are not considered in this work the energy 

balance is considered fulfilled. 

 

The balance equations are solved numerically in a three-dimensional region Ω ⊆ Ɍ3, in the time 

range t ϵ [0, T], given the following boundary conditions on the Dirichlet (𝜑(∂Ω𝐷))and Neumann 

boundaries (𝜑(∂Ω𝑁)), respectively: 

𝑢 = �̅�      𝑜𝑛     𝜑(∂Ω𝐷)                                                                           (11𝑎) 
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𝜎 · 𝑛 = 𝑡̅      𝑜𝑛     𝜑(∂Ω𝑁)                                                                           (11𝑏) 

 

where n is the unit outward normal. 

 

In spite of everything is needed a constitutive equation for evaluate the stress-strain relation 

and to fully define the boundary value problem. 

 

The stress tensor, σ takes the following form in 3D: 

𝝈 = [

𝜎(1,1) 𝜎(1,2) 𝜎(1,3)

𝜎(2,1) 𝜎(2,2) 𝜎(2,3)

𝜎(3,1) 𝜎(3,2) 𝜎(3,3)

] 

The nine components of the stress tensor define the stresses acting on a single point completely. 

Figure 3 denotes the different components of the stress tensor. 

 

3.4 Constitutive relation  

3.4.1 Damage Models: The classical uniaxial damage theory 
 

Within the classical approach a very simple measure of the damage amplitude in a given plane 

is obtained by measuring the area of the intersection of all defects with that plane. For example, 

based on Figure 3, it   is readily observed that the effective area of the sample subjected to 

uniaxial tension is S − SD. SD represents the defects trace in the considered plane. The following 

positive scalar ω is then commonly considered as a damage  

𝜔 =
𝑆𝐷

𝑆
                                                                (12) 

variable in the above 1D experiment: 

 

Figure 3: Cross section of damage material [39]. 

For the undamaged material, SD = 0 and then ω = 0. The damage being related to the growth of 

defects, ω may grow from 0 to a critical value often taken in literature equal to 1 which 

corresponds to an entirely damaged material (effective area S − SD reduced to 0). Instead of the 

standard uniaxial stress 𝜎 =
𝐹

𝑆
, it is convenient to introduce for the damaged material the 

effective stress: 

�̃� =
𝐹

𝑆 − 𝑆𝐷
=

𝐹

𝑆(1 −
𝑆𝐷
𝑆 )

=
𝜎

1 − 𝜔
                                                                (13) 
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in which use has been made of (12). Associated to a strain equivalence principle, the 1D effective 

stress �̃� is related to the elastic strain of the material by the uniaxial Hooke’s law : 

�̃� = 𝐸𝜀                                                                                  (14) 

 

where E is the elastic modulus of the undamaged material. It follows that the constitutive law 

for the standard stress σ takes the form: 

𝜎 = (1 − 𝜔)𝐸𝜀                                                                         (15) 

 

For the uniaxial model formulation, equation (15) must be completed by the damage evolution 

law which can be considered in the form of a dependence between the damage variable ω and 

the applied load: 

𝜔 = 𝑔(𝜀)                                                                             (16) 

 

A priori, the function g can be identified from uniaxial tension test. It must be noted that the 

relation between ω and ε is valid only in the monotonous loading regime. In an unloading and 

reloading phase, the damage variable kept its maximum value reached before. A classical way 

to describe in a unified manner these different loading regimes consists in introducing a variable 

κ which characterizes the maximum level of strain reached in the material before the current 

time t : κ(t) = max ε(τ ) for τ ≤ t. The damage evolution relation (16) can then be recast in the 

form: 

𝜔 = 𝑔(𝜅)                                                                                     (17) 

 

 

which remains valid for any kind of loading regime. The complete elastic response of the 

damaged material is schematized in Figure 4. Instead of considering the function g, it is usual to 

introduce a limit state function: 

𝑓(𝜀, 𝜅) = 𝜀 − 𝜅                                                                              (18) 

 

 
Figure 4: Elastic response of a damage material during loading-unloading [39]. 

Equation (18) is completed by the classical Kuhn-Tucker condition: 

𝑓 ≤ 0; �̇� ≥ 0; �̇�𝑓 = 0                                                                         (19) 

 

The condition f ≤ 0 indicates that ε can never be greater than κ, while the second condition 

means that κ cannot decrease. Besides, the second condition implies that κ can increase only if 
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the current value of the strain is equal to κ. In summary, the basic elements of the above uniaxial 

damage theory are as follows: 

 

-the stress-strain law: 𝜎 = 𝐸𝑠𝜀 = (1 − 𝜔)𝐸𝜀; this relation appears as a classical Hooke’s law 

with a secant modulus 𝐸𝑠 = (1 − 𝜔)𝐸  associated to the damaged material. A simple 

determination of the damage variable is then: 𝐷 = 1 −
𝐸𝑠

𝐸
. It requires however a careful and 

accurate measure the elastic strain, a damage evolution law which can be put in the form 𝜔 =

𝑔(𝜅) or a limit state function f; a first approach can consist to choose 𝑓(𝜀, 𝜅) = 𝜀 − 𝜅. 

 

3.4.2 Damage models 

3.4.2.1 A simple isotropic damage theory 
 
A straightforward 3D extension of the previous uniaxial theory is given by J. Lemaitre [38] 3D 

elastic damage model. In this model, based on the various concepts presented in section 3.4.1 , 

it is postulated that the stiffness D of the damaged material reads: 

𝔻 = (1 − 𝜔)𝔻0                                                                   (20) 

 

 

in which D0 denotes the elastic stiffness of the undamaged material and ω is defined by (1). It is 

readily seen that the generalization of the uniaxial stress-strain constitutive law (15) takes the 

form: 

𝜎 == (1 − 𝜔)𝔻0: 𝜀                                                           (21) 

 

and the corresponding effective stress tensor �̃� is given by  

𝜎 == (1 − 𝜔)𝜎                                                               (22) 

 

In the present three-dimensional formulation of the isotropic damage model, only the Young 

modulus is affected, the Poisson ratio remains constant during the damage process. This is 

clearly a shortcoming of this simple model and will be corrected in section 3. 

 

Let us come now to the 3D loading function f and to the damage evolution. F defines in the 3D 

strain space the domain of elasticity whose boundary corresponds to the strain states at which 

the damage will evolve. An immediate generalization of (18) reads: 

𝑓 (𝜀, 𝜅) = 𝜀𝑒𝑞 (𝜀) − 𝜅                                                        (23) 

in which the equivalent strain 𝜀𝑒𝑞 is a norm of ε that needs to be chosen. A first simple choice 

for this can be: 

𝜀𝑒𝑞 = √𝜀: 𝜀                                                                    (24) 

Another choice can be the elastic energy (function of the strain): 𝜀𝑒𝑞 = √𝜀:𝔻0: 𝜀     

3.4.3.2  An isotropic damage modelling of concrete materials 
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The two norms of ε introduced before for the definitions of εeq leads to a symmetric elastic 

domain in tension and compression. However, several materials (rocks, concrete, ceramics) 

often show a dissymetric damage surface, the yield value in compression being several times 

the value in tension. To overcome these limitations, [44] introduced two damage parameters, 

ωt associated to a tension mechanism and ωc devoted to the damage under compression. These 

two parameters, ωt and ωc, are evaluated from two evolution functions, gt and gc, which are 

assumed to depend both on a unique definition of the equivalent strain : 

 
 

3.4.3.3 Background 
The influence of microcracking due to external loads is introduced via a single scalar damage 

variable 𝑑 ranging from 0 for the undamaged material to 1 for completely damaged material. 

The stress-strain relation reads: 

𝜀𝑖𝑗 =
1 + 𝒱0

𝐸0(1 − 𝑑)
𝜎𝑖𝑗 −

𝒱0

𝐸0(1 − 𝑑)
[𝜎𝑘𝑘𝛿𝑖𝑗]                                                    (25) 

 

 

E0 and v0 are the Young’s modulus and the Poisson’s ratio of the undamaged material; 𝜀𝑖𝑗  and 

𝜎𝑖𝑗 are the strain and stress components, and 𝛿𝑖𝑗  is the Kronecker symbol. The elastic (i.e., free) 

energy per unit mass of material is 

𝜌𝜓 =
1

2
(1 − 𝑑)𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙

0 𝜀𝑘𝑙                                                                 (26) 

 

where 𝐶𝑖𝑗𝑘𝑙
0  is the stiffness of the undamaged material. This energy is assumed to be the state 

potential. The damage energy release rate is 

𝑌 = −𝜌
𝜕𝜓

𝜕𝑑
=

1

2
𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙

0 𝜀𝑘𝑙                                                           (27)  

 

with the rate of dissipated energy: 

�̇� = −
𝜕𝜌𝜓

𝜕𝑑
�̇�                                                                  (28) 

 

Since the dissipation of energy ought to be positive or zero, the damage rate is constrained to 

the same inequality because the damage energy release rate is always positive. 

 

3.4.3.4 Evolution of damage 
 
The evolution of damage is based on the amount of extension that the material is experiencing 

during the mechanical loading. An equivalent strain is defined as 

𝜀̃ = √∑ (〈𝜀𝑖〉+)2
3

𝑖=1
                                                            (29) 

 

 

where 〈. 〉 + is the Macauley bracket and 𝜀𝑖  are the principal strains. The loading function of 

damage is 
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𝑓(�̃�, 𝜅) = �̃� − 𝜅                                                            (30) 

 

where 𝜅 is the threshold of damage growth. Initially, its value is 𝜅0, which can be related to the 

peak stress  𝑓𝑡 of the material in uniaxial tension: 

𝜅0 =
𝑓𝑡
𝐸0

                                                                     (31) 

 

In the course of loading k assumes the maximum value of the equivalent strain ever reached 

during the loading history. 

 

If 𝑓(�̃�, 𝜅) = 0 𝑎𝑛𝑑  �̇�(�̃�, 𝜅) = 0, 𝑡ℎ𝑒𝑛  

 

      𝑑 = ℎ(𝜅)                                             �̇� = 0 

                             𝑤𝑖𝑡ℎ �̇� ≥ 0, 𝑒𝑙𝑠𝑒                                                                                                                                 (32) 

      𝜅 = �̃�                                                    �̇� = 0 

 

The function ℎ(𝜅)  is detailed as follows: in order to capture the differences of mechanical 

responses of the material in tension and in compression, the damage variable is split into two 

parts: 

 

𝑑 = 𝛼𝑡𝑑𝑡 + 𝛼𝑐𝑑𝑐                                                                     (33) 

 

where 𝑑𝑡 and 𝑑𝑐 are the damage variables in tension and compression, respectively. They are 

combined with the weighting coefficients 𝛼𝑡 and 𝛼𝑐, defined as functions of the principal values 

of the strains 𝜀𝑖𝑗
𝑡  and 𝜀𝑖𝑗

𝑐  due to positive and negative stresses: 

 

𝜀𝑖𝑗
𝑡 = (1 − 𝑑)𝐶𝑖𝑗𝑘𝑙

−1 𝜎𝑘𝑙
𝑡 ,         𝜀𝑖𝑗

𝑐 = (1 − 𝑑)𝐶𝑖𝑗𝑘𝑙
−1 𝜎𝑘𝑙

𝑐                                                (34) 

 

𝛼𝑡 = ∑(
〈𝜀𝑖

𝑡〉〈𝜀𝑖〉

�̃�2 )

𝛽3

𝐼=1

,    𝛼𝑐 = ∑(
〈𝜀𝑖

𝑐〉〈𝜀𝑖〉

�̃�2 )

𝛽

                                              (35)

3

𝐼=1

 

 

 

 

Note that in these expressions, strains labeled with a single indicia are principal strains. In 

uniaxial tension 𝛼𝑡=1 and 𝛼𝑐 = 0. In uniaxial compression 𝛼𝑐=1 and 𝛼𝑡 = 0. Hence, 𝑑𝑡 and 𝑑𝑐  

can be obtained separately from uniaxial tests. 

 

3.4.4 Mohr Coulomb material model 
 

If the shear stress at a point on any plane within a soil becomes equal to the shear strength, 

failure will occur at that point. The shear strength τf was expressed by Coulomb as a linear 

function with cohesion c, angle of shearing ϕ and normal stress at failure σf. As shear stresses in 
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a soil body can be resisted only by the skeleton of solid particles, this expression should be 

defined in terms of effective stresses as 

𝜏𝑓 = 𝑐′ + 𝜎𝑓
′ tan𝜙′                                                             (36) 

Equation (36) reveals that failure will occur at any point in the soil where a critical combination 

of shear stress and effective normal stress develops. It is important for the interpretation of 

shear strength parameters to know that shear resistance is developed by inter-particle forces. If 

the normal effective stress is zero, then the shearing resistance is zero and the effective cohesion 

would be zero as well. These parameters are merely constants defining a linear relationship 

between shear strength and effective normal stress (Craig, 2004) [16]. 

It is possible to represent states of stress in two dimensions as a plot of shear stress τ against 

the effective normal stress 𝜎′. A stress state can be defined either in a Mohr circle by the major 

principal stress 𝜎1
′ and the minor principal stress 𝜎3

′ , or by a point with coordinates 𝜏 and 𝜎′. In 

2D space, the failure envelope symbolizes the straight or slightly curved line touching the Mohr 

circle or stress points as shown in Figure 5. A stress point or a Mohr circle part that lies above 

the envelope cannot exist. At stress ranges within the yield locus, the soil material is elastic in 

its behaviour.  

 

As a critical combination of shear stress and effective normal stress develops, the stress point 

will coincide with the failure envelope and a perfectly plastic material behaviour is assumed, 

with continuous shearing at constant stress. Once a perfectly plastic state has been reached, the 

material can never return to a fully elastic behaviour without any irrecoverable deformations. 

 

The Mohr-Coulomb failure criterion can be expressed as 

 

𝜎1
′ = 𝜎3

′tan2 (45 +
𝜙′

2
) + 2𝑐′tan (45 +

𝜙′

2
)                                     (37) 

 

and determines what critical combination of effective principal stresses that give rise to a failure 

condition, Craig (2004) [16]. 

 
Figure 5: Mohr-Coulomb failure criterion and envelope [16]. 



Chapter 3 Methodology 
 

 

 - 33 - 

 

3.5 Weak form of the problem  
 

In Section 3.3, has been defined the strong form of the problem. In this part, is going to be 

derived the weak form. If the formulation explained in [65] is followed, it is obtained a 

displacement-based finite element procedure.  

Let the displacement space 𝒱 ϵ [𝐇1 (𝐵) ] 𝑑 be the space of vector functions whose components 

and their first derivatives are square-integrable; the integral form of the problem is: 

∫ (𝛻 · 𝜎) · 𝓌𝑑𝑣 + ∫ 𝜌(𝒃 − 𝒂) · 𝓌𝑑𝑣
𝜑(Ω)

− ∫ (𝜎 · 𝑛 − ℱ)
𝜑(∂Ω𝑁)

· 𝓌𝑑𝑎 = 0,
𝜑(Ω)

              (38) 

∀𝓌 ∈ 𝒱                      

  

where 𝓌  is an arbitrary test function, such 𝓌 = {𝓌 𝜖 𝒱| 𝓌 = 0  𝑜𝑛 𝜑(𝜕Ω𝐷)}, 𝑑𝑣  is the 

differential volume and 𝑑𝑎  the differential boundary surface. By integrating by parts, 

considering the symmetry of the stress tensor and applying the divergence theorem, the 

following expression is obtained: 

∫ 𝜎: (𝛻𝑆𝓌)𝑑𝑣 − ∫ 𝜌(𝑏 − 𝑎) · 𝓌𝑑𝑣 − ∫ 𝑡̅ · 𝓌𝑑𝑎 = 0                            (39)
𝜑(𝜕Ω𝑁)𝜑(Ω)𝜑(Ω)

 

 

Assuming the stress tensor is a function of the current strain only: 

𝜎 = 𝜎(𝜖)                                                                                 (40) 

 

the problem is reduced to find a kinematically-admissible field 𝒖 that satisfies: 

𝐺(𝒖,𝔀) = 0     ∀𝔀 ∈ 𝓥                                                                (41) 

 

where 𝐺 is the virtual work functional defined as: 

 

𝐺(𝑢,𝓌) = ∫ 𝜎: (𝛻𝑆𝓌)𝑑𝑣 − ∫ 𝜌(𝑏 − 𝑎) · 𝓌𝑑𝑣 − ∫ ℱ · 𝓌𝑑𝑎                  (42)
𝜑(𝜕Ω𝑁)𝜑(Ω)𝜑(Ω)

 

 

3.5.1 Linearization of the Spatial Weak Formulation 
 

In this work, we attempt to solve the general Boundary Value Problems (BVP), characterized by 

both geometrical and material non-linearity. When a non-linear BVP is considered, the 

discretisation of the weak form results in a system of non-linear equations; for the solution of 

such a system, a linearization is, therefore, needed. The most used and known technique is 

Newton–Raphson’s iterative procedure, which makes use of directional derivatives to linearize 

the non-linear equations. 

 

The virtual work functional of Equation (42) is linearized with respect to the unknown u, using 

an arbitrary argument 𝑢∗, which is chosen to be the last known equilibrium configuration. 

 

The linearized problem is to find 𝛿𝑢 such that: 
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𝐿(𝛿𝑢,𝓌) ≅ 𝐺(𝑢∗,𝓌) + 𝐷𝐺(𝑢∗,𝓌)[𝛿𝑢] = 0         ∀𝓌 ∈ 𝒱                          (43) 

 

where L is the linearized virtual work function and: 

𝐷𝐺(𝑢∗,𝓌)[𝛿𝑢] =
𝑑

𝑑𝛾
|
𝛾=0

𝐺(𝑢∗ + 𝛿𝑢,𝓌)                                            (44) 

 

is the directional derivative of G at 𝑢∗ in the direction of 𝑑𝒖, given by: 

𝐷𝐺(𝑢∗,𝓌)[𝛿𝑢] =
𝑑

𝑑𝛾
|
𝛾=0

∫ [𝜎(𝜖(𝛾)): (𝛻𝑆𝓌) − 𝜌(𝑏 − 𝑎) · 𝓌]𝑑𝑣
𝜑(Ω)

−
𝑑

𝑑𝛾
|
𝛾=0

∫ ℱ · 𝓌𝑑𝑎         (45)
𝜑(Ω𝑁)

 

 

Under the assumption of conservative external loads, only the terms related to the internal 

and inertial forces are dependent on the deformation. Using the following definitions: 

 

𝜖(𝛾) = 𝛻𝑆(𝑢∗ + 𝛾𝛿𝑢) = 𝜖∗ + 𝛾𝛻𝑆(𝛿𝑢)                                               (46) 

 

Where 𝜖∗ = 𝛻𝑆(𝑢∗) is the strain field at 𝑢∗and 𝑢(𝛾) = 𝑢∗ + 𝛾𝛿𝑢, the directional derivative DG 

(𝑢∗,𝓌)[δ𝑢] reduces to: 

 

𝐷𝐺(𝑢∗,𝓌)[𝛿𝑢]

=
𝑑

𝑑𝛾
|
𝛾=0

∫ [𝜎(𝜖(𝛾)): (𝛻𝑆𝓌) − 𝜌𝑎(𝑢(𝛾)) · 𝓌]𝑑𝑣 =
𝜑(Ω)

𝐷𝐺𝑠𝑡𝑎𝑡𝑖𝑐(𝑢∗,𝓌)[𝛿𝑢]

+ 𝐷𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐(𝑢∗,𝓌)[𝛿𝑢]                                                                                                       (47) 

 

which can be split into a static and dynamic contribution. 

 

Under the assumption of finite strains and adopting an updated Lagrangian kinematic 

framework, the expression of the directional derivative (Equation (47)) should be derived in 

spatial form. 

 

A common way to do that consists of linearizing the material weak form and in doing a push-

forward operation to recover the spatial form [65]. Therefore, the linearization of the weak form 

derived with respect to the initial configuration reads: 

 

𝐷𝐺(𝑢∗,𝓌)[𝛿𝑢] = ∫ 𝛻𝑋𝛿𝑢𝑆 · 𝛻𝑋𝓌𝑑𝑉 +
Ω

∫ [(𝐹𝑇𝛻𝑥
𝑆𝓌𝐹): 𝕔(𝐹𝑇𝛻𝑥

𝑆𝛿𝑢𝐹)]𝑑𝑉
Ω

+ ∫ 𝜌0

𝑑𝑎

𝑑𝑢Ω

· 𝓌[𝛿𝑢]𝑑𝑉                                                                                                          (48) 

 

Where 𝛻𝑋 and 𝛻𝑥 are the material and spatial gradient operator, respectively, S is the second 

Piola-Kirchhoff stress tensor, 𝕔 is the fourth order incremental constitutive tensor and dV is the 

differential volume element in the undeformed configuration. The linearizationof the weak form 
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with respect to the current configuration can be derived by pushing forward the linearization of 

Equation (48). The first term can be directly written in terms of the Kirchhoff 𝜏 = 𝐹𝑆𝐹𝑇as: 

  

𝛻𝑋𝛿𝑢𝑆 · 𝛻𝑋𝓌 = 𝛻𝑋𝛿𝑢𝐹−1𝜏𝐹−1 · 𝛻𝑋𝓌                                                (49) 

 

And using this standard identity 𝛻𝑋𝑎 = 𝛻𝑋𝑎𝐹−1, Equation (17) can be written as 

 

𝛻𝑋𝛿𝑢𝑆 · 𝛻𝑋𝓌 = 𝛻𝑥𝛿𝑢𝜏 · 𝛻𝑥𝓌                                                        (50) 

 

The second integral of Equation (47) can be re-written as: 

 

∫ 𝛻𝑥
𝑆𝓌:𝕔[𝛻𝑥

𝑆𝛿𝑢]
Ω

𝑑𝑉                                                                (51) 

 

adopting the transformation of the fourth order incremental constitutive tensor C in Voigt 

notation [65]: 

�̂�𝑖𝑘𝑙𝑚 = 𝐹𝑖𝐴𝐹𝐼𝐶𝐹𝑚𝐷𝐹𝑘𝐵𝕔𝐴𝐵𝐶𝐷                                                      (52) 

 

where lowercase indexes refer to the incremental constitutive tensor relative to the Kirchhoff 

stress, while uppercase indexes to the incremental constitutive tensor relative to the second 

Piola–Kirchhoff stress. 

 

With these transformations, the linearization of the static contribution at the current 

configuration is: 

𝐷𝐺𝑠𝑡𝑎𝑡𝑖𝑐(𝑢∗,𝓌)[𝛿𝑢] = ∫ 𝛻𝑥𝛿𝑢𝜏 · 𝛻𝑥𝓌 + 𝛻𝑥
𝑆𝓌: �̂�[𝛻𝑥

𝑆𝛿𝑢]𝑑𝑉                        (53)
Ω

 

 

Considering the definition of the determinant of the deformation gradient: 

det(𝐹) = 𝐽 =
𝑑𝑣

𝑑𝑉
                                                                   (54) 

 

the following relations hold 

𝜎 =
1

𝐽
𝜏                                                                          (55) 

�̅̂� =
1

𝐽
�̂�                                                                          (56) 

 

 

where σ and τ are the Cauchy and Kirchhoff stress tensor, respectively, and �̅̂� is the incremental 

constitutive tensor relative to the Cauchy stress. Equation (48) can now be re-written in the 

current configuration as: 

𝐷𝐺(𝑢∗,𝓌)[𝛿𝑢] = ∫ (𝛻𝑥𝛿𝑢𝜎 · 𝛻𝑥𝓌 + 𝛻𝑥
𝑆𝓌 ∶ �̅̂�[𝛻𝑥

𝑆𝛿𝑢] +   𝜌
𝑑𝑎

𝑑𝑢
· 𝓌[𝛿𝑢])  𝑑𝑣 

𝜑(Ω)

             (57) 
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Equation (57) represents the linearization of the spatial weak formulation, also known as the 

updated Lagrangian formulation, since the deformation state 𝑢∗ is continuously updated during 

the non-linear incremental solution procedure, e.g., Newton–Raphson’s method. 

 

3.5.2 Spatial Discretisation 
 

For the sake of clarity, hereinafter, the 𝑝 subscript is used to refer to variables attributed to the 
material points, while the I subscript is used to refer to variables attributed to the computational 
nodes. 
 
Let us assume discretizing the continuum body B by a set of 𝑛𝑝 material points and assigning a 

finite volume of the body Ω𝑝  to each of those material points. Thus, the geometrical 

representation (𝐵ℎ) of B reads: 

ℬ ≈ ℬℎ = ⋃Ω𝑝

𝑛𝑝

𝑝=1

                                                                   (58) 

 

and the integrals of the weak form can be written as: 

 

 

∫ (…)𝑑𝑉 ≈ ∫ (…)𝑑𝑉 = ⋃∫ (…)𝑑Ω𝑝                                      (59)
Ω𝑝

𝑛𝑝

𝑝=1ℬℎℬ

 

Let 𝒱h be a finite element space to approximate 𝒱. The problem is now finding uh ∈ 𝒱h such that: 

𝐷𝐺(𝑢ℎ
∗ ,𝓌ℎ)[𝛿𝑢ℎ] = −𝐺(𝑢ℎ

∗ ,𝓌ℎ),      ∀𝓌ℎ ∈ 𝒱ℎ             (60) 

Or using Equation (57): 

∫ {𝛻𝑥𝛿𝑢ℎ𝜎 · 𝛻𝑥𝓌ℎ + 𝛻𝑆𝓌ℎ: �̅̂�[𝛻𝑆𝛿𝑢ℎ] + 𝜌
𝑑𝑎ℎ

𝑑𝑢ℎ
· 𝓌ℎ[𝛿𝑢ℎ]} 𝑑𝑣

𝜑(Ω)

= −(∫ 𝜎: (𝛻𝑆𝓌ℎ)𝑑𝑣
𝜑(Ω)

− ∫ 𝜌(𝑏 − 𝑎ℎ) · 𝓌ℎ𝑑𝑣 − ∫ ℱ · 𝓌ℎ𝑑𝑎
𝜑(𝜕Ω𝑁)𝜑(Ω)

)              (61) 

 

 

The detailed procedure to obtain the linearization of Equation (60) can be found in [65]. 

The final discretized form can be written as: 

⋃ ∑ ∑ 𝓌1
𝑇

𝑛

𝐾=1

((𝛻𝑥𝑁𝐼)
𝑇𝜎(𝛻𝑥𝑁𝐾)𝐼 + 𝐵𝐼

𝑇𝐷𝐵𝐾 +
𝑁𝐼𝜌𝑁𝐾

𝛽𝛥𝑡2
𝐼)

𝑛

𝐼=1

𝑛𝑝

𝑃=1

𝑉𝑝𝛿𝑢𝐾

= − ⋃ ∑𝓌1
𝑇 (𝐵𝐼𝜎 − 𝜌𝑏𝑁𝐼 + ∑ 𝑁𝐼𝜌𝑁𝐾𝑎𝐾

𝑛

𝐾=1

)

𝑛

𝐼=1

𝑛𝑝

𝑃=1

𝑉𝑝

− ⋃∑𝓌𝐼
𝑇𝑁𝐼ℱ𝐴𝑙                    (62)

𝑛𝑚

𝑙=1

𝑛𝑡

𝑙=1
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where 𝐼 and 𝐾 are the indexes of the finite element’s nodes, 𝛻𝑥𝑁𝐼 is the spatial gradient of the 

shape function evaluated at node 𝐼, 𝐃 is the matrix form of the incremental constitutive tensor  

�̅̂�, 𝑉𝑝 is the volume relative to a single material point, 𝐴𝑙  is the surface and 𝑩I is the deformation 

matrix relative to node 𝐼, expressed here for a 2D problem as: 

𝐵𝐼 =

[
 
 
 
 
 
 
𝜕𝑁𝐼

𝜕𝑥
0

0
𝜕𝑁𝐼

𝜕𝑦
𝜕𝑁𝐼

𝜕𝑦

𝜕𝑁𝐼

𝜕𝑥 ]
 
 
 
 
 
 

                                                                    (63) 

 

The left-hand side of Equation (61) is given by three addends multiplied by the increment of the 

unknowns. The first one is commonly known as the geometric stiffness matrix: 

 

𝐾𝐼𝐾
𝑔𝑒𝑜

= (𝛻𝑥𝑁𝐼)
𝑇𝜎(𝛻𝑥𝑁𝐾)𝐼𝑉𝑃                                                     (64) 

 

While the second term is known as the material stiffness matrix: 

 

𝐾𝐼𝐾
𝑚𝑎𝑡 =    𝐵𝐼

𝑇𝐷𝐵𝐾𝑉𝑝                                                             (65) 

And their sum represents the static contribution to the tangent stiffness matrix: 

 

𝐾𝐼𝐾
𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐾𝐼𝐾

𝑔𝑒𝑜
+ 𝐾𝐼𝐾

𝑚𝑎𝑡                                                       (66) 

The dynamic component is given by 

𝐾𝐼𝐾
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

=
𝑁𝐼𝜌𝑁𝐾

𝛽𝛥𝑡2
𝐼𝑉𝑝                                                         (67) 

 

and its definition depends on the adopted time scheme as explained in Section 3.6. 

Finally, the tangent stiffness matrix is given by: 

 

𝐾𝐼𝐾
𝑡𝑎𝑛 = 𝐾𝐼𝐾

𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐾𝐼𝐾
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

                                                    (68) 

 

And represents the submatrix relative to one node of the discretisation with dimension 

[𝑛𝑑𝑜𝑓 × 𝑛𝑑𝑜𝑓], where 𝑛𝑑𝑜𝑓 is the number of degrees of freedom of a single node. The matrix 

can be considered as the Jacobian matrix of the right-hand side of Equation (61), i.e., the residual 

𝐑𝐈. Equation (61) can be rewritten in compact form as: 

𝐾𝐼𝐾
𝑡𝑎𝑛𝛿𝑢𝐾 = −𝐑𝐈                                                             (69)                                       

3.6 Material Point Method formulation 
 

The material point method is introduced in this section as a numerical method to solve problems 

involving large deformations.  MPM is a particle method that was proposed for the first time by 

Harlow [28] in order to solve fluid flow problems under a large deformation regime and originally 

known by the name of the Particle-In-Cell (PIC) method.  
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Some time later, Sulsky and coworkers presented its extension to solid mechanics problems [55, 

58] As previously commented, most MPM codes use explicit time schemes, which are generally 

better when simulating fast transient problems or impacts at high velocities.  

 

In cases where the driving force is gravity or when the rate of deformation is small, the best 

choice is the use of an implicit time scheme because the stability of the method does not depend 

on the wave propagation speed within the media, which provides the typical time step limitation 

for explicit approaches [61]. We use an implicit MPM. In the development of this work, the 

displacement-based formulation and the time scheme integration of the MPM algorithm are 

equal (equivalent) to those proposed by [23]. 

 
 
 

Figure 3: Shape functions calculation in MPM. The shape functions on the material point pi are evaluated using the FE shape 

function of the element I-J-K [33]. 

 

In general the MPM algorithm is structured in three different phases [58], that are graphically 

represented in Figure 4: 

 

(a) The first phase is the Initialization phase (Figure 4a): At the beginning of the time step, the 

connectivity is defined for each material points, and the initial conditions on the FE grid nodes 

are created by means of a projection of material points’ information obtained at the previous 

time step 𝑡𝑛; 

 

(b) The second phase is the UL-FEM calculation phase (Figure 4b): The local matrix, represented 

by the left-hand-side (𝑙ℎ𝑠) of Equation (61), and the local vector, constituted by the right-hand-

side (𝑟ℎ𝑠)  of Equation (61), are evaluated in the current configuration according to the 

formulation presented in the previous section. The global left-hand-side matrix (𝐿𝐻𝑆) and the 

global right-hand-side vector (RHS) are obtained by assembling the local contributions of each 

material point, and finally, the system is iteratively solved. During the iterative procedure, the 

nodes are allowed to move, according to the nodal solution, and the material points do not 

change their local position within the geometrical element until the solution has reached 

convergence; 
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(c) And the third phase is the Convective phase (Figure 4c): During the third and last phase, the 

nodal information at time tn+1 is interpolated back to the material points. The position of the 

material points is updated and, in order to prevent mesh distortion, the undeformed FE grid is 

recovered. 

 

MPM and the finite element method have many features and characteristics in common [48]. 

Actually, Phase b correspond with the calculation step of a standard non-linear FE code, while 

Phases a and c define the MPM features. 

 

During Phase a, at the beginning of each time step (𝑡𝑛), the degrees of freedom and the variables 

on the nodes of the fixed mesh are defined gathering the information from the material points 

(Figure 4a). 

 

 
Figure 4: MPM phases (a) Initialization phase; (b) Updated Lagrangian FEM phase; (c) Convective phase [33]. 

 

The boundary conditions can be applied in the MPM as easily as in the FEM. In MPM boundary 

conditions (e.g.  prescribed displacement) are imposed to the background grid, whereas the 

external force and initial velocity are applied on the particles. For example, in a 3D problem, 

essential boundary conditions can be applied on the six faces of the 3D background grid (e.g. 

displacement=0 at the bottom), but the forces and velocities must be applied on the material 

particles. 

 

The momentum 𝑞𝑝 and inertia 𝑓𝑝 on the material points, which are defined as functions of mass 

𝑚𝑝, velocity 𝑣𝑝 and acceleration 𝑎𝑝: 
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𝑞𝑝
𝑛 = 𝑣𝑝

𝑛𝑚𝑝                                                                            (70) 

𝑓𝑝
𝑛 = 𝑎𝑝

𝑛𝑚𝑝                                                                            (71) 

 

are projected on the background grid by evaluating in a first step the global values of nodal mass 

𝑚𝐼 momentum 𝑞𝐼and inertia 𝑞𝐼 as described in MPM algorithm. 

 

Once 𝑚𝐼 , 𝑞𝐼  and 𝑓𝐼 are obtained, it is possible to compute the values of nodal velocity and nodal 

acceleration of the previous time step as: 

𝑣𝐼
�̃� =

𝑞𝐼
𝑛

𝑚𝐼
                                                                              (72) 

𝑎𝐼
�̃� =

𝑓𝐼
𝑛

𝑚𝐼
                                                                             (73) 

 

It is worth mentioning that the initial nodal conditions are evaluated at each time step using 

material point information in order to have initial values even on grid elements empty at the 

previous time step (𝑡 𝑛−1 − 𝑡𝑛). 

 
Both Lagrangian techniques presented in this paper make use of a predictor/corrector 

procedure, based on the Newmark integration scheme. 

In MPM, the prediction of the nodal displacement, velocity and acceleration reads: 

𝑖𝑡+1𝛥𝑢𝐼
𝑛+1 = 0.0                                                                        (74) 

𝑖𝑡+1𝑣𝐼
𝑛+1 =

𝜆

𝜁𝛥𝑡
[ 𝑖𝑡+1𝛥𝑢𝐼

𝑛+1] − (
𝜆

𝜁
− 1)𝑣𝐼

�̃� −
𝛥𝑡

2
(
𝜆

𝜁
− 2) 𝑎𝐼

�̃�                             (75) 

𝑖𝑡+1𝑎𝐼
𝑛+1 =

1

𝜁𝛥𝑡2 [ 𝑖𝑡+1𝛥𝑢𝐼
𝑛+1] −

1

𝜁𝛥𝑡
𝑣𝐼

�̃� − (
1

2𝜁
− 1) 𝑎𝐼

�̃�                              (76) 

where the upper-left side index it indicates the iteration counter, while the upper-right index n 

the time step. l and z are Newmark’s coefficients equal to 0.5 and 0.25, respectively. 

 

Once the nodal velocity and acceleration are predicted (Equations (73)–(75)), the system of 

linearized governing equations is formulated, according to Section 3.5, and the local matrix 𝑲𝑡𝑎𝑛 

and the residual 𝑹𝑰  are evaluated and assembled according to Equations (61) and (68), 

respectively (Phase b, Figure 4b). 

 

The solution in terms of increment of nodal displacement is found iteratively solving the 

residual-based system of Equation (68). Once the solution 𝑖𝑡+1𝛿𝑢𝐼
𝑛+1 is obtained, a correction 

of the nodal increment of displacement is performed: 

 
𝑖𝑡+1𝛥𝑢𝐼

𝑛+1 = 𝑖𝑡𝛥𝑢𝐼
𝑛+1 + 𝑖𝑡+1𝛿𝑢𝐼

𝑛+1                                               (77) 

 

Velocity and acceleration are corrected according to Equations (74) and (75), respectively. 

 

This procedure has to be repeated until convergence is reached. 
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Unlike an FEM code, the nodal information is available only during the calculation of a time step: 

at the beginning of each time step, a reset of all the nodal information is performed, and the 

accumulated displacement information is deleted. The computational mesh is allowed to 

deform only during the iterative procedure of a time step, avoiding the typical element tangling 

of a standard FEM. When convergence is achieved, the position of the nodes is restored to the 

original one (Phase c, Figure 4c). Before restoring the undeformed configuration of the FE grid, 

the solution in terms of nodal displacement, velocity and acceleration is interpolated on the 

material points, as: 

𝛥𝑢𝑝
𝑛+1 = ∑ 𝑁𝐼(𝜉𝑝, 𝜂𝑝)

𝑛𝑛

𝑛=1

𝛥𝑢𝐼
𝑛+1                                                   (78) 

𝑎𝑝
𝑛+1 = ∑ 𝑁𝐼(𝜉𝑝, 𝜂𝑝)

𝑛𝑛

𝑛=1

𝑎𝐼
𝑛+1                                                        (79) 

𝑣𝑝
𝑛+1 = 𝑣𝐼

𝑛 +
1

2
𝛥𝑡(𝑎𝑝

𝑛 + 𝑎𝑝
𝑛+1)                                                  (80) 

 

where 𝑛𝑛  is the total number of nodes per geometrical element, (𝜉𝑝, 𝜂𝑝)  are the local 

coordinates of material point 𝑝 and 𝑁𝐼(𝜉𝑝, 𝜂𝑝) is the shape function evaluated at the position of 

the material point 𝑝, relative to node 𝐼. 

Finally, the current position of the material points is updated as: 

 

𝑥𝑝
𝑛+1 = 𝑥𝑝

𝑛 + 𝛥𝑢𝑝
𝑛+1                                                            (81) 

 

MPM algorithm is presented in detail in the section MPM algorithm. 

3.5.1 MPM algorithm 
(we will use (•)𝑛 = (•)(𝑡𝑛)) 

Material DATA: E,𝒱, ρ 

Initial data on material points: 𝑚𝑝, 𝐱𝑝
𝑛, 𝛥𝑡, 𝐮𝑝

𝑛, 𝐯𝑝
𝑛, 𝐚𝑝

𝑛 , 𝐅𝑝
𝑛 = ∑

𝜕𝑁𝐼

𝜕x𝐼
0 · x𝐼

𝑛𝛥𝐼 𝐹𝑝 = ∑
𝜕𝑁𝐼

𝜕x𝐼
𝑛 · x𝐼

𝑛+1
𝐼  

Initial data on nodes: NONE everything is discarded in the initialization phase 

OUTPUT of calculation: 𝚫𝐮𝑝
𝑛, 𝛔𝑝

𝑛+1 

1. INITIALIZATION PHASE 

 

1.1 Clear nodal info and recover undeformed grid configuration 

1.2 Calculation of initial nodal conditions. 

(a) for 𝑝 =  1:𝑁𝑝 

Calculation of nodal data 

𝐪𝐼
𝑛 = ∑ 𝑁𝐼𝑚𝑝𝐯𝑝

𝑛

𝑝
 

𝐟𝐼
𝑛 = ∑ 𝑁𝐼𝑚𝑝𝐚𝑝

𝑛

𝑝
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𝑚𝐼
𝑛 = ∑ 𝑁𝐼𝑚𝑝

𝑝
 

(b) for 𝐼 =  1: 𝑁𝐼 

𝐯𝐼
�̃� =

𝐪𝐼
𝑛

𝑚𝐼
𝑛 

𝐚𝐼
�̃� =

𝐟𝐼
𝑛

𝑚𝐼
𝑛 

1.3 Newmark method: PREDICTOR. Evaluation of 𝑖𝑡+1𝛥𝐮𝐼
𝑛+1, 𝑖𝑡+1𝐯𝐼

𝑛+1 and 
𝑖𝑡+1𝐚𝐼

𝑛+1using Equations (73)-(75) 

 

2. UL-FEM PHASE 

2.1 for 𝑝 =  1:𝑁𝑝 

 

(a) Evaluation of local residual (𝑟ℎ𝑠) (Equation (43)) 

(b) Evaluation of local Jacobian matrix of residual (𝑙ℎ𝑠) (Equation (57)) 

(c) Assemble 𝑟ℎ𝑠  and 𝑙ℎ𝑠  to the global vector 𝑅𝐻𝑆  and global matrix 𝐿𝐻𝑆 

(Equations (61) and (68)) 

2.2 Solving system (𝛥𝑢𝐼
𝑛+1)  

 

2.3 Newmark method: CORRECTOR (Equations (74)–(76)) 

2.3 Check convergence 

(a) NOT converged: go to Step 2 

(b) Converged: go to Step 3 

3. CONVECTIVE PHASE 

 

3.1 Update the kinematics on the material points by means of an interpolation of nodal 

information (Equations (77)–(80)) 

 

3.2 Save the stress 𝜎𝑝
𝑛+1, strain 𝜖𝐼

𝑛+1and total deformation gradient 𝐅𝑝
𝑛+1on material 

points (the latter by 𝐅𝑝
𝑛+1 = Δ𝐅𝐩 · 𝐅𝑝

𝑛) 

3.5.2 Numerical difficulties 
The use of linear basis functions within MPM has disadvantages. As stated in the introduction, 

the discontinuity of the basis function derivatives as well as the use of material points as 

integration points leads to numerical problems. In this section these problems are described in 

more detail. 

 

GRID CROSSING 
 

Within the original MPM, material points eventually cross the position where the derivative of 

a basis function is discontinuous. These so-called grid crossings influence the internal forces, 
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masses and external forces calculated at the degrees of freedom. To illustrate this effect at the 

hand of the internal forces, recall that the internal force at degree of freedom 𝑖 is calculated in 

the following way: 

𝐹(𝑡)
𝑖𝑛𝑡,𝑡 = ∑ 𝜎𝑝

𝑡

𝑛𝑝

𝑝=1

𝑉𝑝
𝑡𝛻𝜙𝑡(𝑥𝑝

𝑡)                                                         (82) 

Figure 5 denotes a grid consisting of three degrees of freedom, in which four particles are 

defined. Assume each particle has the same stress 𝜎 and volume 𝑉 , both constant over time. 

Furthermore, assume the derivative of the basis functions to be equal to -1 or 1. The internal 

force at degree of freedom 2 is then given by: 

𝐹2
𝑖𝑛𝑡,𝑡 = ∑ 𝜎

𝑛𝑝

𝑝=1

𝑉𝛻𝜙(𝑥𝑝
𝑡) = 2𝜎𝑉 − 2𝜎𝑉 = 0                               (83) 

Suppose one particle crosses 𝑥2 where the derivative of the basis function associated to degree 

of freedom 2 is discontinuous. The internal force at degree of freedom 2 then suddenly 

becomes: 

𝐹2
𝑖𝑛𝑡,𝑡 = ∑ 𝜎

𝑛𝑝

𝑝=1

𝑉𝛻𝜙(𝑥𝑝
𝑡) = 𝜎𝑉 − 3𝜎𝑉 = −2𝜎𝑉                              (84) 

 

Hence, grid crossing leads to a non-physical difference in the internal forces. 

 

Figure 5: Illustration of grid crossing error [60]. 

To reduce the effect of grid crossings, Bardenhagen and Kober introduced in [3] a family of 

methods, named the Generalized Interpolation Material Point (GIMP) methods. The material 

point method can be seen as a special case of GIMP. While the effect of grid crossings was 

reduced, an increase of computational time was reported in [19]. 
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In [1] and [7], stresses were determined at fixed Gauss points as the weighted average of particle 

stresses to reduce grid crossing errors. Other attempts to solve the problems associated with 

grid crossings were reported in [19], [24] and [66]. 

 

In [51] the spatial convergence of the material point method was determined when using 

different types of basis functions. Besides linear basis functions, both quadratic and cubic B-

spline functions were used. When using linear basis functions, a lack of convergence was 

observed. Both quadratic and cubic B-spline functions showed spatial convergence up to a 

relatively high number of elements. Therefore, the use of higher-order B-spline basis functions 

was recommended [51]. 

 
QUADRATURE ERROR 
 
In MPM integrals are approximated as follows: 

∫ 𝑓(𝑥)𝑑𝑥 ≈ ∑ 𝑉𝑝
𝑡𝑓(𝑥𝑝

𝑡)                                              (85)

𝑛𝑝

𝑝=1Ω𝑡

 

Since material points move through the computational mesh over time, the position of the 

integration points changes every time step. The particle volume is used to approximate the 

domain over which integration is performed. This leads to a numerical integration rule of which 

the quality is uncertain. In general the numerical integration rule used in MPM is not exact. 

 

The use of the particle volume as integration weight leads to a significant quadrature error when 

a discontinuous function is integrated. Note that within the MPM, the function 𝛻𝜙𝐼 is integrated 

to determine the internal force at the degrees of freedom. When Lagrangian linear basis 

functions are used, 𝛻𝜙𝐼 is discontinuous. 

 

It was shown in some studies that the use of quadratic and cubic B-spline functions reduces this 

quadrature error. However, using the particles as integration points still leads to a numerical 

integration rule of which the quality is uncertain. 

 

A solution to this problem might be the use of a numerical integration rule which uses 

integration points and weights at locations that render accurate integration. This approach is 

limited however by the fact that physical properties like density and stress are only known at 

the particle positions. The values of these quantities at integration points have to be 

approximated from particle data. To do this more elaborately, function reconstruction 

techniques can be used. With this approach a function is reconstructed based on a finite number 

of known function values. To obtain an approximation of the quantity of interest at the 

integration point, the function can be evaluated at this position. 

 

In [22], a weighted least squares approach was used to reconstruct, among other quantities, the 

density field from the known values at the particle positions. After reconstructing the density 

field, a one-point Gauss rule was used to approximate the integrals. To reduce the numerical 

quadrature error (cubic) spline interpolation would be used as a function reconstruction 

techniqu
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4. Numerical examples 

4.1 Validation of the method 
In this first section of the numerical analysis the objective is to validate the Material Point 

Method. For this approach, a series of standardized tests on concrete samples were carried out 

using damage models. The reason to perform these tests is because they are standardized tests, 

which means that the experimental behaviour is known. They are also easy to simulate and 

compare with the classical finite element method, FEM. 

Furthermore, through these analyses, it can be accurately observed if the method calculates 

correctly the different stresses to which the structure can be subjected (compression, tension 

and shear). 

On the other hand, the use of damage models allows to simulate the collapse of the material 

and see if the fracture mode is as expected, considering the softening of the material by 

deformation through a surface of damage. 

4.1.1 Compression test 

4.1.1.1 Two- dimensional analysis 
To carry out the analysis, it is considered that a much more resistant material than concrete (for 

example steel) acts on the upper part of the specimen, simulating this analysis.  

 

Figure 6: Methodology of the compression test [64]. 

Some analysis tests have been carried out. For this, a concrete test tube with the following 

properties and dimensions is used: 
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Description of the geometry and properties of the material. 

Material properties 
 

Concrete sample Steel plate 

Density (Kg/m3) 2410 7870 

Young Modulus, E 
(kg/ms2) 

3,55E+10 2,00E+13 

Poisson ratio 0,2 0,29 

Thickness (m) 1 1 

Yield Stress 3,00E+05   

Damage threshold 16,187719   

Strength ratio 1,23E+01   

Fracture energy (J o 
N·m) 

100   

Table 1: Materials properties. 

 

Geometry of the model 

Geometry of the model for the 2D Compression test 

 

Image 1: Dimensions of the sample and the background mesh for the 2D test. 

 

In order to see how the method behaved, several analyses have been carried out with different 

types of mesh, different displacements imposed by step, etc. This is detailed in the following 

table: 

Types of meshes for the analysis 
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Mesh type Unstructured 
sample size 

Structured 
sample size 

Background 
mesh size 

Triangular T1 0,0075 0,0075 0.00648148 

Triangular T2 0,005 0,005 0.00648148 

Triangular T3 0,0025 0,0025 0.00648148 

Quadrilateral Q1 - 0,0075 0.00648148 

Quadrilateral Q2 - 0,0065 0.00648148 

Quadrilateral Q3 - 0,005 0.00648148 

Table 2: Analysis performed for the compression test. 

 

Mesh type Backgroun
d mesh 

size 

Mesh size Displacemen
t 

Steps Nº 
particles 

Q1 0.00648148 0,0075 -1,00E-06 300 2 

Q2 0.00648148 0,0065 -1,00E-07 2000 2 

Q3 0.00648148 0,005 -2,00E-06 300 2 

Table 3: Analysis performed  with quadrilateral meshes. 

 

 

Stress-strain curves for 2D cases. 

Several analyses were carried out with meshes of triangular elements (see Table 2) but these 

did not show sufficiently good results. It was thought that perhaps with meshes of quadrilateral 

elements would be improved since the geometry is rectangular and maybe the mesh responds 

better. 

After performing several analyses with quadrilateral meshes, it was observed that the results 

were much better. Within the analyses with quadrilateral meshes the better results are obtained 

with the one that has the finest mesh and a displacement by step a little bigger (Case Q3). 

This makes sense because having a finer mesh in the sample means having more material points 

and therefore the solution is closer to reality, therefore it is an expected result and we consider 

it good. Below, the stress-strain curves obtained in our analyses are shown and compared with 

experimental laboratory curves. 
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Graph 1: MPM Q3 and Experimental strain-stress curves for two-dimensional analysis. 

 

In this first graph, the stress-strain relationship obtained for the test that gives the best results 

(Q3) is shown. As can be seen, our material behaves in a more rigid way than in the experimental 

case, that is, the MPM sample is deformed much less for the same stress, compared to the 

laboratory. 

Here could be seen the curves get for the others test Q1 and Q2: 

 

Graph 2: Stress-strain curve for MPM 2D Compression and experimental analysis. 
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It can be seen that between the results with the different performed MPM tests practically the 

same curves are obtained, which makes sense. Note that after the analysis we decided that the 

case Q3 was the one that gave better results because it was the one that reached a damage 

equal to 1, also its damage distribution and its way of fracture (its fracture surface) was like the 

experimental. In the next figures these results are shown. 

Main results for 2D cases 

Damage distributions 

MPM case Q3 FEM case 

 

 

 

 

MPM case Q1 MPM case Q2 

 

   

Figure 7: MPM and FEM damage distributions. 

As can be seen in the damage results, the case that gives better results is Q3. The comparison 

with FEM has been made and it can be seen that clearly the break occurs in the same way. So, 

it could be seen that the method works correctly. 
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As I said the test tube reaches a damage equal to 1, which means that it breaks. In addition, 

damage occurs in the form of a cross, as expected, since in this way occurs in experimental tests. 

And on the other hand, the fracture surface occurs diagonally and is practically the same as that 

obtained with FEM. So, it is understood that the MPM in a 2D compression test is validated. 

The main aspect in which the Material Point Method does not calculate the results too well is in 

the stresses.  

It can also be observed that the fracture surface that is obtained is conditioned by the mesh of 

the specimen, this is an aspect by which the code should be modified to improve the results in 

the future work. 

In the following figures, the stress distribution obtained for the case Q3 is shown and compared 

with FEM. 

MPM Sxx stress Q3 FEM Sxx stress 

 

 

 

 

MPM Syy stress Q3 FEM Syy stress 

 

 

 

 

Figure 8: MPM and FEM stresses. 



Chapter 4 Numerical examples 

 

 - 52 - 

 

In FEM it can be seen that the stresses are a little more defined than with MPM. Even so it can 

be observed that the stresses that are obtained in the fracture surface are similar. As future 

work it would be necessary to improve the calculation of the stress in the method.  

4.1.1.2 Three-dimensional analysis 
 

On the other hand, different simulations of the 3D compression test have also been carried out. 

It is expected that, as it is a three-dimensional analysis, the results will be better and more 

realistic. In this section the best results obtained for 3D are shown. The parameters used for the 

analysis are: 

Mesh size Background  0.018 

Sample  0.017 

Imposed displacement -1,00E-06 

Nº particles  4 

Nº steps 193 

Table 4: Characteristics of the three-dimensional analysis for a compression test. 

Description of the geometry and properties of the material. 

In the three-dimensional case, a cylindrical sample is considered, the material properties are the 

same as for the two-dimensional case and the geometry is shown below 

 

Geometry of the model for the 3D Compression test 

 

 

Image 2: Dimensions of the sample for the 3D test. 
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Note: The background mesh is a hexahedron with vertices: (0.07, 0, 0), (0, 0, -0.07), (-0.07, 0, 0), 

(0, 0, 0.07), (0.07, 0.3, 0), (0, 0.3, -0. 7), (-0.07, 0.3, 0) and (0, 0.3, 0.07). 

Stress-strain curves 

To validate the model, it has been verified which was the stress-strain relationship that the test 

sample experiences. This curve has been compared with several experimental curves for this 

type of concrete. 

 

Graph 3: MPM (2D and 3D) and Experimental stress-strain curves. 

It is observed that the result obtained in 3D is similar to that obtained in 2D. The stress-strain 

curves of the MPM for both cases have practically the same slope, reaching the expected 

resistance limits. However, with the MPM, the material continues having a more rigid behaviour, 

as in two dimensions for the same stress value, the sample deforms less in MPM than in the 

experimental results. 

Main results for 3D cases 
MPM damage 3D 
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Figure 9: MPM 3D final damage distribution. 

In the previous figure it is shown that the distribution of damage is what was expected, a good 

3D analysis is obtained, and the concrete fractures (damage equal to 1). However, it is shown 

below that the stresses do not give the best results. 

MPM case Q3 FEM case 

 

 

  

MPM case Q1 MPM case Q2 

 

   

 

Figure 10: MPM 3D displacements and stresses. 

The sample moves as expected and in the two upper figures of the previous table it can be 

observed. While in the lower part it is shown that the tensions acquire an ill-defined distribution, 

the cross of stresses is not shown as can be seen in 2D or of course in FEM. 

The results of the stresses are therefore a bit worse in 3D and it will be necessary to investigate 

this behaviour and how to improve it for future work. 
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Figure 11: Experimental fracture for concrete samples [64]. 

Figure 11 shows the fracture of the test piece in laboratory. This fracture is similar to the one 

obtained in the simulations, part of the concrete is detached from the specimen as the tension 

increases on it. The fracture occurs diagonally, behaviour that also occurs in numerical 

simulations with MPM. 

It is necessary to emphasize that the failure result computed by the method is a numerical 

fracture, that is, the method considers that the material fails when one of the material points 

reaches a very large displacement that makes it protrude from the element. Therefore as a 

future line of research it is necessary to make different modifications on the code in order to 

solve this problem. 

4.1.2 Brasilian test 
 

Tensile strength of concrete is among the most important parameters influencing its 

deformability. To calculate the tensile strength an indirect tensile (Brazilian) test is performed. 

In this test we have a cylindrical concrete sample (positioned as shown in the following figures), 

on this specimen a metallic material applies a displacement downwards. In this way we analyze 

what is the maximum stress that concrete has and how it breaks. Below a table with the 

properties of the materials used for the concrete sample and the steel plate is shown.  
 

Concrete sample  Steel plate 

Density (Kg/m3) 2410  7870 

Young Modulus, E 
(kg/ms2) 

3,55E+10  2,00E+13 

Poisson ratio 0,2  0,29 

Thickness (m) 1  1 

Yield Stress 3,00E+05    

Damage threshold 16,187719    

Strength ratio 1,23E+01    

Fracture energy (J o 
N·m) 

100    

Table 5: Material properties of the Brazilian test. 

As we intend to validate the model, we expect our numerical fracture with MPM to be similar 

to that produced in experimental laboratory tests. Below are images of this test in laboratory. 
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Figure 12: Methodology and fracture of experimental sample in a brasilian test [18]. 

4.1.2.1 Two-dimensional analysis 
 

First several 2D simulations have been made. In the beginning, the geometry of the model is 

described as well as the characteristics of the tests. The results obtained for different evaluated 

trials are shown below. 

 

Description of the geometry and properties of the material. 

Geometry of the model for the 2D Brazilian test 

 

Figure 13: Geometry of the concrete sample and the steel material imposing a displacement. 

 

To obtain a good analysis of the Brazilian test with MPM, different tests have been carried out. 

In these tests have been modified the size of the meshes, times, the number of particles and the 

displacement for step, to see how the method reacts. 

In this table the characteristics of the tests are shown: 
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Mesh 
type 

Mesh size 
(triangula

r mesh) 

Backgroun
d mesh 

size 

Displacement/st
ep 

Nº steps Nº 
Particles 

Case 1 0,005 0.005 -1,00E-06 1000 3 

Case 2 0,005 0.005 -2,00E-06 1000 3 

Case 3 0,005 0.005 -5,00E-07 1200 3 

Case 4 0,005 0.005 -1,00E-06 1000 6 

Table 6: 2D analysis performed for a brazilian test. 

 

The best results have been obtained for case 1 and case 4, in case 4 a higher number of particles 

have been used to see if the solution improves. This analysis has been compared with one of 

equal dimensions and characteristics using FEM to see if the method works.  

In the Brazilian test, the specimen breaks through the tensile stress limit (Horizontal stress, 𝑆𝑥𝑥). 

The curves obtained from the analysis are shown below, although it should be noted that the 

curve by which the concrete sample breaks is that of the horizontal stress, 𝑆𝑥𝑥)., when the limit 

is reached, in our case 3.5 MPa. 

Vertical stress until damage occurs in the specimen (numerical fracture) 

Stress-strain curves for 2D cases 
 

 

Graph 4: 2D vertical MPM and FEM strain-stress curves for a Brazilian test. 

 

In the previous graph you can see the vertical stress that occurs in the concrete sample analysis 

in MPM and FEM. The behaviour is similar for both methods, the slope is also similar but as it 

happened with the compression test in this case the material is also more rigid and deformes 

less in MPM for the same vertical stress compared with FEM. 
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However, in spite of this graph in which the relation between displacement and vertical stress is 

shown, the graph that gives us information on whether the method calculates correctly is that 

of horizontal stress as a function of displacement or deformation, given that the specimen 

breaks by indirect traction, that is to say the horizontal stress 𝑆𝑥𝑥 reaches the limit value of the 

traction for concrete. 

Horizontal stress until damage equal to 1 occurs in the sample. When the 𝑆𝑥𝑥 reaches the limit, 

damage variable is equal to 1 and the sample breaks. (fracture). 

 

 

 

Graph 5: 2D horizontal MPM and FEM strain-stress curves for a Brazilian test. 

As can be seen in Graph 4, the stress-displacement curve obtained is as expected, it is shown 

that the fracture of the sample occurs when the concrete reaches its tensile limit, that is, for a 

stress of 3.5 MPa. 

Below, are shown some damage distributions obtained for some of the analyses performed. It 

is also shown the results obtained using a higher number of particles. All distributions are 

compared to FEM, as well as stress-strain curves (see Graph 5). 

 

Damage distributions for different cases 
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MPM case 1 FEM case 

 

 

 
 

  

 

Figure 14: MPM Q1, FEM and MPM Q4 damage respectively. 

 

It can be seen that the fracture mode is similar to that produced in the laboratory test tubes and 

also similar to FEM. When the number of particles is increased, the solution with MPM 

approaches that obtained with finite elements. This makes sense given that a higher number of 

particles means that in the simulation the stresses are calculated in a higher number of nodes, 

which causes a solution closer to the real, as happens if the mesh size is reduced. The solution 

is always more accurate and closer to the real one when the size of the mesh is smaller (finer 

mesh) and when we have a greater number of particles. Despite this, in the compression 

analysis, the results were considered good enough to increase the number of particles, since it 

is necessary to take into account that a greater number of particles implies a longer calculation 

time of the simulation. 

The following shows how the test piece moves in the analysis, the displacement makes sense 

since the test piece breaks and each one of the halves moves to one side. 

 

 

 

MPM case 4 (more particles) 
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MPM x displacement case 1 MPM y displacement case 1 

    

Figure 15: 2D MPM horizontal and vertical displacements. 

 

On the other hand, the results obtained for the stresses are analysed, which, as it has been 

mentioned previously, is the most critical point of the method. The horizontal stress that occurs 

in the sample is of the order that occurs with the finite element method although it may be a bit 

smaller. For the case in which there is a higher number of particles it can be seen that the stress 

in MPM is a little lower in the centre of the concrete sample, than that obtained with FEM. 

 

MPM horizontal stress case 1 FEM horizontal stress 

 

 
  

 

MPM horizontal stress Case 4 (more particles) 
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Figure 16: 2D MPM and FEM  vertical stress respectivelys. 

 

Regarding the vertical stress, in this case better results are obtained. The distribution of stresses 

is much more defined mainly at the breaking surface. Comparing it with FEM it can be seen that 

the stress reached is the same and that for a larger number of particles the calculation is even 

more accurate (see Figure 17). 

MPM vertical stress case 1 FEM vertical stress 

 
 

 

 

 

MPM vertical stress case 4 (more particles) 

  
Figure 17: MPM Q1, FEM and MPM Q4 vertical stress respectively.  

 

4.1.2.2 Three-dimensional analysis 
 

Later, a 3D analysis was carried out to see if it could improve the results obtained in 2D, since it 

is a more real analysis. The characteristics of the test are the following: 

Mesh size Background  0.017 
Sample  0.007 

Imposed displacement -1,00E-06 

Nº particles  4 

Nº steps 193 

Table 7: Characteristics of the 3D MPM analysis for a Brazilian test. 
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Stress-strain curves for 3D cases 
The stress-strain curves for the 2D, 3D and FEM analyses have been compared in a graph. 

 

Graph 6: MPM (2D and 3D) and FEM stress-strain curves in a Brazilian test. 

As can be seen, the method improves and approaches the FEM solution if we use a greater 

number of particles, or even more if we perform the analysis in 3D. This makes a lot of sense 

and is expected, because having a larger number of particles the analysis is more accurate. And 

3D analysis is more realistic, so the solution is closer to that of FEM. 

Main results for 3D cases 

After performing the indirect traction test in two dimensions, it has been processed to perform 

it in 3D to see if better results are obtained. Next, one of the damage distributions that has been 

obtained for this case is exposed. 

MPM 3D damage 

 

 
Figure 18: 3D MPM damage distribution in a Brazilian test. 
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It can be observed that the way in which the test piece breaks is expected, the concrete reaches 

the maximum tensile stress and therefore reaches a damage value equal to 1 and breaks. Once 

again, a cross-shaped fracture is generated that causes the material to split. 

As shown in Graph 6, the stress strain curve obtained in three dimensions is more accurate and 

closer to FEM, that is, the results improve for the 3D case. 

The displacements and stresses that occur in the concrete specimen for the 3D test are shown 

in the figures that follow. The displacements are the expected ones while the distributions of 

horizontal tensions are a little lower than in the 2D case and also less defined in the fracture 

surface. 

 

MPM 3D case - horizontal displacement MPM 3D case – vertical displacement 

 
 

 

 

Figure 19: 3D MPM horizontal and vertical displacement. 

MPM 3D case – horizontal stress MPM 3D case – vertical stress 

    

Figure 20: 3D MPM horizontal and vertical stresses distribution. 

 

The vertical tensions reach the values obtained in FEM and in this same analysis in 2D, although 

they are more dispersed and less concentrated near the fracture surface. The distribution of 

tensions is a point of the MPM that must be improved especially in the three-dimensional case, 

since as shown the results are not precise or defined. 
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4.1.3 Shear test  
 

On the other hand, a shear analysis has been carried out. In this analysis, a concrete sample is 

subjected to a series of shear forces (simulated by displacements in this case). In Figure 21 is 

shown the test configuration. 

 

 

Figure 21: Configuration of the shear test [18]. 

4.1.3.1 Two-dimensional analysis 

For this test, only a 2D analysis has been carried out because it already offered quite good 

results. The following figures show the geometry and properties of the materials used for the 

simulations. 

Description of the geometry and properties of the material. 

 

 

 

Figure 22:Dimensions of the concrete sample in the Shear test. 
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Concrete sample  Steel plate 

Density (Kg/m3) 2410  7870 

Young Modulus, E 
(kg/ms2) 

3,55E+10  2,00E+13 

Poisson ratio 0,2  0,29 

Thickness (m) 1  1 

Yield Stress 3,00E+05    

Damage threshold 16,187719    

Strength ratio 1,23E+01    

Fracture energy (J o 
N·m) 

100    

Table 8: Properties of the materials. 

 

 

 

                  

 

 

Table 9: Times for the analysis. 

Main results for 2D cases 
 

As can be seen, the damage distribution obtained is the expected one since the test piece breaks 

through the weakest part (which is subjected to pure shear). Damage equal to 1 is attained (In 

red in Figure 23) which means the fracture of the specimen. 

MPM damage 

  

Figure 23: 2D MPM damage distribution shear test. 

The displacements and stresses that occur in the specimen for this test are also shown. 

 

 

Initial 
time 

0 

Time step 1 

Final time 300 
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MPM horizontal displacement MPM vertical displacement 

    

Figure 24: 2D MPM horizontal and vertical displacement Shear test. 

MPM horizontal stress MPM vertical stress 

   

 

Figure 25: 2D MPM horizontal and vertical stress Shear test. 

The distribution of stresses that is obtained is more defined than in the other two tests. It can 

be seen that a stress concentration occurs (in blue colour in Figure 25) in the critical areas of the 

sample (where the fracture crack begins to be generated). 

 

Figure 26: Test setup and way of fracture for direct shear test [40]. 

On the other hand, it is interesting to analyse what was the relationship between the tension 

and the displacement that occurred in the numerical simulations. Next, the vertical tension-

displacement curve. 
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Graph 7: Stress-displacement curve for the 2D MPM Shear test. 

It is observed that as the pistons exert a displacement on the sample, the stress is increased, 

and with it the deformation of the sample. A maximum displacement of 1.4E-5 m is reached for 

a maximum stress of approximately 12.5 MPa. 

 

Figure 27: Fractured experimental samples for a H30 concrete in a shear test. [11] 

In the previous image it is shown that the test pieces in the laboratory break in the same way as 

in the analyses. 

4.2 Preliminary MPM dam’s fracture analysis. 
 

Since the MPM is a good method when large deformations occur in external conditions. It is 

interesting to use it in dams, as future work is intended to break the dam’s core in extreme 

conditions. For now, the results obtained are not good but as first approximations can be useful 

when it comes to see how the structure behaves. 

For the analysis of the dam, the Mohr-Coulomb break criterion was used, although others such 

as the Drucker Prager model could also be used. 
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The objective is to simulate the impact of water on the dam's coronation, using volumetric 

forces. Results have been obtained in 2D in which the core fracture is shown 

As it is simulated in extreme conditions, it has been considered that the rockfill of the shoulder 

and coronation has already been dragged by the water, leaving the semi-discovered core as 

shown. The geometry and the properties used are shown below. 

Note that it is shown the preliminary analyses that have been carried out to simulate the fracture 

of a dam. The goal is to simulate future fracture of the dam's core in extreme conditions with 

reliable results. For now only preliminary analyses are available, in which it is aware that there 

is a lot of work ahead. The analyses have been carried out applying volumetric loads on the 

structure. With these volumetric loads it is intended to simulate the push of water on the dam. 

Below, some of the results obtained for the case in 2D are shown, although in the future it is 

wanted to reach 3D, for this it will be necessary to improve several aspects. 

 

Figure 28: Geometry of the dam model 

  Clay Rockfill 

Density (kg/m3) 1920 200000 

Thickness 1 1 

Young Modulus 1000000 1000000 

Poisson ratio 0,29 0,29 

Cohesion 5000 0 

Internal friction angle 0,436332313 0,645771823 

Internal dilatancy 
angle 

0 0 

Table 10: Properties of the materials. 

Initial time 0 

Time step 0,001 

Final time 1 

Table 11: Times used for the calculations. 

 

Below is shown the deformation of the dam’s clay core in different steps when the water is 

impacting on it with a push acceleration (using volumetric accelerations). For now, it has been 

possible to simulate the core’s fracture in 2D and it is being investigated in 3D but the cohesion 

effects much more in the three-dimensional case, so it will be necessary to continue 
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investigating in order to obtain considerable results. The results are shown in the two-

dimensional model and later in the three-dimensional model. 

4.2.1 Two-dimensional dam model 
At first it is shown the results of the deformation obtained for different time steps: 
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Figure 29: Results obtained in the analysis for different time steps.  

 

It is observed that as the water pushes on the coronation of the dam, the core is displaced, 

reaching an increasing deformation until the core breaks. 

It is necessary to emphasize that in the analysis there are different things that do not work and 

that it is necessary to correct, when applying the volumetric acceleration and once the nucleus 

has fractured, it moves to the right without falling.  It is as if the gravitational force did not act, 

this must be corrected in the future because this push would indeed break the prey, but the 

piece that would come off would not only be fired to the right, but would also fall by its own 

weight since the force of gravity acts. 

In addition to the results in terms of displacements, results of how plasticizes the structure to 

understand how the fracture occurs are shown. 

 

Equivalent Plastic Strain 

 

 

Figure 30: Equivalent Plastic Strain for 2D dam simulation. 

 

Effectively it is observed that in the zone in which the plasticization takes place, it is just where 
the core breaks. In the following image the horizontal displacement is shown to get an idea of 
how is that fracture. 
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Horizontal displacement 

  
Figure 31: Horizontal displacement for 2D dam simulation. 

Horizontal stress 

 

 

Figure 32: Horizontal stress for 2D dam simulation. 

Vertical stress 

 

 

Figure 33: Vertical stress for 2D dam simulation. 
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Conclusions and future work 
 

The MPM formulation presented works, although some aspects need to be improved, the mesh 

dependence on the direction of fracture as well as the contact surfaces on these materials. To obtain 

good results in this type of simulations, as in the case of the dam, it would be necessary to implement 

a contact algorithm. 

As we have seen in the case of the dam, the method needs to be improved so to evaluate functional 

contact. To improve contact and fracture in the Material Point Method, enrichment or division of the 

mesh-scale material in different velocity fields is required to allow displacement or speed 

discontinuities in a material interface. 

As is known, the material point method is very suitable for large deformation problems in solid 

mechanics and it is interesting to study for solving important engineering problems in the future. In 

general, we it can be said that the Material Point Method implemented in Kratos Multiphysics works 

correctly, obtaining promising results for the validation case. 

The results obtained with damage models show the characteristics of the method, some of them 

expected. It is observed that as a higher number of material points and a finer mesh is used, a better 

approximation to the experimental solution is obtained. In addition, the calculation times for the 

simulations are not large, which is very useful in order to observe more quickly how the analysis 

occurs and to be able to modify some parameter if it is necessary. 

The precision in 3D in the validation with models of damage is better than the one obtained in 2D, 

which is also expected given that the 3D simulations are more realistic. Although the different 2D 

tests are useful because they offer a fairly approximate view of how the code behaves in our analysis. 

In spite of this, good results for the three-dimensional dam case have not been achieved because 

cohesion plays a much more important role in 3D. 

As a conclusion, it can be said that a fairly broad knowledge of this method has been acquired, 

despite not been able to reach the fracture of the dam as was originally wanted. It is aware that there 

is a need to improve different aspects such as the mesh dependence and a contact algorithm able to 

avoid crossing errors as well as extension instabilities that lead to numerical (non-physical) fractures. 

A promising solution is the convective particle domain interpolation (CPDI), in which the integration 

domain used to map data between particles and the background grid deforms with the particle, 

based on the material deformation gradient. While eliminating the extension instability can be a 

benefit, it is often desirable to allow material separation to avoid nonphysical stretching.  
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