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Abstract

In this work we propose a second order stabilized pressure-correction scheme for the solution

of the isentropic compressible Navier-Stokes equations.

Our algorithm consists in a compressible formulation with primitive variables without

solving for the energy equation, which is mathematically uncoupled. This is due to the fact

that the flow is considered to be isentropic (of constant entropy), which after properly re-

lating density and pressure fields, becomes a system of equations in terms of velocity and

pressure. Thus, the formulation can be seen as an extension of the incompressible case. As

a consequence, the implementation is way less laborious when one departs from an already

implemented segregated-incompressible flow solver.

Similarly to other compressible formulations, the prescription of boundary conditions will

have to deal with the backscattering of acoustic waves. In this sense, we review a method

already proposed in the literature for the monolithic solution of the problem, which is based

on non-reflecting boundary conditions and we adapt it for the fractional step version by means

of several extrapolations of the required order.

The approach we chose in this work is to present a pressure-correction technique at the

pure algebraic level, departing from the matrix problem of the monolitich case. Finally, the

statibilization is performed within the Variational MustiScale (VMS) framework and, in par-

ticular, we suggest a term-by-term orthogonal stabilization.

Key words: Stabilized finite element methods, term-by-term stabilization, isentropic flow,

non-reflecting boundary conditions.
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Chapter 1
Introduction

1.1 State of the art

The finite element method is a powerful computational technique very often employed to deal

with the numerical simulation of flow problems. One of such problems, which has captured

the attention of researchers for several decades, corresponds to the Navier-Stokes equations,

especially in its incompressible form. This incompressibility feature, in practice, translates

into a coupling of velocity and pressure, being its numerical solution demanding in the finite

element computational context. In addition, the velocity and pressure interpolation functional

spaces must satisfy a compatibility condition for standard discretizations, referred in the litera-

ture as inf-sup or LBB condition, being the latter honoring Lady̆zenskaja, Babus̆ka and Brezzi,

the matemathicians who proposed this constraint. Originally, in the framework of the finite

element method, the LBB condition was tackled by defining special elements. Still, those fi-

nite elements satisfying the inf-sup condition are complicated and computationally expensive

in practice (see for instace [10]). Another difficulty related to this problem is the instabil-

ity associated to the advective term, whose nature is completely different from the previous

one. Spurious node-to-node oscillations may show up for convection dominated flows even

though they can be avoided for a specific mesh size, which commonly is not computationally

affordable.

Those two kinds of instabilities are at the base of the development of works on the de-

sign of numerical methods stabilizing the convective term, in order to permit equal combi-

nations of velocity-pressure interpolations. In these methods, the weak form of the problem

obtained from the standard Galerkin approach is modified by adding some mesh-dependent

terms weighted by the residuals (or even part of them) of the differential equations.

Initially, stabilized finite element methods were developed in the context of convective
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flows and, as a first approach, numerical diffusion was introduced to counteract the associated

numerical oscillations, but the proposed schemes were found to be extremely overdiffusive.

Later, trying to reduce this overdiffusive character, the original techniques evolved to the intro-

duction of such artificial diffusion only along the streamlines,[37]. Within this context, it was

when the widely known SUPG -Streamline Upwind Petrov-Galerkin- method was introduced

by Brooks and Hughes in [11]. In this method, the streamline diffusion idea was presented

together with the concept of weighted residual. Next, the also popular GLS -Galerkin/Least-

squares- method would be suggested by Hughes et al. in [38]. Other examples of similar sta-

bilized methods are the Characteristic Galerkin method [27], or the Taylor-Galerkin method

[28].

But it would be in 1995 (see [36]) when Hughes introduced a general technique for de-

veloping a new family of numerical methods capable of dealing with the socalled multiscale

phenomena, later named the Variational Multi-Scale (VMS) method [34]. The key idea is to

approximate the effect of the scales that cannot be resolved by the finite element mesh on

the discrete finite element solution. This technique has helped the community to decipher the

origins of stabilized finite element methods and provide a variational framework for subgrid

scale models [35]. For a complete exposition of the VMS framework together with examples

of application, the reader is encouraged to review [26], published by the advisors of this master

thesis and co-workers.

While the nuances of stabilization captured the researchers attention for decades, there

were others focused on the development of a family of methods with the objective of de-

coupling the velocity and pressure approximation. Such methods were originally labeled as

projection methods (indistinctly called fractional step methods herein) as they were based on

the splitting of the differential operator, by means of a Helmholtz decomposition. The pioneer-

ing works of Chorin and Temam [14, 42] in the late 1960’s established the foundations and,

since then, these methods have enjoyed a widespread popularity as they allow an important

reduction of computational time. Furthermore, fractional step schemes present an inherent

stability providing control over the pressure grandient, thus allowing in many situations the

use of space interpolations which do not satisfy the compatibility condition.

A quite more recent mathematical problem is the one considering the complete set of the

Navier-Stokes equations, that is to say, the coupled problem arising from mass, momentum

and energy conservation equations. Usually, this problem is referred in the literature as the

compressible Navier-Stokes problem. Its approximation via the finite element method to-

gether with VMS stabilization, has been recently proposed (see [4, 5]) in order to develop

a compressible flow model to simulate the flow and the acoustic scales (aeroacoustic). This

problem, among other features, is highly non-linear, it may need to deal with the formation
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of shocks (discontinuities) and it is shown to be really demanding in terms of computational

power, an important drawback. But for low Mach number flows, with neither shocks nor ther-

mal coupling, both flow dynamics and wave propagation can be considered isentropic, that

is to say, of constant entropy. In this master thesis, we focus our attention in this isentropic

case. Under these assumptions, and as we shall see later, density and pressure fluctuations

are directly proportional, and a two-field velocity-pressure compressible formulation can be

derived as an extension of the incompressible problem. The energy conservation equation still

remains mathematically uncoupled.

The prescription of boundary conditions for the fully compressible case is not so straight-

forward. As a matter of fact, Dirichlet boundary conditions are imposed depending on the

compressibility of the medium, which can range from subsonic, transonic, supersonic and hy-

personic flow, for different values of the Mach number. Although such laborious prescription

of boundary conditions is avoided in the isentropic case, new challenges arise which need to be

taken into account. In principle, an appropriate boundary condition for the pressure field must

be enforced, since we are solving for flow and acoustic scales together. The main purpose of

such condition is to allow the sound waves to smoothly leave the domain external boundaries

[40]. In other words, we want to avoid those sound waves to be backscattered by the external

boundaries into the computational domain, a fact that would pollute the solution of the prob-

lem. This distinguishing feature has already been studied in the past and as a result, there are

several numerical techniques which deal with this backscattering problem. See for instace the

review in [30, 31] and references therein. The treatment of the waves must be compatible with

the flow velocity boundary conditions. This fact is of most importance on Dirichlet bound-

aries where the velocity is to be prescribed. This need has motivated the development of a

method for a unified prescription of flow and non-reflecting boundary conditions applied to a

monolithic scheme [41], which we will review later in this work.

1.2 Outline

This master thesis is organized in different chapters, in order to make it easier for the reader

to follow the contents. The distribution of the work is,

• Chapter 1: Introduction: in what remains of the present chapter, we first include a short

section on FEMUSS, which is the in-house parallel code developed at Prof. Ramón

Codina´s research group. In addition, we include some basic concepts on functional

spaces and finite element method.

• Chapter 2: Isentropic equations: this chapter aims at presenting the isentropic com-
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pressible problem, as a modification of the incompressible Navier-Stokes equations.

• Chapter 3: Stabilization within the VMS framework: this chapter is entirely devoted to

the Variational MultiScale framework. We will start by introducing this technique and

its key idea, to end up by stating the stabilized isentropic compressible Navier-Stokes

problem.

• Chapter 4: Special treatment of boundary conditions: as we shall see in this chapter,

special attention has to be paid to the imposition of boundary conditions, as we aim at

solving for the flow and acoustic scales together.

• Chapter 5: Design of fractional step schemes: this is the key chapter of this work, where

a detailed description of the fractional step algorithm to solve the problem in hand is

presented.

• Chapter 6: Numerical results. Here we present a benchmark in order to asses the cor-

rectness of the implementation. It consists in the aerodynamic sound radiated by flow

past a cylinder, for Re = 1000 and Mach = 0.0583.

• Chapter 7: Conclusions. In this final chapter, we include the final conclusions of the

work together with some open lines of research that could be eventually considered.

1.3 FEMUSS

FEMUSS is an acronym which stands for Finite Element Method Using Subgrid Scales. This

is the name of the in-house multiphysics parallel code developed at this research group of

CIMNE and which arises as a result of the numerous research projects carried out in the

preceeding years. It is a large scale, parallel and object-oriented code written using the Fortran

2003 standard. The parallelization is completely done through MPI standards and, as its name

suggests, the finite element equations are stabilized via the Variational MultiScale framework.

The code entails several modules, each of them fully dedicated to compute the solution

of a certain problem. Still, the process of transfering information among them is possible,

what makes actually feasible to solve coupled problems (via communication channels). The

included modules in FEMUSS are, among others, incompressible Navier-Stokes equations

(both monolithich and fractional step schemes), fully compressible Navier-Stokes problem

(monolithic approach), optics and wave propagation problems, temperature and solids prob-

lems, etc. In addition, the code is flexible in the sense that it can handle different type of

elements for a single mesh, allowing remeshing strategies and various implicit-explicit time

integration schemes.
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For the parallelization process, the computational domain is to be divided into subdomains,

being each of these subdomains solved by a single processor containing all the required infor-

mation. The domain partition is done through a identification process of the nodes in the mesh

to be used. As a result, the nodes are labeled either as local or ghost. Local points are those

beloging to a single subdomain, whereas the boundary nodes which belong to elements with

at least a local point, are denoted as ghost points. See Figure 1.1 for details.

Figure 1.1: Mesh Partition. Nodes are assigned to a subdomain. Red, blue, green and pink

nodes are local. Gray elements are duplicated in several subdomains containing the ghost
nodes.

Moreover, the ghost points are solved as local in other subdomain, a fact that allows in

practice to decouple the system into independent problems. This basically means that, at the

pure computational level, the matrix assembly is a local process. The initial problem data as

well as boundary conditions are broadcasted to all subdomains before any calculation process

actually begins.

Apart from this, FEMUSS has its own defined problem type, what makes it compatible

with the GiD pre-post processor developed here at CIMNE. Finally, the code is also coupled

with other external libraries, being among then, VTK (allowing Paraview support), Zoltan or

PETSc.

1.4 Some useful functional spaces

In this section we introduce some mathematical concepts and notation that is to be used here-

after in this work. Let Ω ∈ Rd , d = 2,3 be a bounded domain. All the functions defined over

the domain Ω are real. We denote as C ∞
0 (Ω) the set of infinitely differentiable real functions
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with compact support on Ω. In addition, we denote as Lp(Ω), 1 ≤ p ≤ ∞ the space of real

functions defined on Ω with the p-th power absolutely integrable. Let f : Ω→R, so we define

|| f ||p ≡ || f ||Lp(Ω) =

(∫

Ω
| f |p dΩ

) 1
p

, 1≤ p < ∞ (1.1)

|| f ||∞ ≡ || f ||L∞(Ω) = ess sup
x∈Ω

| f (x)|, p = ∞ (1.2)

and

Lp(Ω) :=
{

f : Ω→ R | || f ||Lp(Ω) < ∞
}

(1.3)

where the definition (1.1) has to be understood with respect to the classical Lebesgue measure.

The case of p = 2 is of special interest in finite element analysis. The space L2(Ω) is a Hilbert

space defined as,

L2(Ω) :=

{

f : Ω→ R |

(∫

Ω
| f |2 dΩ

) 1
2

< ∞

}

(1.4)

that is to say, the space of functions which are square integrable, and which is endowed with

the scalar product

( f ,g)Ω :=
∫

Ω
f (x)g(x) dΩ (1.5)

and its induced norm

|| f ||L2(Ω) := ( f , f )
1
2 (1.6)

For bounded domains, as we consider in this work, it can de demonstrated that,

L∞(Ω)⊂ . . .⊂ L2(Ω)⊂ L1(Ω) (1.7)

The Sobolev space Wm,p(Ω) is the space of functions in Lp(Ω)whose weak derivatives, i.e.

derivatives understood in the sense of a distribution, of order less than or equal to m belong to

Lp(Ω), being m a non-negative integer and 1≤ p≤∞. By using multi-index notation, let now

the d-tuple α = (α1,α2, . . . ,αd) ∈ Nd , and the non-negative integer |α|= α1 +α2 + . . .+αd .

We also define Dα f = ∂ |α | f
∂ α1x1...∂

αd xn
. Then, we introduce the following notation ∀ m = 1,2, . . . ,

and p≥ 1,

|| f ||m,p ≡ || f ||Wm.p(Ω) :=
m

∑
|α|=0

||Dα f ||Lp(Ω) (1.8)

and thus, the Sobolev spaces are formally defined as,

Wm,p(Ω) :=
{

f : Ω→ R | || f ||m,p < ∞
}

(1.9)
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In addition, we have that Wm,p(Ω) = Hm(Ω) which is a Hilbert space endowed with a scalar

product and its associated norm || · ||Hm(Ω) (also denoted as || · ||m). Therefore, Hm(Ω) consists

of square integrable functions all of whose derivatives or order up to m are also square inte-

grable. Again, the case p = 2 is of interest, and an important space in finite element analysis

arises when considering also m = 1. Then, it yields,

W1,2(Ω) = H1(Ω) :=

{

f : Ω→ R |
1

∑
|α|=0

||Dα f ||L2(Ω) < ∞

}

(1.10)

which corresponds to the space of functions whose gradient is square integrable. This space

is equipped with the inner product,

(( f ,g))Ω := ( f ,g)Ω +
d

∑
i=1

(∂i f ,∂ig) (1.11)

where we have used the short notation for the partial derivative
∂ (·)
∂xi
≡ ∂i, and also its induced

norm,

|| f || := (( f , f ))
1/2
Ω (1.12)

Remark: Extension to vector-valued functions. In the finite element analysis of flow prob-

lems, consideration needs to be given not only to scalar functions (such as pressure or temper-

ature) but also to vector-valued functions (such as fluid velocity). For vector-valued functions

with d components, that is uuu : Ω→ Rd , the procedure is in fact the same as for scalar func-

tions. Considering again a domain Ω ⊂ Rd,d ≥ 1, we denote by [Hm(Ω)]d or HHHm(Ω) (in

bold character) the space of vector functions with d components, for which each component

ui ∈ Hm(Ω),1≤ i ≤ d. For the particular case of functions belonging to LLL2(Ω) = [H0(Ω)]d,

the inner product is given by,

(uuu,vvv) :=
∫

Ω
uuu ··· vvv dΩ (1.13)

where there should be no ambiguity in using the same notation to represent the inner product

of both scalar and vector functions.

Remark: In general, the integral of two functions g1 and g2 over a domain ω will be

denoted as ⟨g1,g2⟩ω . For the specific case of the L2 product we use the notation (·, ·)Ω≡ (·, ·).

When dealing with time-dependent problems, as it will be the case through this work, it is

interesting to also consider the set of spaces of the form Lp(0,T ;X), defined as,

Lp(0,T ;X) :=

{
f : (0,T )→ X |

∫ T

0

|| f ||pX dt < ∞

}
(1.14)
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that is to say, the spaces of functions such that their X norm in the spatial argument is an

Lp(0,T ) function in time, i.e., its p-th power is integrable if 1≤ p < ∞ or bounded if p = ∞.

In principle, we will be interested in the spaces LLL2(0,T ; [H1(Ω)]d) and L2(0,T ;H1(Ω)) as we

shall see later.

1.5 Finite Element Method

In the previous section we introduced the functional spaces to be used throughout this work, all

at the continuous level. Now, we aim at introducing the approximation of the previous spaces

by means of finite-dimensional subspaces (conforming approximation) that can be handled

numerically. The reader is referred to, for instance [9], for a deep exposition on the finite

element theory .

At this point, we have to view the domain of the problem Ω as discretized into element

subdomains. Let Th(Ω) be a regular partition, also referred in the literature as triangulation,

of Ω into nel subdomains (elements), such that,

Ωe ≠ /0, Ω̄ =
nel⋃

e=1

Ω̄e and Ωe∩Ω f = /0 ∀ e ≠ f .

Each subdomain Ωe has a piecewise smooth boundary Γe = ∂Ωe, and we denote as h

the characteristic mesh size, i.e. h≤ diam(Ωe) for all elements. Formally, a finite element is

defined as a triplet {Ω̄e,Pk(Ω
e),Σe} being Ω̄e a closed subdomain of Ω, Pk(Ω

e) the finite di-

mensional interpolating space defined over Ωe (commonly the set of polynomials in x1, . . . ,xd

of degree less than or equal to k) and Σe is the set of elemental degrees of freedom. The finite

element spaces we will consider in the following are:

Qh = {qh ∈ C 0(Ω) | qh|Ωe ∈Pk(Ω
e), ∀ e ∈Th} (1.15)

V d
h = {vvvh ∈ [C 0(Ω)]d | vvvh|Ωe ∈ [Pk(Ω

e)]d, ∀ e ∈Th} (1.16)

which are finite dimensional spaces approximating H1(Ω), and [H1(Ω)]d respectively. From

now on, finite element functions will be identified with a subscript (·)h. The space Qh will

be associated with the pressure (k being the degree of the approximation) and V d
h with the

velocity field, being d the number of space dimensions of the problem in hand. Both spaces

are referred to the same partition and constructed by means of continuous functions.
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1.6 Time discretization and extrapolation operators

In this section, let us introduce some notation that we will use with respect to time discretiza-

tion. For the sake of conciseness we will restrict ourselves to the classical backward-difference

(BDF) approximation. Let us consider a partition of the time interval (0,T ) into time steps of

size δ t, assumed to be constant, for simplicity. We also identify tn = nδ t, ∀ n = 0,1,2, . . . as

a time step for the problem. The approximation of a generic time dependent function g(t) at a

time tn will be denoted as gn. An approximation to the derivative of g(t) of order k = 1,2, . . .

is denoted as δkgn+1/δ t where the numerator is given by the following operator,

δkgn+1 =
1

γk

(

gn+1−
k−1

∑
i=0

α i
kgn−i

)

(1.17)

being γk and α i
k numerical parameters depending on the order of the temporal approximation.

In particular, for the first, second and third order schemes it is found that,

δ1gn+1 = δgn+1 = gn+1−gn (1.18a)

δ2gn+1 =
3

2

(
gn+1−

4

3
gn +

1

3
gn−1

)
(1.18b)

δ3gn+1 =
11

6

(
gn+1−

18

11
gn +

9

11
gn−1−

2

11
gn−2

)
(1.18c)

The first order scheme, i.e. k = 1, is referred in the literature as the BDF1 scheme and it

coincides with the so popular backward Euler method. BDF1 and the second order scheme,

BDF2, are proven to be unconditionally stable, whereas high order schemes do not maintain

this interesting property (limitation known as second Dahlquist barrier). Likewise, the BDF2

scheme is not self-starting, that is to say, we need to include a strategy to compute gn−1 for

the first time step, e.g. using the backward Euler scheme previously mentioned.

In the design of fractional step schemes, we will be also making use of the extrapolation

operators of order k, generally defined as ĝn+1
k = gn+1+O(δ tk), which for k = 1,2,3 are given

by,

ĝn+1
1 = gn (1.19a)

ĝn+1
2 = 2gn−gn−1 (1.19b)

ĝn+1
3 = 3gn−3gn−1 +gn−2 (1.19c)

In addition, the extrapolation of order k = 0 is defined as ĝn+1
0 = 0.





Chapter 2
Isentropic compressible Navier–Stokes

equations

2.1 Introduction

The numerical solution of the fully compressible Navier-Stokes equations, i.e. the coupled

problem involving mass, momentum and energy equations, is known to be computationally

demanding in the finite element context. Moreover, solvers for compressible flows in the low

Mach regime have shown poor performance. These two facts have led to the necessity of

developing more affordable numerical methods. In this chapter we will focus our attention

on the behavior of an ideal gas which undergoes a reversible thermodynamical process. This

approach, that sometimes could be considered naive, turns out to be quite realistic in engineer-

ing problems not involving heat transfer processes or shocks. This basic assumption allows a

drastic simplification of the complete set of Navier-Stokes equations, since the energy equation

is mathematically uncoupled from both mass and momentum conservation equations. Addi-

tionally, the primitive variables of the problem can be used, i.e. pressure and velocity, and a

two-field compressible formulation can be derived as an extension of the incompressible case.

2.2 Basic theory of isentropic compressible flows

As introduced above, for low Mach number subsonic flows with neither heat transfer nor

shocks, a quite realistic hypothesis is to assume that the gas undergoes a reversible thermody-

namical process. We start by recalling some of the basic relations from the compressible flow

theory. We refer to [39] for a deeper review on this topic. By definition for an isentropic flow,

the entropy remains constant. Using this fact, it can be shown that pressure and density are
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related through the following fundamental expression,

p

ργ
=C (a constant) (2.1)

where γ is the socalled adiabatic coefficient (e.g. γ = 1.4 for air) or ratio of specific heats,

since γ := cp/cv being cp and cv the specific heat of the fluid at constant pressure and volume,

respectively. Additionally, p denotes the total pressure and ρ is the total density. The word

total is included so that to clarify that those variables include the possible perturbations due

to the compressible nature of the medium.

Stagnation conditions are those that would exist if the flow at any points in a fluid stream

was isentropically brought to rest. If the entire flow is essentially isentropic and if the veloc-

ity is essentially zero at some point in the flow, then the stagnation conditions will be those

existing at the zero velocity point. All fluid properties at stagnation points are denoted with a

subscript 0, (·)0. For two points, being one of them at the stagnation condition, it can be shown

that density, pressure and temperature from both locations are related through the following

expressions,

ρ

ρ0
=

(
1+

γ−1

2
M2

) 1
γ−1

(2.2)

p

p0
=

(
1+

γ−1

2
M2

) γ
γ−1

(2.3)

T

T0
=

(
1+

γ−1

2
M2

)
(2.4)

where ρ0, p0 and T0 are the density, pressure and temperature at stagnation conditions, respec-

tively. The symbol M refers to the Mach number, a non-dimensional relation defined as,

M :=
|uuu|

c0
(2.5)

being |uuu| the modulus of the flow velocity and c0 the speed of the sound of an ideal gas, defined

as c0 :=
√

γRT0/M where R[J/K ·mol] is the ideal gas contant, i.e. R = 8.314472 J
K·mol and

M [kg/mol] is the molar mass of the gas, e.g. M =0.02897 kg/mol for air .

Now, we will derive two useful expressions relating pressure and density derivatives, what

will allow later to decrease the global complexity of the finite element formulation of the

isentropic problem. From Equations (2.2) and (2.3) one can easily get the following equality,

p0

p
=

(
ρ0

ρ

)γ
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which is in direct concordance with the fundamental expression in Equation (2.1). Then,

taking time derivatives in both sides of previous relation and recalling the equation of state

for an ideal gas, i.e., p0M = ρ0RT0, an expression which relates pressure and density time

derivatives can be found, yielding,

∂t p =
p0

ρ0
γ

(
1+

γ−1

2
M2

)−1

∂tρ =
RT0

M
γ

(
1+

γ−1

2
M2

)−1

∂tρ (2.6)

where we have used the short notation ∂t(·) for the time derivative,
∂ (·)
∂ t

. If, instead of the time

derivative, one takes the gradient, a similar expression arises,

∇∇∇p =
p0

ρ0
γ

(
1+

γ−1

2
M2

)−1

∇∇∇ρ =
RT0

M
γ

(
1+

γ−1

2
M2

)−1

∇∇∇ρ (2.7)

and both expressions can be simplified if we identify the speed of sound as,

c2 = c2
0

(
1+

γ−1

2
M2

)−1

(2.8)

Hence, we have shown that density and pressure derivatives are directly proportional under

the isentropic assumption. Now, Equations (2.6) and (2.7) can be rewritten as,

∂t p = c2∂tρ (2.9)

∇∇∇p = c2∇∇∇ρ (2.10)

and this explicit connection between pressure and density variations allows one to greatly

simplify the derivation of the final scheme.

2.3 The isentropic flow problem

The isentropic compressible equations are composed by the momentum and mass conserva-

tions equations, namely,

ρ
∂uuu

∂ t
+ρuuu ·∇∇∇uuu−µ∆uuu−

µ

3
∇∇∇(∇∇∇ ·uuu)+∇∇∇p = 000 in Ω× (0,T) (2.11a)

∂ρ

∂ t
+uuu ·∇∇∇ρ +ρ∇∇∇ ·uuu = 0 in Ω× (0,T ) (2.11b)

uuu = uuu0 in Ω, t = 0 (2.11c)

p = p0 in Ω, t = 0 (2.11d)



14 | Isentropic compressible Navier–Stokes equations

since, as we described above, the energy equation is mathematically uncoupled as we consider

the constant entropy problem. In these equations, uuu(xxx, t) and µ stand for the flow velocity and

fluid viscosity, respectively. As usual, bold characters refer to vector variables. The symbol

∆∆∆ refers to the laplacian operator. The problem still needs to be provided with boundary

conditions, a topic that we will discuss in detail in Chapter 4.

By using Equation (2.9), the continuity equation can be reformulated in terms of the sound

velocity and pressure. It yields,

1

ρc2

∂ p

∂ t
+

1

ρc2
(uuu ·∇∇∇)p+∇∇∇ ·uuu = 0 in Ω× (0,T ) (2.12)

Despite all the simplications introduced, the equations of the problem still depend on the

sound velocity and density. Calculating these two fields as implicit functions of the pair [uuu, p]

would definitely increase the complexity of the final scheme with new non-linearities. In or-

der to avoid this fact, Equations (2.2) and (2.8) are used for closing the problem so that the

proposed formulation only depends on velocity and pressure fields, what in practice reduces

the difficulty at the programming stage too. With respect to the incompressible Navier-Stokes

equations, we note that mainly the mass conservation equation is modified, as now we have

a temporal derivative and a convective term involving the pressure field. For the momentum

equation, just one additional viscous term needs to be taken into account, since the incom-

pressibility constraint no longer holds. Thus, the strong form of the isentropic compressible

Navier-Stokes problem is,

ρ
∂uuu

∂ t
+ρuuu ·∇∇∇uuu−µ∆uuu−

µ

3
∇∇∇(∇∇∇ ·uuu)+∇∇∇p = 000 in Ω× (0,T ) (2.13a)

1

ρc2

∂ p

∂ t
+

1

ρc2
uuu ·∇∇∇p+∇∇∇ ·uuu = 0 in Ω× (0,T) (2.13b)

uuu = uuu0 in Ω, t = 0 (2.13c)

p = p0 in Ω, t = 0 (2.13d)

together with a suitable set of boundary conditions. This is the problem we will analyze

throughout this work, which can be seen as a direct extension of the incompressible case.

2.3.1 Galerkin variational formulation

Let us now start the derivation of the method by obtaining the Galerkin variational or weak

form of the problem in hand, Equations (2.13a)–(2.13d) . We start by taking a vector test



2.3 The isentropic flow problem | 15

function vvv ∈ V d for the momentum equation and integrating it over the whole domain so that,

(ρvvv,∂tuuu)+(ρvvv,uuu ·∇∇∇uuu)−µ(vvv,∆uuu)−
µ

3
(vvv,∇∇∇(∇∇∇ ·uuu))+(vvv,∇∇∇p) = 0 (2.14)

As usual, the last three terms are integrated by parts in order to reduce the continuity require-

ments. Hence, one gets,

(ρvvv,∂tuuu)+(ρvvv,uuu ·∇∇∇uuu)+µ(∇∇∇vvv,,,∇∇∇uuu)+
µ

3
(∇∇∇ ··· vvv,,,∇∇∇ ···uuu)− (∇∇∇ ··· vvv,,, p)

=
〈

vvv,nnn
[
−pIII +µ∇∇∇uuu+

µ

3
(∇∇∇ ···uuu)III

]〉

Γ
= ⟨vvv,nnn ·σ(uuu, p)⟩Γ (2.15)

where we have identified the definition of the stress tensor, σ(uuu, p).

Taking now a scalar test function q∈Q for the continuity equation, one can directly write,

(
1

ρc2
q,∂t p

)
+

(
1

ρc2
q,uuu ·∇∇∇p

)
+(q,∇∇∇ ·uuu) = 0 (2.16)

and therefore the variational problem consists now in finding, uuu(t) ∈X d ≡ LLL2(0,T ;V d) and

p(t) ∈ Y ≡ L2(0,T ;H1(Ω)) such that

(ρvvv,∂tuuu)+(ρvvv,uuu ·∇∇∇uuu)+µ(∇∇∇vvv,,,∇∇∇uuu)+
µ

3
(∇∇∇ ··· vvv,,,∇∇∇ ···uuu)− (∇∇∇ ··· vvv, p)

= ⟨vvv,nnn ·σ(uuu, p)⟩Γ (2.17)
(

1

ρc2
q,∂t p

)
+

(
1

ρc2
q,uuu ·∇∇∇p

)
+(q,∇∇∇ ·uuu) = 0 (2.18)

∀ vvv ∈ V d ≡ HHH1(Ω) and q ∈Q ≡ L2(Ω).

Remark: Strictly speaking, the test function for the continuity equation lives in the space

L2(Ω), since no spatial derivative for this function appears in the problem stated in Equation

(2.18). As of now, the regularity requirements are stronger for the pressure p than for its asso-

ciated test function q. As we shall see later in Chapter 3, once we introduce the stabilization

technique for this problem, we will actually require q ∈ H1(Ω), which is the same functional

space as for the pressure, in space.

The problem above, can be reformulated in a more compact manner after introducing the

following form,

a : (X d ,Y ) × (V d,Q) −→ R

[uuu, p] , [vvv,q] .−→ a([uuu, p], [vvv,q]) (2.19)
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where, a([uuu, p], [vvv,q]) := (ρvvv,∂tuuu)+(ρvvv,uuu ·∇∇∇uuu)+µ(∇∇∇vvv,,,∇∇∇uuu)+ µ
3 (∇∇∇ ··· vvv,,,∇∇∇ ···uuu)− (∇∇∇ ··· vvv, p)+(

1
ρc2 q,∂t p

)
+
(

1
ρc2 q,uuu ·∇∇∇p

)
+(q,∇∇∇ ·uuu).

Therefore the semidiscrete problem reads now as,

Find uuu(t) ∈ LLL2(0,T ;V d) and p(t) ∈ L2(0,T ;H1(Ω) such that,

a([uuu, p], [vvv,q]) = ⟨vvv,nnn ·σ(uuu, p)⟩Γ (2.20)

∀ vvv ∈ V d and q ∈Q.

Remark: Later we will provide a technique to impose the boundary conditions for the isen-

tropic compressible problem. Then, the right hand side in previous problem will be modified

so that to include the proper terms.



Chapter 3
Stabilization within the Variational

MultiScale (VMS) framework

3.1 Overview

The numerical approximation of the Navier-Stokes equations can be easily obtained using the

Galerkin approximation. Unfortunately, the standard Galerkin approach might not be the best

approximation to compute the solution of the problem. As we already pointed out in the intro-

ductory chapter, this is mainly due to two reasons: first a compatibility is required between the

pressure and velocity finite element spaces, and second the effect of the convective term when

this one dominates the problem, which can lead to numerical instabilities. A similar case

scenario needs to be considered for the isentropic Navier-Stokes problem, which is nothing

but an extension of the incompressible case. In this chapter we present an stabilization tech-

nique based on the Orthogonal Subgrid Scale concept, widely analyzed in different situations

[20, 22] . We aim at proposing an extension of this concept to the isentropic compressible

case. We will start from the roots of the VMS framework, to end up stating the stabilized

problem to be considered to the end of the work. We refer to [26] for a complete review of the

VMS framework together with examples of application and being this chapter based on such

publication.

3.2 Key idea of VMS: scale splitting

Let for this section the time variable to be continuous and let us also forget about the boundary

conditions, e.g. taking nnn ·σ([uuu, p]) = ttt = 000 for the moment in (2.20). Additionally, let also

V d
h ⊂ V d ≡ [H1(Ω)]d and Qh ⊂ Q ≡ H1(Ω) be the finite element spaces to approximate
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the velocity and the pressure, respectively, in space. The starting and key idea of the VMS

framework is to split the spaces V d and Q at the continous level as,

V d = V d
h⊕ V̂

d
(3.1a)

Q = Qh⊕ Q̂ (3.1b)

where V̂
d

and Q̂ are any complement to the finite element spaces in V d and Q, respectively.

The complementary spaces are commonly referred as subgrid spaces. The splitting in

(3.1a) and (3.1b) induces the two scale decomposition of unknows and test functions. Thus,

uuu=== uuuh+ ûuu, p = ph+ p̂ and vvv= vvvh+ v̂vv, q= qh+ q̂, with uuuh,vvvh ∈ V d
h , ph,qh ∈Qh and ûuu, v̂vv∈ V̂

d

, p̂, q̂ ∈ Q̂. Therefore we may write now the continuous problem as follows,

Find uuuh ∈ V d
h , ph ∈Qh ,ûuu ∈ V̂

d
and p̂ ∈ Q̂ such that,

a([uuuh, ph], [vvvh,qh])+a([ûuu, p̂], [vvvh,qh]) = ℓ(vvvh,qh) ∀ [vvvh,qh] ∈ V
d
h×Qh (3.2a)

a([uuuh, ph], [v̂vv, q̂])+a(ûuu, p̂], [v̂vv, q̂]) = ℓ(v̂vv, q̂) ∀ [v̂vv, q̂] ∈ V̂
d
× Q̂ (3.2b)

The reader has to note that adding up both problems we recover the initial formulation

stated in Equation (2.20) and that no approximation has been done yet. This is an splitting at

the pure continous level. In fact, if one takes V̂
d
= /0/0/0 and Q̂ = /0 (empty sets) then it would

yield the standard Galerkin method. But our goal in this section is to find a better definition

for such spaces when the standard method shows undesired numerical instabilities. Likewise,

the approximation to the subgrid spaces V̂
d
, Q̂ will be a consequence of the approximation to

ûuu and p̂. The way these variables are modeled defines the particular numerical approximation

to the problem. In the literature, it is common to identify the finite element components of

the solution as the resolved scales, whereas the subscales are the unresolved scales. Similarly,

Equation (3.2a) is referred as equation for the finite element scales, and Equation (3.2b) is

named equation for the subgrid scales.

3.3 Stabilization of the isentropic Navier-Stokes equations

In this section our objective is to propose a stabilized formulation which can circumvent the

problem associated to the numerical instabilities of the standard Galerkin formulation. Gener-

ally speaking, we will proceed as follows: first we will isolate the terms involving the subscales

in the finite element scales equation. Later, we will actually define the approximation chosen

to compute the subgrid scales so that, when we introduce such definition in the previous iso-

lated terms, we will be able to finally obtain a closed form for the stabilized problem.



3.3 Stabilization of the isentropic Navier-Stokes equations | 19

Differently as it was originally proposed for the incompressible Navier-Stokes problem,

we aim at providing a closed formulation considering both velocity and pressure subscales.

3.3.1 Finite element scales equation

We will work first with the equation for the finite element scales, i.e., Equation (3.2a). Let us

write such equation in its complete form, that is to say, separating the momentun and mass

conservation equations. Thus,

(ρvvvh,∂tuuuh)+(ρvvvh,∂t ûuu)+(ρvvvh,uuu ·∇∇∇uuuh)+(ρvvvh,uuu ·∇∇∇ûuu)+µ(∇∇∇vvvh,∇∇∇uuuh)+µ(∇∇∇vvvh,∇∇∇ûuu)

+
µ

3
(∇∇∇ · vvvh,∇∇∇ ·uuuh)+

µ

3
(∇∇∇ · vvvh,∇∇∇ · ûuu)− (∇∇∇ · vvvh, ph)− (∇∇∇ · vvvh, p̂) = 0

(3.3a)
(

1

c2ρ
qh,∂t ph

)
+

(
1

c2ρ
qh,∂t p̂

)
+

(
1

c2ρ
qh,uuu ·∇∇∇ph

)
+

(
1

c2ρ
qh,uuu ·∇∇∇p̂

)

+(qh,∇∇∇ ·uuuh)+(qh,∇∇∇ · ûuu) = 0

(3.3b)

Now, let us integrate by parts those terms involving spatial derivatives of the subgrid scales,

i.e., where there are varibles with the symbol ^. This trick is convenient as it allows to avoid

modelling derivatives of the subscales, what would lead to a more involved formulation. An-

other initial approximation which is usually done is to assume that the subscales vanish on the

element boundaries. This is in fact equivalent to considering that the subcales actually behave

as bubble functions [26], and then ûuu = 000, p̂ = 0 on ∂K, ∀K ∈Th. Hence, it yields,

(ρvvvh,∂tuuuh)+(ρvvvh,∂t ûuu)+(ρvvvh,uuu ·∇∇∇uuuh)− (ρuuu ·∇∇∇vvvh, ûuu)+µ(∇∇∇vvvh,∇∇∇uuuh)− (∆∆∆vvv, ûuu)

+
µ

3
(∇∇∇ · vvvh,∇∇∇ ·uuuh)−

µ

3
(∇∇∇(∇∇∇ · vvvh), ûuu)− (∇∇∇ · vvvh, ph)− (∇∇∇ · vvvh, p̂) = 0

(3.4a)
(

1

c2ρ
qh,δt ph

)
+

(
1

c2ρ
qh,∂t p̂

)
+

(
1

c2ρ
qh,uuu ·∇∇∇ph

)
−

(
1

c2ρ
uuu ·∇∇∇qh, p̂

)

+(qh∇∇∇ ·uuuh)− (∇∇∇qh, ûuu) = 0

(3.4b)

where we have neglected the terms that could involve derivatives on the velocity or density

when integrating by parts, since they might complicate the behavior of the formulation and

sometimes even lead to other kind of instabilities.

Second order derivatives of finite element functions within element interiors will be ne-
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glected too. Those terms are exactly zero for linear elements and for higher order interpo-

lations disregarding them leads to a method which is still consistent (see Remarks in [17]).

Therefore, the equations for the finite element scales turn out to be,

(ρvvvh,∂tuuuh)+(ρvvvh,∂t ûuu)+(ρvvvh,uuu ·∇∇∇uuuh)− (ρuuu ·∇∇∇vvvh, ûuu)+µ(∇∇∇vvvh,∇∇∇uuuh)

+
µ

3
(∇∇∇ · vvvh,∇∇∇ ·uuuh)− (∇∇∇ · vvvh, ph)− (∇∇∇ · vvvh, p̂) = 0 (3.5a)

(
1

c2ρ
qh,∂t ph

)
+

(
1

c2ρ
qh,∂t p̂

)
+

(
1

c2ρ
qh,uuu ·∇∇∇ph

)
−

(
1

c2ρ
uuu ·∇∇∇qh, p̂

)

+(qh∇∇∇ ·uuuh)− (∇∇∇qh, ûuu) = 0 (3.5b)

In the next subsection, we will work on the subgrid scales equation in order to provide a

way to numerically compute ûuu and p̂.

3.3.2 Subgrid scales equation

Similarly as the finite element equations described above can be understood as the projection

of the original equations onto the finite element spaces (i.e. by multiplying the equation by a

test function in the proper space and integrating over the whole domain), the equations for the

subscales are obtained by projecting the original equations onto the corresponding spaces V̂
d

and Q̂. Let us denote by Π̂ the projection operator onto any of these subgrid spaces. Hence,

the subscales equations can also be written from Equations (2.13a)–(2.13b) as,

Π̂
[
ρ∂t ûuu+ρuuu ·∇∇∇ûuu−µ∆∆∆ûuu−

µ

3
∇∇∇(∇∇∇ · ûuu)+∇∇∇p̂

]
= Π̂ [rrrm(ph,uuuh)] (3.6a)

Π̂

[
1

c2ρ
∂t p̂+

1

c2ρ
uuu ·∇∇∇p̂+∇ · ûuu

]
= Π̂ [rc(ph,uuuh)] (3.6b)

where we have defined the finite element residuals of the momentum and mass conservation

equations respectively as,

rrrm(ph,uuuh) =−ρ∂tuuuh−ρuuu ·∇∇∇uuuh +µ∆∆∆uuuh +
µ

3
∇∇∇(∇∇∇ ·uuuh)−∇∇∇ph (3.7)

rc(ph,uuuh) =−
1

c2ρ
∂t ph−

1

c2ρ
uuu ·∇∇∇ph−∇ ·uuuh (3.8)

Note that the combination of these expressions is exactly equivalent to (3.2b). Let us now

rewrite the previous Equations (3.6a)–(3.6b) upon the definition of the following spatial op-

erators, Lm(ûuu, p̂) := ρuuu ·∇∇∇ûuu−µ∆∆∆ûuu− µ
3 ∇∇∇(∇∇∇ · ûuu)+∇∇∇p̂ and Lc(ûuu, p̂) := 1

c2ρ
uuu ·∇∇∇p̂+∇ · ûuu. It
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yields,

Π̂ [ρ∂t ûuu+Lm(ûuu, p̂)] = Π̂ [rrrm(ph,uuuh)] (3.9a)

Π̂

[
1

c2ρ
∂t p̂+Lc(ûuu, p̂)

]
= Π̂ [rc(ph,uuuh)] (3.9b)

Up to this point, the only approximation introduced for the subscales was to assume that

they vanish on element boundaries. However, this approximation is not sufficient to obtain

a numerical scheme since the spaces of subscales, i.e. V̂
d

and Q̂, are still infinite dimen-

sional. The additional assumption we make is based on replacing the spatial operator by an

algebraic operator which can be easily computed and inverted. The proposed approximation

is to introduce a diagonal matrix τττ = diag(τ1,τ2), usually referred as matrix of stabilization

parameters, which is defined over each element, so that the projection equations (3.9a)–(3.9b)

could become,

ρ∂t ûuu+ τ−1
1,Kûuu = Π̂ [rrrm(ph,uuuh)] (3.10a)

1

c2ρ
∂t p̂+ τ−1

2,K p̂ = Π̂ [rc(ph,uuuh)] (3.10b)

Remark: Several clarifying comments are in order when performing this step,

• Note that we have dropped the projection operator from the left hand side of the equa-

tions. We assume that,

Π̂
[
ρ∂t ûuu+ τ−1

1,Kûuu
]
≃ ρ∂t ûuu+ τ−1

1,Kûuu

Π̂

[
1

c2ρ
∂t p̂+ τ−1

2,K p̂

]
≃

1

c2ρ
∂t p̂+ τ−1

2,K p̂

This might not be necessarily true since we cannot guarantee that ρ∂t ûuu∈ V̂
d
, τ−1

1 ûuu∈ V̂
d

and 1
c2ρ

∂t p̂∈ Q̂, τ−1
2 p̂∈ Q̂. This is due to the fact that, in principle, both c and ρ are not

constants of the problem. In fact, they were unknowns, initially. But it is important to

note that the formulation proposed in Section 2.1 allows to drop the new non-linearities

that both variables would bring to the problem. Therefore, if one assumed that c and ρ

behave as constants, then the approximation introduced is valid.

• We have assumed that τ1,Kûuu≈Lm(ûuu, p̂) and τ2,K p̂≈Lc(ûuu, p̂). It is important to remark

that this approximation has to be understood in such a way that there exist values of τ1,K

and τ2,K for which those terms have (approximately) the same L2-norm over an element

K ⊂ Th [17].
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Another crucial point is how to treat the time-dependency of the subscales. A simple approach

is to neglect the time derivatives of the subscales. In this situation, the subcales are named

quasi-static in constrast to dynamic subscales, when they are considered to be time-dependent.

We choose for simplicity the quasi-static approach, and therefore Equations (3.10a) – (3.10b)

yield,

ûuu = τ1,KΠ̂ [rrrm(ph,uuuh)] (3.11a)

p̂ = τ2,KΠ̂ [rc(ph,uuuh)] (3.11b)

which finally provide a close expression for the computation of the subscales.

Remark: The approach of neglecting the time derivative of the subscales is not strictly con-

sistent because it induces a stady-state solution which is time-step dependent. Such behaviour

can be unstable (in time) for anisotropic space-time discretization [3, 8]. Generally speaking,

quasi-static stabilized VMS methods may become unstable when the time step size is reduced

without remeshing. However, for the sake of simplicity, we consider the quasi-static approach.

Within the VMS framework, different type of methods arise when we provide distinct

definitions of the projection operator Π̂ . When one considers the space of subscales as that

of the residuals, that is to say, to choose Π̂ = I (the identity operator) when applied to the

finite element residuals, the method which yields is termed Algebraic SubGrid-Scale (ASGS).

Although this method is the simplest one, it is not really suitable for designing fractional step

schemes, which is the real objective of this work. The ASGS approach combined with a

segregation technique would involve to compute the inverse of matrices with a wide stencial,

which is usually computationally unaffordable. Moreover, this technique would lead to a non-

symmetric formulation [2].

When the spaces of subscales V̂
d

and Q̂, that is, the spaces where ûuu and p̂ belong

for t fixed, are enforced to be L2-orthogonal to the finite element spaces V d
h and Qh, the

method is termed Orthogonal SubGrid-Scale (OSGS or simply OSS). It corresponds to taking

Π̂ = Π⊥h = I−Πh where Πh is the projection operator onto the finite element spaces. This

definition makes the subscales active in regions which cannot be resolved by the finite ele-

ment mesh. Generally speaking, compared to the ASGS method, the OSS approach is more

computationally demanding and it is more vulnerable, in the sense that it needs to be properly

tunned. On the contrary it provides a better accuracy and matrices with a narrower stencil.

The OSS method is consistent, in the way that it is commonly understood in finite element

theory, that is to say, the stabilization terms which modify the variational form of the problem

tend to vanish as a finner discretization is considered.

The stabilization parameters τ1,K and τ2,K defined over each element K ∈Th contribute to
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provide the stabilization for the weak forms of the momentum and mass conservation equa-

tions. Their definition is based on a Fourier analysis (see [17]), which is not part of the scope

of this master thesis. They are computed as:

τ1,K =

[
c1

µ

h2
+ c2ρ

|uuuh|K
h

]−1

(3.12a)

τ2,K =
h2

c1τ1,K
(3.12b)

where |uuuh|K is the mean Euclidean norm of the velocity in each element K ∈ Th. The algo-

rithmic constants c1 and c2 depend on the polynomial order of the interpolation. For linear

elements, it is set c1 = 4 and c2 = 2. At the programming stage, the reader should note that

the values of the stabilization parameter would be needed at each integration point and, as a

consequence, the values of the density and velocity too.

3.3.3 Term-by-term stabilized formulation

For the moment, we will restrict ourselves to the OSS approach, i.e. we take Π̂ = Π⊥h in

(3.11a) –(3.11b). Hence, the subscales are the result of computing,

ûuu = τ1,KΠ⊥h [rrrm(ph,uuuh)] (3.13a)

p̂ = τ2,KΠ⊥h [rc(ph,uuuh)] (3.13b)

and when those expressions are inserted into Equations (3.5a)–(3.5b), the following formula-

tion arises,

(ρvvvh,∂tuuuh)+(ρvvvh,uuu ·∇∇∇uuuh)+µ(∇∇∇vvvh,∇∇∇uuuh)+
µ

3
(∇∇∇ · vvvh,∇∇∇ ·uuuh)− (∇∇∇ · vvvh, ph)

− ∑
K∈Th

〈
ρuuu ·∇∇∇vvvh,τ1,KΠ⊥h [rrrm(ph,uuuh)]

〉

K
− ∑

K∈Th

〈
∇∇∇ · vvvh,τ2,KΠ⊥h [rc(ph,uuuh)]

〉

K
= 0

(3.14a)
(

1

c2ρ
qh,∂t ph

)
+

(
1

c2ρ
qh,uuu ·∇∇∇ph

)
+(qh∇∇∇ ·uuuh)

− ∑
K∈Th

〈
1

c2ρ
uuu ·∇∇∇qh,τ2,KΠ⊥h [rc(ph,uuuh)]

〉

K

− ∑
K∈Th

〈
∇∇∇qh,τ1,KΠ⊥h [rrrm(ph,uuuh)]

〉

K
= 0

(3.14b)

where we have introduced the notation ⟨·, ·⟩K for the product over an element domain K ∈Th.

Remark: For the sake of simplicity, when computing the orthogonal projection of the
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residuals in both equations, we will assume that the orthogonal projection of the temporal

terms vanishes. That is to say,

Π⊥h [−ρ∂tuuuh] =−ρ∂tuuuh−Πh [−ρ∂tuuuh] =−ρ∂tuuuh +(vvvh,ρ∂tuuuh)≃ 0 (3.15a)

Π⊥h

[
−

1

c2ρ
∂t ph

]
=−

1

c2ρ
∂t ph−Πh

[
−

1

c2ρ
∂t ph

]
=−

1

c2ρ
∂t ph +

(
qh,

1

c2ρ
∂t ph

)
≃ 0

(3.15b)

in other words, we will suppose that both terms already belong to the finite element spaces

V d
h and Qh, and hence, their Πh projections are precisely the functions themselves. This

assumption gives place to a weakly consistent method.

Taking into account this information, expanding the finite element residuals and neglecting

the terms involving second derivatives (for reasons already discussed), the final stabilized

equations using the OSS approach yield,

(ρvvvh,∂tuuuh)+(ρvvvh,uuu ·∇∇∇uuuh)+µ(∇∇∇vvvh,∇∇∇uuuh)+
µ

3
(∇∇∇ · vvvh,∇∇∇ ·uuuh)− (∇∇∇ · vvvh, ph)

+ ∑
K∈Th

〈
ρuuu ·∇∇∇vvvh,τ1,KΠ⊥h [ρuuu ·∇∇∇uuuh +∇∇∇ph]

〉

K
+ ∑

K∈Th

〈
∇∇∇ · vvvh,τ2,KΠ⊥h

[
1

c2ρ
uuu ·∇∇∇ph +∇∇∇ ·uuuh

]〉

K

= 0

(3.16a)
(

1

c2ρ
qh,∂t ph

)
+

(
1

c2ρ
qh,uuu ·∇∇∇ph

)
+(qh,∇∇∇ ·uuuh)

+ ∑
K∈Th

〈
1

c2ρ
uuu ·∇∇∇qh,τ2,KΠ⊥h

[
1

c2ρ
uuu ·∇∇∇ph +∇∇∇ ·uuuh

]〉

K

+ ∑
K∈Th

〈
∇∇∇qh,τ1,KΠ⊥h [ρuuu ·∇∇∇uuuh +∇∇∇ph]

〉

K
= 0

(3.16b)

Once arrived to this problem, we can make some further modifications provided the com-

pleteness of the method is maintained, that it to say, these modifications do not alter the fact

that the exact solution is still a solution of the discrete problem. As the reader might have

noticed, the advection velocity in the equations is still uuu. The usual approach is to replace

such advection velocity directly by the finite element one, i.e., uuuh, what physically means that

the influence of the subscales in the transport of momentum is neglected [24].

Additionally, there is a slight modification of the previous scheme which consists in ne-

glecting crossed terms in the stabilization integrals, since those terms do not enhance the

stability of the formulation. The resultant method is usually referred as split OSS method or

term-by-term stabilization (see for instace [13]). In fact, this possibility, when applied to the

incompressible Navier-Stokes problem, was analyzed and turned out to have even (slightly)

improved stability with respect to the original OSS scheme [7, 21]. This split OSS approach is
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not completely residual-based, and hence, it is not consistent, being consistency understood in

the finite element context. The key idea behind this technique is the space where the subscales

are defined, which we recall that is the orthogonal complement to the finite element space.

This fact is what in practice ensures that the term-by-term formulation below has an optimal

consistency error [18]. Finally, we arrive at the following split OSS semi-discrete problem,

(ρvvvh,∂tuuuh)+(ρvvvh,uuuh ·∇∇∇uuuh)+µ(∇∇∇vvvh,∇∇∇uuuh)+
µ

3
(∇∇∇ · vvvh,∇∇∇ ·uuuh)− (∇∇∇ · vvvh, ph)

+ ∑
K∈Th

〈
ρuuuh ·∇∇∇vvvh,τ1,KΠ⊥h [ρuuuh ·∇∇∇uuuh]

〉

K
+ ∑

K∈Th

〈
∇∇∇ · vvvh,τ2,KΠ⊥h [∇∇∇ ·uuuh]

〉

K
= 0 (3.17a)

(
1

c2ρ
qh,∂t ph

)
+

(
1

c2ρ
qh,uuuh ·∇∇∇ph

)
+(qh,∇∇∇ ·uuuh)+ ∑

K∈Th

〈
∇∇∇qh,τ1,KΠ⊥h [∇∇∇ph]

〉

K

+ ∑
K∈Th

〈
1

c2ρ
uuuh ·∇∇∇qh,τ2,KΠ⊥h

[
1

c2ρ
uuuh ·∇∇∇ph

]〉

K

= 0 (3.17b)

To conclude this section, let us be more formal and introduce the following stabilization

forms for the left and right hand side of the problem in hand,

as : (V d
h,Qh) × (V d

h,Qh) −→ R

[uuuh, ph] , [vvvh,qh] .−→ as([uuuh, ph], [vvvh,qh]) := ∑
K∈Th

〈
ρuuuh ·∇∇∇vvvh,τ1,Kρuuuh ·∇∇∇uuuh

〉
K

+ ∑
K∈Th

〈
∇∇∇ · vvvh,τ2,K∇∇∇ ·uuuh

〉
K
+ ∑

K∈Th

〈
∇∇∇qh,τ1,K∇∇∇ph

〉
K

+ ∑
K∈Th

〈
1

c²ρ
uuuh ·∇∇∇qh,τ2,K

1

c²ρ
uuuh ·∇∇∇ph

〉

K

(3.18)

ℓs : V d
h × Qh −→ R

vvvh , qh .−→ ℓs([vvvh,qh]) := ∑
K∈Th

〈
ρuuuh ·∇∇∇vvvh,τ1,KΠh[ρuuuh ·∇∇∇uuuh]

〉

+ ∑
K∈Th

〈
∇∇∇ · vvvh,τ2,KΠh[∇∇∇ ·uuuh]

〉
K
+ ∑

K∈Th

〈
∇∇∇qh,τ1,KΠh[∇∇∇ph]

〉
K

+ ∑
K∈Th

〈
1

c²ρ
uuuh ·∇∇∇qh,τ2,KΠh

[
1

c²ρ
uuuh ·∇∇∇ph

]〉

K

(3.19)

so that the stabilized problem to be solved, including the boundary condition term yields,
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Find uuuh ∈ LLL2(0,T ;V d
h) and ph ∈ L2(0,T ;Qh) such that,

a([uuuh, ph], [vvvh,qh])+as([uuuh, ph], [vvvh,qh]) = ℓs([vvvh,qh])+ ⟨vvvh,nnn ·σ(uuuh, ph)⟩Γ (3.20)

∀ vvvh ∈ V d
h ⊂ V d ≡ HHH1(Ω) and qh ∈Qh ⊂Q ≡ H1(Ω).

Remark: we have moved the terms involving the projection onto the finite element spaces

to the right hand side of the problem in (3.20). This is because we will treat them explicitly in

a fixed point manner, i.e., we will compute them based on the values of velocity and pressure

from previous time steps within the non-linearity loop. This allows even a further reduction

of the general complexity of the method.



Chapter 4
Imposition of boundary conditions for the

isentropic Navier–Stokes equations

4.1 Introduction

Up to now, we have proposed the isentropic compressible formulation as an extesion of the

incompressible Navier stokes case. This allows one to forget about solving the fully com-

pressible problem. Although the elaborated presciption of boundary conditions of the com-

plete compressible case is avoided with the present formulation (recall that Dirichlet boundary

conditions need to be imposed according to flow regime), there are still new challenges to take

into account as we want to solve for the flow and acoustic scales at once. As we will see, a

special type of condition must be imposed for the pressure field. The main purpose of such

condition is to allow the sound waves to smoothly leave the domain external boundaries. If

this did not happen, the solution would be completely polluted by the backscattering of such

waves.

In this chapter we review the method proposed in [41] for the monolithic solution of the

problem. This technique allows one to prescribe flow and non-reflecting boundary conditions

in an unified and compatible way.

4.2 Unknown splitting: mean and acoustic components

The starting idea of the method is the splitting of the two unknown fields of the problem, i.e.

velocity and pressure, into mean and oscillatory components, in a similar fashion as it is done
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in some turbulence models. Thus, we have,

uuu(xxx, t) = ūuu(xxx, t)+uuu′(xxx, t) (4.1a)

p(xxx, t) = p̄(xxx, t)+ p′(xxx, t) (4.1b)

where the mean variables are mathematically described as,

ūuu(xxx, t) =
1

Tw

∫ t

t−Tw

uuu(xxx,s) ds (4.2a)

p̄(xxx, t) =
1

Tw

∫ t

t−Tw

p̄(xxx,s) ds (4.2b)

being Tw and appropiate time window. In the following, we will identify the oscillatory compo-

nents with the acoustic fluctuations and the mean variables with the flow variables. Likewise,

these mean flow quantities are allowed to evolve during the problem calculation and they do

not need to be homogeneous along the boundary. On the contrary, high frequency variations

of these variables are not allowed as they would interfere with uuu′(xxx, t) and p′(xxx, t).

4.3 Description of the applied boundary conditions

4.3.1 Boundary decomposition

Let us introduce a boundary splitting at the continuous level, in order to treat the flow and

acoustic boundary conditions in a suitable manner. For a generic domain Ω, we start by

dividing its boundary Γ ≡ ∂Ω into three different disjoint subsets namely, ΓS, ΓL and ΓO.

These subsets are such that ΓS∩ΓL = /0, ΓL∩ΓO = /0, ΓO∩ΓS = /0 and ΓS∪ΓL∪ΓO = Γ. The

boundary ΓS refers to the solid boundary, where usually the velocity is prescribed to zero, ΓL

is identified with the lateral boundaries plus inlet, and ΓO stands for the outflow boundary. See

Figure 4.1 down below for details.

Whereas the boundaries ΓS and ΓO have a clear physical meaning, i.e. the possible solid

and outer boundaries, ΓL is defined for numerical convenience. This boundary is composed of

any frontier with at least one component of the velocity prescribed to a known value, meaning

that it can also entail the inlet boundary. This artificial truncation of the domain, which is

performed with the objective of limiting the computational cost, does not assume that the

affected boundaries are part of the outflow because this may not properly represent the physics

of the flow and could even lead to numerical instabilities [40]. On ΓL and ΓO, which are to

be located sufficiently far, it is assumed that the acoustic scales are dominant. This basically

means that, using the typical traction boundary condition applied to the whole variable on the
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Figure 4.1: Schematic definition of the boundaries of the computational domain [40].

outlet frontier, would lead to the reflection of waves into the computational domain. Hence, a

non-reflecting numerical technique will be considered, similarly as described in [29].

4.3.2 Non-reflecting and weak boundary conditions

Let us provide now a detailed description of the boundary conditions to be imposed for the

problem in hand. We recall that the proposed methodology aims at providing a compatible

technique for flow and acoustic components. This is to be made on ΓL and ΓO based on a weak

prescription of the Dirichlet conditions plus a definition of a Sommerfled type non-reflecting

boundary condition (NRBC).

First the reader should note that, having in mind the field decomposition introduced in

(4.1a)–(4.1b) and the boundary splitting just explained above, the boundary term from the

momentum conservation equation in (2.20) can be rewritten as,

−⟨vvv,nnn ·σ(uuu, p)⟩Γ =−⟨vvv,nnn ·σ(uuu, p)⟩ΓS
−⟨vvv,nnn ·σ(uuu, p)⟩ΓL

−⟨vvv,nnn ·σ(uuu, p)⟩ΓO

=−⟨vvv,nnn ·σ(uuu, p)⟩ΓS
−⟨vvv,nnn ·σ(ūuu, p̄)⟩ΓL

−
〈
vvv,nnn ·σ(uuu′, p′)

〉
ΓL

−⟨vvv,nnn ·σ(ūuu, p̄)⟩ΓO
−
〈
vvv,nnn ·σ(uuu′, p′)

〉
ΓO

(4.3)

Let us now introduce the formulation of the boundary conditions for the problem in hand:

1. On the solid boundary, i.e. ΓS, the velocity is assumed to be known and it will be

prescribed in a strong form:

uuu = ūuu+uuu′ = uuus on ΓS (4.4)
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2. On the frontiers belonging to ΓL, distinct conditions are to be enforced:

• The mean value of the velocity is prescribed to the flow inlet velocity,

ūuu = uuuL on ΓL (4.5)

• A Sommerfeld-like non-reflecting boundary condition (NRBC) is used for the

acoustic component of the velocity field. In the normal direction to the bound-

ary we define,

nnn ·uuu′ =−
1

ρc
nnn · [nnn ·σ(uuu′, p′)] on ΓL (4.6)

being nnn the unit outward normal to ΓL. For the tangential direction we write,

mmm · [nnn ·σ(uuu′, p′)] = 0 on ΓL (4.7)

for any vector mmm in the tangent direction to ΓL.

3. Finally, on the outflow boundary ΓO, the following conditions are going to be enforced.

• For the mean component, the usual approach of prescribing the traction is used,

nnn ·σ(ūuu, p̄) = tttO on ΓO (4.8)

• The same approach as in ΓL is used now for the fluctuating component. A Sommerfeld-

like condition is used in the normal direction and a zero traction is prescribed in

the tangential direction. Then,

nnn ·uuu′ =−
1

ρc
nnn · [nnn ·σ(uuu′, p′)] on ΓO (4.9)

mmm · [nnn ·σ(uuu′, p′)] = 0 on ΓO (4.10)

Several remarks are now in order for the reader:

• The solid boundary ΓS is a classical strong-Dirichlet type boundary. As we prescribe

uuu = uuus in a strong way on this boundary, the test functions will have a zero value on ΓS

and therefore the term ⟨·, ·⟩ΓS
in Equation (4.3) vanishes.

• On ΓL we have stated Dirichlet-type boundary conditions for the mean velocity ūuu and

non-reflecting boundary conditions for the fluctuating part uuu′. The prescription of ūuu= uuuL
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will be done weakly through the popular Nitche’s method which provides a symmetric

and better conditioned problem.

• ΓO is a boundary with natural boundary conditions prescribed for ūuu and Sommerfeld

condition for uuu′. All these conditions will be prescribed in a weak sense.

• For inviscid flows, or when the viscous terms appearing in the definition of the stress

tensor are neglected, the condition on the normal component of the fluctuating part of

the velocity uuu′ reduces to a Sommerfeld condition of the form, p′ = ρc(uuu′ ·nnn).

Taking now into account these definitions and remarks, Equation (4.3) becomes,

−⟨vvv,nnn ·σ(uuu, p)⟩Γ =−⟨vvv,nnn ·σ(ūuu, p̄)⟩ΓL
+
〈
vvv ·nnn,ρcuuu′ ·nnn

〉
ΓL

−⟨vvv, tttO⟩ΓO
+
〈
vvv ·nnn,ρcuuu′ ·nnn

〉
ΓO

(4.11)

where the term over ΓS is removed as we impose the velocity value in a strong manner. We

still need to prescribe ūuu = uuuL weakly. As introduced above, we consider the Nitche’s method

for this purpose. Hence, the boundary term takes now the form,

−⟨vvv,nnn ·σ(uuu, p)⟩Γ = −⟨vvv,nnn ·σ(ūuu, p̄)⟩ΓL
+
〈
vvv ·nnn,ρcuuu′ ·nnn

〉
ΓL

+
〈
vvv ·nnn,ρcuuu′ ·nnn

〉
ΓO

−⟨ūuu−uuuL,nnn ·σ(vvv,q)⟩ΓL
+β

µp

lp
⟨vvv, ūuu−uuuL⟩ΓL

+ ⟨vvv, tttO⟩ΓO
(4.12)

being β , µp and lp numerical parameters. The first one is identified with the penalty dimen-

sionaless parameter, to be chosen by the user. The second one has units of viscosity and the

latter units of length. As discussed in [19], the parameters µp and lp can be later computed

as µp = µ + |uuu|h and lp = h once the finite element approximation is introduced, being h the

element size of the mesh. As one can note, there are several terms in Equation (4.12) that

are known and therefore can be taken to the right hand side of the problem. Thus, let us now

group those boundary terms introducing the following forms for the finite element unknowns,

ab([uuuh, ph], [vvvh,qh]) :=−⟨vvvh,nnn ·σ(ūuuh, p̄h)⟩ΓL
+
〈
vvvh ·nnn,ρcuuu′h ·nnn

〉
ΓL∪ΓO

+β
µp

lp
⟨vvvh, ūuuh⟩ΓL

−⟨ūuuh,nnn ·σ(vvvh,qh)⟩ΓL
(4.13)

ℓb([vvvh,qh]) :=⟨vvvh, tttO⟩ΓO
−⟨uuuL,nnn ·σ(vvvh,qh)⟩ΓL

+β
µp

lp
⟨vvvh,uuuL⟩ΓL

(4.14)

which will go to the left and right hand side of the problem, respectively.

As the reader might note, we have not provided yet a discrete expression to compute the

mean and fluctuating components of the unknows, namely [ūuu, p̄] and [uuu′, p′]. This is precisely
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the last ingredient of the proposed isentropic compressible formulation. In Equation (4.2a)–

(4.2b) we introduced the concept of time window. At the discrete level, it is computed as

Tw = Nwδ t being Nw a certain amount of time steps. It is proposed to use the trapezoidal rule

for integration, and when a second order scheme is to be used in time, the expressions for the

mean velocity and pressure are, respectively,

ūuun+1
h =

δ t

Tw

(
1

2
uuun+1

h +
n

∑
k=n−Nw+2

uuuk
h +

1

2
uuun−Nw+1

h

)

(4.15)

p̄n+1
h =

δ t

Tw

(
1

2
pn+1

h +
n

∑
k=n−Nw+2

pk
h +

1

2
pn−Nw+1

h

)

(4.16)

and these expressions keep the temporal integration implicit and second order accurate. How-

ever, it is important to run several time steps (Nw) prior to the application of the present for-

mulation. This is due to the sharp nature of the pressure field at initial time steps together with

the absence of minimally developed mean flow.

Those definitions for the mean variables, directly imply that the boundary forms from

Equations (4.13) , (4.14) take now the form,

an+1
b ([uuuh, ph], [vvvh,qh]) =

1

2Nw

〈
vvvh,nnnpn+1

h

〉
ΓL
−

µ

2Nw

〈
vvvh,nnn ·∇∇∇uuun+1

h

〉
ΓL

−
µ

6Nw

〈
vvvh,nnn(∇∇∇ ···uuun+1

h )
〉

ΓL
+

1

2Nw

〈
uuun+1

h ,nnnqh

〉
ΓL

−
µ

2Nw

〈
uuun+1

h ,nnn ·∇∇∇vvvh

〉
ΓL
−

µ

6Nw

〈
uuun+1

h ,nnn(∇∇∇ ··· vvvh)
〉

ΓL

+

(
1−

1

2Nw

)〈
ρcvvvh ·nnn,uuu

n+1
h ·nnn

〉
ΓL∪ΓO

+
β

2Nw

µp

lp

〈
vvvh,uuu

n+1
h

〉
ΓL

(4.17)

ℓn+1
b ([vvvh,qh]) =

〈
vvvh,uuu

n+1
L

〉
ΓL + ⟨uuuL,nnnqh⟩ΓL

+ ⟨vvv, tttO⟩ΓO

−µ
〈
uuun+1

L ,nnn ·∇∇∇vvvh

〉
ΓL
−

µ

3
µ
〈
uuun+1

L ,nnn(∇∇∇ ··· vvvh)
〉

ΓL

−
1

Nw

〈

vvvh,
n

∑
k=n−Nw+2

[
nnnpk

h−µnnn ·∇∇∇uuuk
h−

µ

3
nnn(∇∇∇ ·uuuk

h)
]〉

ΓL

−
1

2Nw

〈
vvvh,nnnpn−Nw+1

h −µnnn ·∇∇∇uuun−Nw+1
h −

µ

3
nnn(∇∇∇ ·uuun−Nw+1

h )
〉

ΓL

−
1

Nw

〈
n

∑
k=n−Nw+2

uuuk
h,nnnqh−µnnn ·∇∇∇vvvh−

µ

3
nnn(∇∇∇ · vvvh)

〉

ΓL
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−
1

2Nw

〈
uuun−Nw+1

h ,nnnqh−µnnn ·∇∇∇vvvh−
µ

3
nnn(∇∇∇ · vvvh)

〉

ΓL

+
1

Nw

〈

ρcvvvh ·nnn,
n

∑
k=n−Nw+2

uuuk
h ·nnn+

1

2
uuun−Nw+1

h ·nnn

〉

ΓL∪ΓO

−
β

Nw

µp

lp

〈

vvvh,
n

∑
k=n−Nw+2

uuuk
h +

1

2
uuun−Nw+1

h

〉

ΓL
(4.18)

where we have also introduced the definition of the stress tensor, i.e. σh(uuuh, ph) = −phIII +

µ∇∇∇uuuh +
µ
3 (∇∇∇ · uuuh)III and σh(vvvh,qh) = −qhIII + µ∇∇∇vvvh +

µ
3 (∇∇∇ · vvvh)III , the latter needed for the

simetrization terms coming from the application of Nitche’s method.





Chapter 5
Design of fractional step schemes

5.1 Introduction

In constrast to a typical monolithic algorithm, where the solution of a problem is computed all

at once, the general idea of the fractional step technique is to segregate or split the calculation

of the unknowns of the problem, in our case velocity and pressure. Our approach is to present

a segregation technique at the pure algebraic level, in constrast to the continuous approach

originally done for the incompressible Navier-Stokes equations. In this chapter we propose a

k = 1,2 order algorithm to solve the isentropic compressible problem in a segregate manner.

5.2 Monolithic matrix version of the problem

Let us start first by writting the monolithic matrix version of the problem in hand. Gather-

ing all the information described in the previous chapters, the formulation of the isentropic

compressible problem can be arranged with the forms a([uuuh, ph], [vvvh,qh]), ab([uuuh, ph], [vvvh,qh]),

as([uuuh, ph], [vvvh,qh]), ℓs([vvvh,qh]), ℓb([vvvh,qh]) previously defined. When the problem is dis-

cretized in time, as described in Section (1.6), the final discrete problem with all the ingredi-

ents will read as follows:

Given the inital values uuu0
h and p0

h, find the compressible velocity and pressure finite element

unknowns at time step tn+1, uuun+1
h ∈ V d

h , pn+1
h ∈Qh, such that,

an+1([uuuh, ph], [vvvh,qh])+an+1
s ([uuuh, ph], [vvvh,qh])+an+1

b ([uuuh, ph], [vvvh,qh])

= ℓn+1
s ([vvvh,qh])+ ℓn+1

b ([vvvh,qh]) (5.1)

∀ vvvh ∈ V d
h ⊂ V d ≡ HHH1(Ω), qh ∈Qh ⊂Q ≡ H1(Ω),
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where the expression for an+1([uuuh, ph], [vvvh,qh]) is given by Equation (2.19) (substituting the

FE unknowns and the time derivative by its discrete version), the form an+1
s ([uuuh, ph], [vvvh,qh])

can be computed from (3.18) and the boundary terms in an+1
b ([uuuh, ph], [vvvh,qh]) are calculated

as defined in (4.17). On the other hand, the right hand side forms ℓs([vvvh,qh]) and ℓb([vvvh,qh])

are computed as in Equations (3.19) and (4.18), from known values from previous time steps.

We assume that velocity and pressure are to be constructed using the standard finite el-

ement interpolation from the nodal values. Let us introduce the following Lagrange basis

{φφφ i, j}, i ∈ Nu, j = 1, . . . ,d and {πm}, m ∈ Np associated to the finite element spaces V d
h

and Qh. In these definitions, Nu and Np are the set of free velocity and pressure nodes, re-

spectively. On the other hand, φφφ i, j is the vector containing the standard shape functions φi of

node i at position j and the rest of components are null. Likewise, πm stands for the pressure

shape function at a certain node, m. Hence, we write the finite element approximation of the

unknowns in the following manner,

uuun+1
h (xxx) =

nnodes

∑
a∈Nu

φa(xxx)
(
U

n+1
)

a
; pn+1

h (xxx) = ∑
a∈Np

πa(xxx)
(
P

n+1
)

a
(5.2)

where Un+1 and Pn+1 are the arrays of nodal values for velocity and pressure and nnodes is

the total number of nodes in the mesh. The symbol (·)a denotes the sub-array with the values

for node a, i.e., an array of d components for velocity and a single component for pressure.

Equivalent finite element definitions apply for the associated test functions vvvh and qh. It is

assumed that these shape functions are time-independent. The previous definitions lead to the

following non-linear algebraic system for the problem in Equation (5.1),

1

γkδ t
MuuuU

n+1 +Kuuu(U
n+1)Un+1 +Suuu(U

n+1)Un+1 +Kb,uuuU
n+1

+GP
n+1 +GbP

n+1 = Fuuu +Fs,uuu +Fb,uuu (5.3a)

1

γkδ t
MpP

n+1 +Kp(U
n+1)Pn+1 +Sp(U

n+1)Pn+1 +DU
n+1

+DbU
n+1 = Fp +Fs,p +Fb,p (5.3b)

where subscripts (·)uuu and (·)p refer to matrices of the momentum and continuity equation. In

addition, (·)s and (·)b refer, respectively, to terms arising from the stabilization and from the

special treatment of boundary conditions. Again, k refers to the time accuracy of the scheme.

The matrices appearing in the left hand side of the system are defined at the elemental level
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for 1≤ i, j ≤ d as,

(Muuu)
ab
i j :=

〈
φφφ a,i,ρ

n+1φφφ b, j

〉

K
, a,b ∈Nu (5.4a)

Kuuu(U
n+1)ab

i j :=
〈

φφφ a,i,ρ
n+1uuun+1 ·∇∇∇φφφ b, j

〉

K
+µ

〈
∇∇∇φφφ a,i,∇∇∇φφφ b, j

〉

K

+
µ

3

〈
∇∇∇ ·φφφ a,i,∇∇∇ ·φφφ b, j

〉

K
, a,b ∈Nu (5.4b)

Suuu(U
n+1)ab

i j :=
〈

ρn+1uuun+1
h ·∇∇∇φφφ a,i,τ1,Kρn+1uuun+1

h ·∇∇∇φφφ b, j

〉
K

+
〈

∇∇∇ ·φφφ a,i,τ2,K∇∇∇ ·φφφ b,j

〉

K
a,b ∈Nu (5.4c)

(Kb,uuu)
ab
i j :=−

µ

2Nw

〈
φφφ a,i,nnn(∇∇∇φφφ b, j)

〉

∂K∩ΓL

−
µ

6Nw

〈
φφφ a,i,nnn(∇∇∇ ···φφφ b, j)

〉

∂K∩ΓL

−
µ

2Nw

〈
φφφ b, j,nnn(∇∇∇φφφ a,i)

〉

∂K∩ΓL

−
µ

6Nw

〈
φφφ b, j,nnn(∇∇∇ ···φφφ a,i)

〉

∂K∩ΓL

+

(
1−

1

2Nw

)〈
ρcφφφ a,i ·nnn,φφφ b, j ·nnn

〉

∂K∩ΓL∪ΓO

+
β

2Nw

µp

lp

〈
φφφ a,i,φφφ b, j

〉

∂K∩ΓL

, a,b ∈Nu (5.4d)

G
ab
i :=−

〈
∇∇∇ ·φφφ a,i,πb

〉
K
, a ∈Nu, b ∈Np (5.4e)

(Gb)
ab
i :=

1

2Nw

〈
φφφ a,i,nnnπb

〉
∂K∩ΓL

, a ∈Nu, b ∈Np (5.4f)

for the algebraic version of the momentum conservation equation and,

(Mp)
ab :=

〈

πa,
1

(c2)n+1 ρn+1
πb

〉

K

, a,b ∈Np (5.5a)

Kp(U
n+1)ab :=

〈

πa,
1

(c2)n+1 ρn+1
uuun+1 ·∇∇∇πb

〉

K

, a,b ∈Np (5.5b)

Sp(U
n+1)ab :=

〈
1

(c²)n+1ρn+1
uuun+1

h ·∇∇∇πa,τ2,K
1

(c²)n+1ρn+1
uuun+1

h ·∇∇∇πb

〉

K

+
〈
∇∇∇πa,τ1,K∇∇∇πb

〉
K

a,b ∈Np (5.5c)

(Db)
ab
j :=

1

2Nw

〈
φφφ b, j,nnnπa

〉

∂K∩ΓL

, a ∈Np, b ∈Nu (5.5d)

D
ab
j :=

〈
πa,∇∇∇ ·φφφ b, j

〉

K
, a ∈Np, b ∈Nu (5.5e)

for the algebraic mass conservation equation. In addition to this, the right hand side vectors,
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containing known information from previous time steps, are computed as follows,

(Fuuu)
a
i :=

1

γkδ t
Muuu

(
k−1

∑
m=0

αm
k U

n−m
a,i

)

(5.6)

(Fs,uuu)
a
i :=

〈
ρn+1uuun+1

h ·∇∇∇φφφ a,i,τ1,KΠh[ρ
n+1uuun+1

h ·∇∇∇uuun
h]
〉

K

+
〈
∇∇∇ ·φφφ a,i,τ2,KΠh[∇∇∇ ·uuun

h]
〉

K
, a ∈Nu (5.7)

(Fb,uuu)
a
i :=

〈
φφφ a,i,uuu

n+1
L

〉
∂K∩ΓL

−µ
〈
uuun+1

L ,nnn ·∇∇∇φφφ a,i

〉
∂K∩ΓL

−
µ

3
µ
〈
uuun+1

L ,nnn(∇∇∇ ···φφφ a,i)
〉

∂K∩ΓL

−
1

Nw

〈

φφφ a,i,
n

∑
k=n−Nw+2

[
nnnpk

h−µnnn ·∇∇∇uuuk
h−

µ

3
nnn(∇∇∇ ·uuuk

h)
]〉

∂K∩ΓL

−
1

2Nw

〈
φφφ a,i,nnnpn−Nw+1

h −µnnn ·∇∇∇uuun−Nw+1
h −

µ

3
nnn(∇∇∇ ·uuun−Nw+1

h )
〉

∂K∩ΓL

+
1

Nw

〈
n

∑
k=n−Nw+2

uuuk
h,µnnn ·∇∇∇φφφ a,i +

µ

3
nnn(∇∇∇ ·φφφ a,i)

〉

∂K∩ΓL

+
1

2Nw

〈
uuun−Nw+1

h ,µnnn ·∇∇∇φφφ a,i +
µ

3
nnn(∇∇∇ ·φφφ a,i)

〉

∂K∩ΓL

+
1

Nw

〈

ρcφφφ a,i ·nnn,
n

∑
k=n−Nw+2

uuuk
h ·nnn+

1

2
uuun−Nw+1

h ·nnn

〉

∂K∩ΓL∪ΓO

−
β

Nw

µp

lp

〈

φφφ a,i,
n

∑
k=n−Nw+2

uuuk
h +

1

2
uuun−Nw+1

h

〉

∂K∩ΓL
, a ∈Nu (5.8)

F
a
p :=

1

γkδ t
Mp

(
k−1

∑
m=0

αm
k P

n−m
a

)

, a ∈Np (5.9)

(Fs,p)
a :=

〈
1

(c²)n+1ρn+1
uuun+1 ·∇∇∇πa,τ2,KΠh

[
1

(c)n+1ρn+1
uuu ·∇∇∇pn

h

]〉

K

+
〈
∇∇∇πa,τ1,KΠh[∇∇∇pn

h]
〉

K, a ∈Np (5.10)

(Fb,p)
a := ⟨uuuL,nnnπa⟩∂K∩ΓL

−
1

Nw

〈
n

∑
k=n−Nw+2

uuuk
h,nnnπa

〉

∂K∩ΓL

−
1

Nw

〈
uuun−Nw+1

h ,nnnπa

〉

∂K∩ΓL

, a ∈Np. (5.11)

In all these definitions, the dependence on the vector of unknowns has been explicitely dis-

played in order to remark the non-linear character of the problem.

Remark: we recall that all the possible non-linearities that appear in the problem, mainly

associated with the velocity uuun+1
h , density ρn+1 and speed of sound (c2)n+1, are computed

by means of the Picard or fixed-point algorithm. Hence, we will be using the velocity from
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the previous iteration in the non-linearity loop, i.e., uuu
n+1,i
h where i denotes now the iteration

counter. Then, we will compute uuu
n+1,i
h ·∇∇∇(·)n+1,i+1 and,

ρn+1 = ρ0

(

1+
γ−1

2

|uuun+1,i
h |

c2
0

)γ−1

(5.12)

(
c2
)n+1

= c2
0

(

1+
γ−1

2

|uuun+1,i
h |

c2
0

)−1

(5.13)

The monolitich approach of the non-linear algebraic system (5.3a)–(5.3b) can be rewritten

in the usual form AXXXn+1 = FFF , with the following structure,

[
A11 A12

A21 A22

]{
Un+1

Pn+1

}

=

{
F1

F2

}

(5.14)

where we now redefine,

A11 =
1

γkδ t
Muuu +Kuuu(U

n+1)+Suuu(U
n+1)+Kb,uuu

A12 = G+Gb

A21 = D+Db

A22 =
1

γkδ t
Mp +Kp(U

n+1)+Sp(U
n+1)

F1 = Fuuu +Fs,uuu +Fb,uuu

F2 = Fp +Fs,p +Fb,p

The reader should note that, with respect to the incompressible Navier-Stokes case, the

structure of the isentropic compressible problem is no longer of the saddle-point type, in other

words, matrix A22 is not zero.

5.3 Predictor-corrector algorithm

This section is intended to include a description on the design of fractional step schemes for

the isentropic compressible Navier-Stokes equations when the primitive variables are used.

A usual approach to design fractional step methods is to extrapolate the variable that needs

to be segregated from a certain equation, and correct the results once this variable has been

computed somehow. For our specific case, in principle we will extrapolate the pressure in the

momentun equation so that to compute an intermediate or fractional velocity. Later, the pres-
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sure is computed and finally, the pertinent corrections are performed. This way of proceeding

will give us an algorithm of pressure-correction type.

Let us start by writing the system (5.3a)–(5.3b) in the following equivalent manner,

1

γkδ t
MuuuŨ

n+1 +Kuuu(U
n+1)Un+1 +Suuu(U

n+1)Un+1 +Kb,uuuU
n+1

+GP̂
n+1
k−1 +GbP̂

n+1
k−1 = F1 (5.15a)

1

γkδ t
Muuu(U

n+1− Ũ
n+1)+(G+Gb)(P

n+1− P̂
n+1
k−1) = 000 (5.15b)

1

γkδ t
MpP

n+1 +Kp(U
n+1)Pn+1 +Sp(U

n+1)Pn+1 +DU
n+1

+DbU
n+1 = F2 (5.15c)

where Ũn+1 is an auxiliary variable to which we shall refer as intermediate velocity. Likewise,

P̂
n+1
k−1 is an extrapolation of the pressure of order k−1 at time step tn+1. See Equations (1.19a)–

(1.19c) for details. The reader should note that adding up (5.15a) and (5.15b) we recover

(5.3a).

Let us now do a little bit of manipulation with the previous equations, what will allow the

final scheme to be easier to implement and practical. From Equation (5.15b) one can obtain a

relation between the intermediate velocity Ũn+1and the end-of-step velocity, namely Un+1. It

gives,

U
n+1 = Ũ

n+1− γkδ tM−1
uuu (G+Gb)(P

n+1− P̂
n+1
k−1) (5.16)

and if we introduce this result into (5.15c) it would yield,

1

γkδ t
MpP

n+1 +Kp(U
n+1)Pn+1 +Sp(U

n+1)Pn+1

−γkδ t(D+Db)M
−1
uuu (G+Gb)(P

n+1− P̂
n+1
k−1) = F2− (D+Db)Ũ

n+1 (5.17)

but at this point, it is very convenient to make the following observations:

• One should notice that the term DM−1
uuu G can be viewed as an approximation to the

discrete version of the laplacian operator ∆∆∆, [23]. In order to avoid dealing with this

matrix (which is computationally feasible only if Muuu is approximated by a diagonal

matrix), we can work with,

DM
−1
uuu G≈ L with components L

ab :=−

〈
1

ρn+1
∇∇∇πa,∇∇∇πb

〉

K

(5.18)

• If we wanted to compute the pressure from Equation (5.17), we would still have to face
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the problem of computing the terms DbM−1
uuu G, DM−1

uuu Gb and DbM−1
uuu Gb. Such compu-

tations can be really time consuming and bourdersome. Note that an approximation

similar to the one just commented is not possible due to the character of the boundary

matrices Db and Gb.

Having this in mind, what we propose in this work is to modify Equations (5.15a) and (5.15c)

in such a way that we take the terms GbP̂
n+1
k−1 and DbUn+1 to the right hand side, by means

of an extrapolation of order k of both terms, what would maintain the temporal accuracy of

the scheme. In addition, we will not include the boundary extrapolation for the pressure in

the correction step. Thus, the relation between both intermediate and end-of step velocity

established in (5.16) would be now,

U
n+1 = Ũ

n+1− γkδ tM−1
uuu G(Pn+1− P̂

n+1
k−1) (5.19)

and when this expression is taken into account in the system for the pressure, (5.17) would

simply become,

1

γkδ t
MpP

n+1 +Kp(U
n+1)Pn+1 +Sp(U

n+1)Pn+1

−γkδ tDM
−1
uuu G(Pn+1− P̂

n+1
k−1) = F2−DŨ

n+1−DbÛ
n+1
k (5.20)

This manipulation induces that the set of equations to be solved now yields,

1

γkδ t
MuuuŨ

n+1 +Kuuu(U
n+1)Un+1 +Suuu(U

n+1)Un+1

+Kb,uuuU
n+1 = F1−GP̂

n+1
k−1−GbP̂

n+1
k (5.21)

1

γkδ t
MpP

n+1 +Kp(U
n+1)Pn+1 +Sp(U

n+1)Pn+1

+γkδ tL(Pn+1− P̂
n+1
k−1) = F2−DŨ

n+1−DbÛ
n+1
k (5.22)

1

γkδ t
Muuu(U

n+1− Ũ
n+1)+G(Pn+1− P̂

n+1
k−1) = 000 (5.23)

where the equations are written in the order they are solved. The reader should note that now

the products DbM−1
uuu G, DM−1

uuu Gb and DbM−1
uuu Gb do not appear in the formulation and that we

treat some terms on the boundary explicitly via extrapolations in GbP̂
n+1
k and DbÛ

n+1
k .

Remark: In principle, we are interested in designing a second order segregation algorithm.

It is well known that the extrapolation of second order of the term GP̂
n+1
k−1, i.e. taking k = 3 is

unstable. In fact, this issue motivated the study of the so called velocity correction algorithms,

which allow to design fractional step schemes of third order in time. Still, we do not expect
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any unstable behaviour of the term GbP̂
n+1
k for the extrapolation of second order.

At this point, we can make the essential approximation,

Kuuu(U
n+1)Un+1 ≈ Kuuu(Ũ

n+1)Ũn+1 (5.24)

and one can see from (5.23) that this perturbation is of order O(δ tk). In addition, Suuu(Un+1)Un+1≈

Suuu(Ũn+1)Ũn+1 and we will use Ũn+1 to compute the adveciton velocity when solving for the

pressure. This basically means that in practice, we assume Kp(Un+1)Pn+1 ≃ Kp(Ũn+1)Pn+1

and Sp(Un+1)Pn+1 ≃ Sp(Ũn+1)Pn+1.

In principle, fractional step methods can be designed by choosing k = 1,2 and solving as

follows,

1. Compute an intermediate velocity Ũn+1 using extrapolations for the pressure terms and

solving,

1

γkδ t
MuuuŨ

n+1 +Kuuu(Ũ
n+1)Ũn+1 +Suuu(Ũ

n+1)Ũn+1

+Kb,uuuŨ
n+1 = F1−GP̂

n+1
k−1−GbP̂

n+1
k (5.25)

2. Solve for the pressure P
n+1using the intermediate velocity just computed above,

1

γkδ t
MpP

n+1 +Kp(Ũ
n+1)Pn+1 +Sp(Ũ

n+1)Pn+1

+γkδ tL(Pn+1− P̂
n+1
k−1) = F2−DŨ

n+1−DbÛ
n+1
k (5.26)

3. Perform the correction in order to compute the end-of-step velocity Un+1 after solving,

1

γkδ t
Muuu(U

n+1− Ũ
n+1)+G(Pn+1− P̂

n+1
k−1) = 000 (5.27)

The reader should note that the only non-linear problem is in the first step, i.e. when solving

for the intermediate velocity. Thus the next step is to linearize such problem. As already

mentioned, we consider the Picard approach to solve the non-linearities, i.e. taking the known

values from previous iterations or time step. In Algorithm 5.1 we include the final scheme

in its matrix form, where the superscript i denotes the iteration counter. For a more detailed

exposition, in the Appendix, we include also Algorithm 8.1 which contains a second order

fractional step scheme in it semidiscrete form. There we offer a more computational viewpoint

for actually implementing the method.

The previous scheme provides a practical way to decouple the solution of the velocity and



5.3 Predictor-corrector algorithm | 43

pressure unknowns for the isentropic compressible problem. However, some errors are intro-

duced which can affect the accuracy of the final computation. The first error is due to the fact

that the momentum equation (5.25) is solved for the intermediate velocity Ũn+1,i+1 instead

of the end of step velocity Un+1,i+1. This is usually referred as fractional error or error of

fractioning. Another noticeable source of error may come from the fact of not including the

time-dependency of subscales in the stabilization. As pointed out earlier in this work, this

approach might show an unstable behavior for anisotropic space-time discretizations. Finally,

and maybe the most remarkable error, an extra Dirichlet boundary condition needs to be pro-

vided for Equation (5.26) . The Dirichlet boundary condition we enforce (at the continuous

level) is:

p̄ = 0 in ΓO (5.28)

p′ = ρc(uuu′ ·nnn) in ΓO (5.29)

where we take into account the decomposition of the pressure in average (flow) and oscillatory

(acoustic) components as suggested in the previous chapter. Equation (5.29) aids to impose

the NRBC when solving the continuity equation. For low viscous flows this approximation

is reasonable, since the effect of the viscosity is small and, in addition, we assume that ΓO

is located sufficiently far away from the solid boundary, so that the velocity gradients could

be neglected. Finally, when computing uuu′ = uuu− ūuu, we make use of uuun+1,i+1, solution of the

algebraic problem (5.25).
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Algorithm 5.1 Fist and second order fractional step schemes (k=1,2)

• Non-linear problem to compute the intermediate velocity Ũn+1,i+1 using the pressure

extrapolations:

1

γkδ t
MuuuŨ

n+1,i+1 +Kuuu(Ũ
n+1,i)Ũn+1,i+1 +Suuu(Ũ

n+1,i)Ũn+1,i+1

+Kb,uuuŨ
n+1,i+1 = F1−GP̂

n+1
k−1−GbP̂

n+1
k

(5.30)

• Compute the pressure Pn+1,i+1:

1

γkδ t
MpP

n+1,i+1 +Kp(Ũ
n+1,i+1)Pn+1,i+1 +Sp(Ũ

n+1,i+1)Pn+1,i+1

+γkδ tL(Pn+1,i+1− P̂
n+1
k−1) = F2−DŨ

n+1,i+1−DbÛ
n+1
k

(5.31)

• Velocity correction step, Un+1,i+1 :

1

γkδ t
Muuu(U

n+1,i+1− Ũ
n+1,i+1)+G(Pn+1,i+1− P̂

n+1
k−1) = 000 (5.32)



Chapter 6
Numerical results

In this chapter we aim at presenting some results and comments for the developed formulation

for the isentropic compressible problem. Here we will present a benchmark for the validation

of the implemention of our algorithm (see Algorithm 8.1 in the Appendix for programming

details).

6.1 Aeolian tones of a low Mach viscous flow

The benchmark we have chosen for a proper assessment of the proposed formulation consists

in a 2D flow around a cylinder which allows to evaluate what in the literature is referred as

aeolian tones (see [32]). From the point of view of the final user we recall that some additional

parameters are needed when departing from an already implemented incompressible Navier-

Stokes solver. Those are, the universal gas constant R = 8.31 J/kg ·mol, the molar mass of the

considered gas, the sound propagation speed and the bulk temperature. For this example, the

values for air are considered, i.e., M = 28.97 g/mol, c0 = 343.26 m/s and T0 = 293.15 K.

The rectangle where the cylinder is placed is 10× 30 m in size and it is inserted inside

a box of 450× 450 m in order to describe the far field conditions of the problem (far away

from the cylinder). The diameter is D = 0.3 m. We have used the GiD prepocessor, developed

at CIMNE, so that to set up the geometry and boundary conditions. The incident velocity

has been chosen as uuuin = [20,0] m/s and we have taken a dynamic viscosity coefficient of

µ = 0.006. All this information leads to Re = 1000 and M = 0.0583 in the far field.

For the simulation we consider an unstructured mesh of nearly 300,000 triangular linear

elements and we use equal interpolation for velocity and pressure, thanks to the stabilized

formulation proposed. The size of the mesh is of 3×10−3D near the cylinder surface, so that

to be able to capture the expected high gradients in that zone. The case has been run up to
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t = 1.0 s with a time step size δ t = 0.001 s. It is important to note that the time step has to be

small enough to be able to reproduce the sound waves in an adequate manner.

We recall the necessity of letting the code run for several time steps prior to the application

of the developed formulation for the special treatment of boundary conditions. This is to

accumulate representative data in order to properly compute the mean flow values. In this

sense, we considered 20 initial time steps. In addition, we depart from an incompressible

solution as initial condition and the penalty parameter for the weak imposition of boundary

conditions has been taken as β = 10.

Let us first assess the velocity results. In Figure 6.1 we compare both isentropic compress-

ible and incompressible developed velocity profiles. For the solution of the incompressible

case, we also considered the split OSS fractional step approach, previously programmed at the

beginning of this master thesis.

(a) Incompressible velocity profile

(b) Isentropic velocity profile

Figure 6.1: Velocity profile comparison in the near field region of both incompressibe (also
fractional step) and isentropic compressible formulations.

It is observed that both profiles basically coincide for the near-field region. Hence, this fact

induces that, in practice, the isentropic compressible finite element solver could even replace
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the incompressible one when its convergence is not adequate or when the compressibility

feature of the formulation wants to be taken into account. In addition to this, those results

confirm the good performance of the weakly imposed conditions.

The behavior of waves when reaching the domain exterior walls is one of the main con-

cerns in compressible flow solvers. If the boundary formulation introduced in Chapter 4 was

skipped, the raw isentropic formulation would lead to the reflection of waves into the compu-

tational domain by the exterior walls. This is what we present in Figure 6.2 down below.

Figure 6.2: Waves being reflected by the external walls of the domain as a result of not in-
cluding the especial treatment of boundary conditions. For this image we considered a way

coarser mesh since the purpose was only to show the backscattering phenomena.

Such a problem is circumvented by the boundary formulation we reviewed and adapted

previously. In Figure 6.3 we present snapshots for different time steps which validate the

acoustic propagation at the far field with respect to the monolithic scheme proposed and vali-

dated in the literature [41]. Note that no waves are reflected by none of the external boundaries.

It is observed how the waves evolve from the cylinder area, which causes the perturbation, and

eventually leave the domain smoothly. Although the reader may notice some minor discrepan-

cies, the results are equivalent in a reasonable manner. The differences should come from the

errors introduced by the splitting approach and the approximate boundary condition. Addition-

ally, also from the distinct diffusive character of the stabilization techniques as we proposed a

term-by-term stabilization whereas the monolithc scheme considered an ASGS stabilization.
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(a) Fractional step, t = 0.2 s (b) Monolithic, t = 0.2 s

(c) Fractional step, t = 0.4 s (d) Monolithic, t = 0.4 s

(e) Fractional step, t = 0.6 s (f) Monolithic, t = 0.6 s
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(g) Fractional step, t = 0.8 s (h) Monolithic, t = 0.8 s

(i) Fractional step, t = 1 s (j) Monolithic, t = 1 s

Figure 6.3: Comparison of screenshots of different time steps of the simulation, for the frac-
tional step scheme proposed (left column) and the original monolithic scheme [41] (right

column). The results are mainly equivalent although minor changes might be observed.





Chapter 7
Conclusions

In this final chapter we present the achievements and conclusions obtained during the prepa-

ration of the present work, and we state some of the possible future lines of research.

7.1 Achievements

In this masther thesis we have presented a stabilized second order fractional step scheme for

the solution of the isentropic compressible Navier-Stokes problem, solved in a monolithic

fashion in [40]. The algorithm has been coded following the structure of FEMUSS, an in-

house parallel finite element code which allows large-scale computations using the object-

oriented Fortran standards. The implementation of the method required the understanding of

the object relations in a large-scale code.

Under the isentropic assumption, we have come up with a compressible formulation which

is actually an extension of the incompressible Navier-Stokes problem and allows one to forget

about solving the complete set of compressible equations, for some cases.

The proposed stabilization strategy was achieved by means of the split or term-by-term

Orthogonal SubgridScale concept. This approach is not residual-based, and hence, it is not

consistent, being consistency understood in the finite element context. The key idea behind

this technique is the space where the subscales are defined, which we recall that is the orthog-

onal complement to the finite element space. This fact is what in practice ensures that the

term-by-term formulation proposed has an optimal consistency error, as it has been shown in

the literature.

One of the main challenges of the isentropic problem is to be able to avoid the backscatter-

ing of waves that the compressibility feature brings in to the problem. In this work, we have

reviewed a technique already presented in [41] and have adapted it to a pressure-correction
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scheme, in an algebraic manner. The reduced implementation cost when departing from a

fractional step scheme for the incompressible Navier-Stokes finite element solver makes our

formulation very attractive for solving aeroacoustic problems where heat transfer and shocks

can be neglected.

In order to assess the correctness of our implementation we have presented a benchmark.

We have validated the aeolian tones of a low Mach viscous flow over a cylinder, for Re = 1000

and M = 0.0583, where we have obtained comparable results to those for the monolitch case

in [40].

7.2 Future work

Let us now briefly describe here some open research lines that could be considered.

• In the future, it might be of interest to design a third order scheme. This idea can be

motivated due to the fact that the isentropic formulation showed less computational cost

per iteration when compared to the full compressible and incompressible cases (see

Conclusions in [41]). But one major thing needs to be taken into account for such a

higher order scheme. An extrapolation of second order for the term GP̂k−1 (k = 3) is

known to have an unstable behavior. Hence, a third order scheme needs to be developed

by other means. One possibility might be to develop a formulation in a similar fashion as

it was done in [12] for a three-field viscoelastic problem. At the base of this formulation

is the fact that we should not do the approximation Kuuu(Un+1)Un+1 ≈ Kuuu(Ũn+1)Ũn+1.

This approach could be interpreted as a Yosida scheme.

• Another possibility for higher order schemes would be to change the algebraic proce-

dure for designing the fractional step method. In this work we proposed a pressure-

correction-type scheme, in which we extrapolated the pressure from the momentun

equation so that to compute an intermediate velocity that would be corrected afterwards.

A different technique is the socalled velocity-correction algorithm. In this approach the

velocity is extrapolated first, so that to compute an intermediate pressure, with which

the velocity is computed later. Finally, the pressure is corrected. This type of schemes

are suitable since extrapolations for the velocity term are not unstable.

• The stabilized formulation proposed in Equation (3.17a)–(3.17b) assumed the subscales

to be quasistatic. Of course, a more complete formulation would be the one including

the dynamic behavior of subscales, what in practice would allow to consider anisotropic

space-time discretizations.
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• As we have pointed out in the introduction, one of the major facts that led to the de-

velopment of the isentropic formulation is the high computational cost associated to the

solution of the complete compressible Navier-Stokes problem. A technique that could

lead to a remarkable reduction of this cost would be to design a fractional step algorithm

for this three-field problem, (similar as in [25]).

• In the previous chapter we present a benchmark in order to asses the correctness of our

implementation by direct comparison with the monolithc isentropic formulation already

validated in the literature. Still, that numerical example considered a really low Mach

number and, hence, it remains to test the code up to, for instance, M = 0.75, so that the

full subsonic range is covered.
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Chapter 8
Appendix

In this appendix we include the following algorithm, with the purpose of offering a more

computational point of view when it comes to the implementation of the method. This is a

second order fractional step scheme, where we have already introduced the expression for

the extrapolation operators to be considered (first and second order). In order to ease the

identification of different terms in the algorithm, we highlight the stabilization terms in red,

and those imposing the boundary conditions in blue.

Algorithm 8.1 Second order fractional step scheme for the isentropic compressible Navier-
Stokes problem

Read (or compute) the initial values, uuu1
h and p1

h .

FOR n = 1, . . . ,N DO:

1. Solve the problem for the intermediate velocity, ũuu
n+1,i+1
h .

• Set i = 1

• Set ũuu
n+1,1
h = uuun

h

• WHILE (not converged) DO:

⋄ i+1← i

⋄ Compute (at each integration point) τ1,K and τ2,K from Equations (3.12a) and

(3.12b) and ρ from (5.12).

⋄ Compute contributions to elemental matrix

(
vvvh,

ρ

γ2δ t
ũuu

n+1,i+1
h

)
+(vvvh,ρ ũuu

n+1,i
h ·∇∇∇ũuu

n+1,i+1
h )+µ(∇∇∇vvvh,∇∇∇ũuu

n+1,i+1
h )

+
µ

3
(∇∇∇ · vvvh,∇∇∇ · ũuun+1,i+1

h )+ ∑
K∈Th

〈
ρ ũuu

n+1,i
h ·∇∇∇vvvh,τ1,Kρ ũuu

n+1,i
h ·∇∇∇ũuu

n+1,i+1
h

〉

K
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+ ∑
K∈Th

〈
∇∇∇ · vvvh,τ2,K∇∇∇ · ũuun+1,i+1

h

〉

K

−
µ

2Nw

〈
vvvh,nnn(∇∇∇ũuun+1

h )
〉

ΓL
−

µ

6Nw

〈
vvvh,nnn(∇∇∇ · ũuun+1

h )
〉

ΓL

−
µ

2Nw

〈
ũuun+1

h ,nnn(∇∇∇vvvh)
〉

ΓL
−

µ

6Nw

〈
ũuun+1

h ,nnn(∇∇∇ · vvvh)
〉

ΓL

+

(
1−

1

2Nw

)〈
ρcvvvh ·nnn, ũuu

n+1
h ·nnn

〉
ΓL∪ΓO

+
β

2Nw

µp

lp

〈
vvvh, ũuu

n+1
h

〉
ΓL

⋄ Compute contribution to right hand side

(

vvvh,
ρ

γ2δ t

1

∑
i=0

α iuuun−i

)

+(∇∇∇ · vvvh, pn)

+ ∑
K∈Th

〈
ρ ũuu

n+1,i
h ·∇∇∇vvvh,τ1,KΠh [ρuuun

h ·∇∇∇uuun
h]
〉

K
+ ∑

K∈Th

〈
∇∇∇ · vvvh,τ2,KΠh [∇∇∇ ·uuun

h]
〉

K

−
1

2Nw

〈
vvvh,nnn(2pn

h− pn−1
h )

〉
ΓL
+
〈
vvvh,uuu

n+1
L

〉
ΓL

−µ
〈
uuun+1

L ,nnn(∇∇∇vvvh)
〉

ΓL
−

µ

3
µ
〈
uuun+1

L ,nnn(∇∇∇ ··· vvvh)
〉

ΓL

−
1

Nw

〈

vvvh,
n

∑
k=n−Nw+2

[
nnnpk

h−µnnn(∇∇∇uuuk
h)−

µ

3
nnn(∇∇∇ ·uuuk

h)
]〉

ΓL

−
1

2Nw

〈
vvvh,nnnpn−Nw+1

h −µnnn(∇∇∇uuun−Nw+1
h )−

µ

3
nnn(∇∇∇ ·uuun−Nw+1

h )
〉

ΓL

+
1

Nw

〈
n

∑
k=n−Nw+2

uuuk
h,µnnn(∇∇∇vvvh)+

µ

3
nnn(∇∇∇ · vvvh)

〉

ΓL

+
1

2Nw

〈
uuun−Nw+1

h ,µnnn(∇∇∇vvvh)+
µ

3
nnn(∇∇∇ · vvvh)

〉

ΓL

+
1

Nw

〈

ρcvvvh ·nnn,
n

∑
k=n−Nw+2

uuuk
h ·nnn+

1

2
uuun−Nw+1

h ·nnn

〉

ΓL∪ΓO

−
β

Nw

µp

lp

〈

vvvh,
n

∑
k=n−Nw+2

uuuk
h +

1

2
uuun−Nw+1

h

〉

ΓL

⋄ Assembly and call solver

⋄ Check convergence

• END WHILE

• Store converged value, uuu
n+1,i+1
h to solve next steps.

2. Solve problem for pressure, pn+1,i+1
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• As previously, compute (at each integration point) τ1,K , τ2,K , ρ and now also c2 from

Equation (5.13).

• Compute contributions to elemental matrix

(
qh,

1

c2ργ2δ t
p

n+1,i+1
h

)
+

(
qh,

1

c2ρ
ũuu

n+1,i+1
h ·∇∇∇p

n+1,i+1
h

)
+ γ2δ t

(
∇∇∇qh,

1

ρ
∇p

n+1,i+1
h

)

+ ∑
K∈Th

〈
1

c2ρ
ũuu

n+1,i+1
h ·∇∇∇qh,τ2,K

1

c2ρ
ũuu

n+1,i+1
h ·∇∇∇p

n+1,i+1
h

〉

K

+ ∑
K∈Th

〈
∇∇∇qh,τ1,K∇p

n+1,i+1
h

〉

K

• Compute contribution to right hand side

(

qh,
1

c2ργ2δ t

1

∑
i=0

α i pn−i

)

+ γ2δ t

(
∇∇∇qh,

1

ρ
∇pn

h

)
−
(

qh,∇ · ũuun+1,i+1
h

)

+ ∑
K∈Th

〈
1

c2ρ
ũuu

n+1,i
h ·∇∇∇qh,τ2,KΠh

[
1

c2ρ
uuun

h ·∇∇∇pn
h

]〉

K

+ ∑
K∈Th

〈
∇∇∇qh,τ1,KΠh [∇∇∇pn

h]
〉

K

−
1

2Nw

〈
(2uuun

h−uuun−1
h ),nnnqh

〉
ΓL

+ ⟨uuuL,nnnqh⟩ΓL

−
1

2Nw

〈
uuun−Nw+1

h ,nnnqh

〉

ΓL

−
1

Nw

〈
n

∑
k=n−Nw+2

uuuk
h,nnnqh

〉

ΓL

• Assembly and call solver

• Store p
n+1,i+1
h

3. Correction step. Solve problem for end-of-step velocity, uuu
n+1,i+1
h

• Compute ρ at each integration point

• Contribution to elemental matrix

(
vvvh,

ρ

γ2δ t
uuu

n+1,i+1
h

)

• Contribution to right hand side

(
vvvh,

ρ

γ2δ t
ũuu

n+1,i+1
h

)
+(∇∇∇ · vvvh, p

n+1,i+1
h − pn

h)

• Assembly and call solver

• Store end of step velocity uuu
n+1,i+1
h
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→ Compute and store the projections for next time step:

Πh

[
∇∇∇p

n+1,i+1
h

]
= (vvvh,∇∇∇p

n+1,i+1
h )

Πh

[
ρuuu

n+1,i+1
h ·∇∇∇uuu

n+1,i+1
h

]
= (vvvh,ρuuu

n+1,i+1
h ·∇∇∇uuu

n+1,i+1
h )

Πh

[
1

c2ρ
uuu

n+1,i+1
h ·∇∇∇p

n+1,i+1
h

]
=

(
qh,

1

c2ρ
uuu

n+1,i+1
h ·∇∇∇p

n+1,i+1
h

)

Πh

[
∇∇∇ ·uuun+1,i+1

h

]
= (qh,∇∇∇ ·uuun+1,i+1

h )

→ Set up values for next time step, uuun+1
h = uuu

n+1,i+1
h and pn+1

h = p
n+1,i+1
h

END DO
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