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Abstract

Most of the discretization techniques used in Computational Fluid Dynamics
(CFD) industrial applications are at best second-order accurate. Nowadays, the
research in the field of high-order methods is significantly increased due to their
higher accuracy for complex flow problems.

The use of high-order finite element method (FEM) seems to be very promis-
ing. In this work, the novel Hybridizable Discontinuous Galerkin (HDG) finite
element method is used to solve the compressible Euler equations. HDG is a
Discontinuous Galerkin (DG) method that shares the same advantages of be-
ing locally conservative, stable for convection-dominated problems, high-order
accurate as well as having optimal convergence rates in addition to super-
convergence rate in viscous problems.

For hyperbolic non-linear problems such as inviscid flows governed by Eu-
ler equations, the appearance of shock waves and other flow discontinuities is
a major challenge in numerical simulations. For this, the focus of this the-
sis is studying various shock-capturing techniques based on artificial viscosity
method. Two types of shock sensors are used, that is, the Resolution Indi-
cator (RI) and the Dilation-Based (DB) sensors, which are combined with two
definitions for the artificial viscous flux, that is, the Laplacian and the Enthalpy-
Preserving fluxes. This gives a total of four combinations of shock-capturing
techniques that will be studied extensively. Another variation that is compared
is the use of smooth (variable) or constant artificial viscosity per element at the
shock.
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Chapter 1

Introduction

In most of the engineering applications, experiments are carried out in science
to understand the physics of certain phenomena, or in industry to test the
behaviour of various designs under certain scenarios, in order to assess, for in-
stance, their failure criteria or their performance. For a long period of time, the
experimental results were the main reference to verify different scientific and
engineering theories. However, it is usually expensive, time consuming and of-
ten hard to do experiments, for example, in aeronautical applications. Besides,
it is almost impossible to carry out experiments in some cases like weather
forecasting and ocean currents. Here comes the role of computer simulations,
where a certain phenomenon or application is mathematically modelled and nu-
merically solved, then the results are visualized. With the occurrence of high
performance computers, simulations become more interesting alternative to ex-
periments. They provide a cheaper, easier and probably faster way to model
various experiments. Moreover, it is possible to change some key parameters to
study their influence on the experiment.

Most of the physical phenomena are governed mathematically by partial
differential equations (PDEs). These are differential equations that contain
unknown multi-variable functions and their partial derivatives. It is usually dif-
ficult to solve PDEs analytically, in fact, some PDEs can not be solved analyt-
ically. In these cases, it is only possible to solve these equations approximately
using numerical techniques. There exist many numerical techniques, but the
most famous methods are finite difference, finite volume and finite element.

The focus of this work is computational fluid dynamics (CFD), which is a
field of great interest in many applications such as automotive and aerospace
industry. CFD is concerned with modelling of fluid flows. A typical example is
modelling air flow around an aerofoil. A common numerical technique for solv-
ing PDEs arising in CFD is the finite volume method (FV) [35]. Most of the
existing commercial codes which use FV methods are second-order accurate,
where for a method of order p, the corresponding numerical error is propor-
tional to hp with h being a representative of the mesh size. Therefore, having
very fine meshes is a must for obtaining acceptable accuracy. This leads to a
very high number of unknowns which in turns results in a larger simulation
time. Furthermore, it is known for low-order methods, i.e., p 6 2, to posses
high numerical diffusion. This is in fact a disadvantage in unsteady problems
that need to preserve complex structures of a fluid flow over longer time, for
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example, simulating vortices behind a formula-1 car. In this case, the excessive
numerical diffusion arising from using a low-order method would smooth out
the structure of the vortices leading to a false indication of the actual strength
of the vortices. For this, high-order methods are needed.

High-order finite element method (FEM) is very promising for CFD applica-
tions. However, problems in CFD are usually described by hyperbolic or nearly
hyperbolic PDEs for which standard continuous Galerkin (CG) finite elements
usually are not stable without stabilization [7, Chap. 2]. For this, a family
of methods called stabilised finite elements arises. A famous method within
this family is the streamlined-upwind Petrov-Galerkin (SUPG) method which
is presented and analysed in [7] and [31].

Another more promising alternative is the discontinuous Galerkin (DG) fi-
nite element method [29], which was firstly introduced in [28]. In the DG
method, a discontinuous element-by-element approximation is used, and the
information is transmitted between elements by means of a suitably defined nu-
merical normal flux. The DG method posses many attractive features such
as high-order accuracy as well as being locally conservative, i.e., stable for
convection-dominated problems. In addition, it is a robust method that can
easily handle elements of arbitrary shapes and polynomial approximations of
different degrees in different elements. These properties, which render them
ideal for hp-adaptivity in domains of complex geometry, have brought them
to the main stream of CFD [6]. The main disadvantage of the standard DG
method is the increased number of degrees of freedom due to the duplication
of unknowns between elements. This in fact is not an issue when explicit time
integration schemes are used in unsteady problems, where the DG method al-
lows for element-by-element computations, which makes it possible to solve the
problem in each element independently of the neighbouring elements, i.e., paral-
lelization is possible. However, for implicit times integration schemes or steady
problem, this property is no longer available, and the increased number of cou-
pled degrees of freedom makes the method computationally expensive.

The hybridizable discontinuous Galerkin (HDG) method explained for differ-
ent problems in [33, 18, 19, 16, 20] evolved as a specific type of DG methods that
solves the problem of DG being computationally expensive. The HDG method
introduces additional unknowns on the interfaces between elements resulting in
an increase in the total number of degrees of freedom. However, this allows
to reformulate the problem so that the number of globally coupled degrees of
freedom is drastically reduced. For this, the overhead is a more complicated
assembling process for the global system of equations. However, this is not
an issue because the computational cost and memory requirements are mainly
dependent on the global system size. Another gain from the HDG method
is the optimal convergence rates for both the primal variables and diffusive
fluxes. Furthermore, for viscous flow problems, HDG allows for cheap element-
by-element post-processing procedure that results in a superconvergent solution.
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Another main aspect in CFD is the ability to resolve strong discontinuities
in the solution. Typical examples of these discontinuities are shock waves that
arises in transonic or supersonic fluid flow. A shock wave is produced in a
fluid when a succession of compression waves, each propagating faster than its
predecessor, pile up, resulting in a sudden transition of the field variables such
as velocity, density and pressure [7, Chap. 4]. This sudden transition is of a
finite thickness which is usually very small. From a mathematical point of view,
strong discontinuities are very common in the solution of non-linear hyperbolic
PDEs. An example of an equation of this type is the inviscid compressible flow
equations which is known as Euler equations. Without special numerical treat-
ment of discontinuities, non-physical oscillations appear in the solution when
high-order finite elements are employed, leading to a complete unstable solu-
tion. Thus, a sort of numerical treatment is needed to capture a good structure
of the discontinuity surface.

The main idea behind the numerical treatment of shocks and other flow
discontinuities is the introduction of a numerical or artificial viscosity near the
shock to compensate the reduction in the amount of numerical diffusion intro-
duced when using a high-order approximation. It is important to note that the
artificial viscosity is added only in the vicinity of the shock, thus some sort of
discontinuity detector or sensor is needed. One simple way to resolve shocks
once detected is reducing the order of approximation and using excessive mesh
refinement near the shock, which would increase the amount of numerical dif-
fusion in an indirect way. However, this method leads to a degradation in the
accuracy as well as being not efficient for transient shocks because re-meshing
would be needed in each time step. Another approach which is more suited to
high-order DG approximations is to explicitly add an artificial viscosity term
to the governing conservative equation that is activated only in the vicinity of
the shock. Two main techniques for shock-capturing based on this idea are
extensively studied and compared in this work, those are the work by Persson
and Peraire in [22] on sub-cell shock-capturing artificial viscosity method and
the work by Moro et. al in [13] on dilatation-based artificial viscosity method.

The main objective of this work is to compare the before-mentioned shock-
capturing techniques using different numerical examples to understand the fea-
tures inherit by each technique. To this end, the work is presented as follows:

• In Chapter 2, the governing equations for the unsteady compressible Euler
flow are presented both in conservative dimensional and dimensionless
forms. Furthermore, the quasi-linear forms are introduced to understand
the properties of Euler equations. This will help in understanding how
boundary conditions are applied.

• In Chapter 3, the HDG formulation for Euler equations is presented with-
out shock-capturing. Temporal and spatial discretization are discussed.
Finally, the process of solving the arising non-linear system of equations
is explained.
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• In Chapter 4, an introduction to shock-capturing for DG methods is pre-
sented, followed by the details of the two main techniques used in this
work. The HDG formulation of Euler equations combined with artifi-
cial viscosity is presented. Finally, linearisation of equations and solution
procedure are explained.

• In Chapter 5, several numerical examples are presented.

• In Chapter 6, the work is concluded and potential future work is listed.
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Chapter 2

Governing Equations

2.1 Kinematical Description
As a starting point to understand the governing equations for any problem, it
is important to grasp the kinematical description of it, i.e. the description of
motion. In problems of continuum mechanics, there exist three distinct descrip-
tions: the Lagrangian description, the Eulerian description and the Arbitrary-
Lagrangian-Eulerian (ALE) description.

Lagrangian formulation: each node of the computational mesh follows the
associated material particle during motion. The advantage is the ease of track-
ing of free surfaces and interfaces between different materials. However, this
description falls behind in case of large distortions of the computational do-
main, thus, frequent re-meshing operations are needed in order to work prop-
erly. Fluid flow problems are characterized by large distortions, which means
that Lagrangian formulation is not the appropriate kinematical description.

Eulerian formulation: here the computational mesh is fixed and the material
moves with respect to it. This solves the issue of large distortions present in
fluid flow problems. However, this description introduces difficulty in tracking
free surfaces and interfaces between different materials (e.g. fluid-fluid and
fluid-solid interfaces). The Eulerian formulation is the one mostly used in fluid
flow problems and is being used in this thesis.

ALE formulation: is very useful in flow problems with large distortions in
the presence of moving or deforming boundaries. Typical application is Fluid-
Structure-Interaction (FSI). More details can be found in [7, Chap. 1].

2.2 Continuum Mechanics Equations
The derivations of conservation equations in flow problems can be found in
[7, Chap. 1]. In fact, those are general equations for any continuum. The
conservation equations in Eulerian form for mass, momentum and total energy
are recalled:

Mass:
∂ρ

∂t
+ ∇·(ρv) = 0,

Momentum:
∂ρv

∂t
+ ∇·(ρv ⊗ v)−∇·σ = ρb,

Total energy:
∂ρE

∂t
+ ∇·(ρEv)−∇·(σ · v − q) = v · ρb.

(2.2.1a)
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where the conservative variables are the density, ρ ∈ R, momentum, ρv ∈ Rnsd ,
and total energy, ρE ∈ R. Note that nsd is the spatial dimension. b ∈ Rnsd is the
body forces which is simply the gravitational acceleration vector, σ ∈ Rnsd×nsd

is the Cauchy stress tensor, and q ∈ Rnsd is the heat flux vector.
It is noticed that the number of unknowns is more than the number of

equations. Therefore, more equations are needed, namely, the constitutive laws
for σ and q.

Depending on the problem of interest, the variation would be the defini-
tion of the constitutive law defining the Cauchy stress tensor, σ. Considering
Newtonian fluids, σ is a function of the strain rate tensor, d:

σ = −pInsd + λ(∇·v)Insd + 2µd (2.2.1b)

where p is the thermodynamical pressure, Insd is the identity matrix of dimension
nsd, µ is the coefficient of dynamic viscosity of the fluid, λ is the so-called 2nd
coefficient of viscosity, and d is defined as:

d = ∇sv = 1
2
(∇v + (∇v)T )

As for the constitutive law for the heat flux, q, Fourier’s law of heat con-
duction is usually considered for most materials, namely

q = −κ∇T, (2.2.1c)

where T is the temperature and κ the material thermal conductivity.

2.3 Euler Equations

2.3.1 The Conservation Form

By neglecting the heat flux, q, given by (2.2.1c) and setting viscosity of the fluid
to zero, i.e. µ = λ = 0 in (2.2.1b), the conservation form of Euler equations are
obtained as:

Mass:
∂ρ

∂t
+ ∇·(ρv) = 0,

Momentum:
∂ρv

∂t
+ ∇·(ρv ⊗ v + pInsd) = ρb,

Total energy:
∂ρE

∂t
+ ∇·(ρE + p)v = v · ρb.

(2.3.1)

The conservation equations (2.3.1) form a total of nsd+2 equations. However,
these nsd +2 equations have nsd +3 unknowns, ρ, ρv, ρE, and p. The remaining
equation comes from the equation of state for pressure, p = p(ρ, T ). This
equation introduces one more unknown, T , therefore, one more equation is
needed which is the internal energy equation, e = e(ρ, T ). Recall that the total
energy per unit mass of the fluid, E, is the sum of the internal energy, e, and
the kinetic energy, E = e + 1

2
v · v. For a perfect gas, such as air, these state

equations are p = ρRT and e = cvT , where R is the gas constant per unit mass
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(universal gas constant divided by the molecular mass of the fluid, for dry air
R = 287m2s−2K−1) and cv is the specific heat at constant volume. Thus, the
usual form for these equations of state are

T =
1

cv

(
E − 1

2
v · v

)
,

p = (γ − 1)ρ
(
E − 1

2
v · v

)
,

(2.3.2)

where γ = cp/cv is the ratio of the specific heat at constant pressure, cp, and the
specific heat at constant volume, cv, and it relates the specific heat constants
and the gas constant per unit mass as

cp =
γ

γ − 1
R and cv =

R

γ − 1
.

Thus, equations (2.3.2) can be rewritten as

T = (γ − 1)
(
E − 1

2
v · v

)
/R,

p = (γ − 1)ρ
(
E − 1

2
v · v

)
,

(2.3.3)

2.3.2 The Compact Form

Replacing the equation of state for pressure given by the second equation of
(2.3.3) in the conservation equations (2.3.1), the final equations for unsteady
inviscid compressible flow are written as

∂U

∂t
+
∂F k

∂xk
= S, (2.3.4)

where U is the vector of conservative variables, F k are the associated advection
flux vectors for each spatial dimension (k = 1, . . . , nsd), and S is a source term.
As usual, repeated indices indicate sum. These vectors, which are all in Rnsd+2,
are defined as follows:

U =

 ρ
ρv
ρE

, S =

 0
ρb
v·ρb

,
and for k = 1, . . . , nsd then

F k =

 ρ vk
ρv vk + p ek
ρE vk + p vk

 =

 ρ vk
ρv vk + (γ − 1)(ρE − 1

2
ρv·v)ek

γρE vk − (γ − 1)1
2
(ρv·v) vk

,
where ek is the unit vector in the xk direction. The equations could be written
in a more compact notation as

∂U

∂t
+ ∇·F = S,
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where the tensor F is defined as

F =
[
F 1, . . . ,F nsd

]
=

 ρvT

ρv ⊗ v + pInsd
(ρE + p)vT

,

Moreover, it is important to recall that the previous equations are usually writ-
ten and programmed in dimensionless form, namely:

∂

∂t

 ρ
ρv
ρE

+∇·

 ρvT

ρv ⊗ v + (γ − 1)(ρE − 1
2
ρv·v)Insd[

γρE − (γ − 1)1
2
ρv·v

]
vT

 = Fr
−2

 0
ρb
v·ρb

 , (2.3.5)

where, in spite of the notation, which is not changed to simplify the presentation,
density, ρ, velocity, v, and total energy per unit mass, E are in dimensionless
form. A characteristic length `ref depending on the problem and a characteristic
velocity vref = ‖v∞‖ (far field velocity) are used to scale the spatial coordinates
and velocities. Typically one can chose to define either a characteristic density
ρref or a characteristic pressure pref and they verify pref = ρrefv

2
ref. The charac-

teristic time is `ref/vref, the one for the total energy is v2
ref and the one for the

body forces, b, which are also in dimensionless form in (??), are scaled with
gref. The Froude number, Fr, which is a dimensionless number defined as the
ratio of the flow inertia to the external field (typically due to gravity), affects
the independent term and is defined as

Fr = vref/
√
lrefgref.

In what follows, the dimensionless form described by (??) will be employed.
Consequently, the source term and flux are defined as

S = Fr
−2

 0
ρb
v·ρb

, (2.3.6)

F =

 ρvT

ρv ⊗ v + (γ − 1)(ρE − 1
2
ρv·v)Insd[

γρE − (γ − 1)1
2
ρv·v

]
vT

. (2.3.7)

2.3.3 Quasi-Linear Form

Euler equations can be written in quasi-linear form as

∂U

∂t
+Ak(U)

∂U

∂xk
= S, (2.3.8)

where Ak are the Jacobian matrices for each spatial dimension (k = 1, . . . , nsd)
and they are defined as

Ak(U) =
∂F k

∂U
(2.3.9)
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The quasi-linear form of Euler equation (2.3.8) is written in a more compact
form as

∂U

∂t
+ (A(U) ·∇)U = S, (2.3.10)

where A = [A1, . . . ,Ansd ]. Wave-like solutions of (2.3.10) will exist if the eigen-
values λ1, . . . , λnsd+2 of the Jacobian matrix on a direction of propagation n,
An = A · n, are real with linear dependence of the corresponding right eigen-
vectors. The eigenvalues associated with an arbitrary direction of propagation
n are

λ1 = v · n− c, (2.3.11)
λ2 = . . . = λnsd+1 = v · n, (2.3.12)

λnsd+2 = v · n+ c. (2.3.13)

The Jacobian matrix on a direction of propagation n can be decomposed as

An = A · n =
nsd∑
i=1

Aini = RΛL (2.3.14)

where Λ is a diagonal matrix containing the eigenvalues of An, R is a matrix
whose columns are the right eigenvectors, and L = R−1 is a matrix whose
columns are the left eigenvectors.

2.3.4 Initial and Boundary Conditions

To complete the set of equations, initial and boundary conditions should be
defined. Usually, the initial conditions for the physical variables (ρ0,v

T
0 , p0) are

prescribed because they are easy to measure. Then all other variables, such as
energy and momentum, are computed from them.

Several boundary conditions can be considered. The first ones are fixed wall
boundary conditions. At a fixed wall, a slip condition is imposed, meaning
only the normal velocity vanishes (v · n = 0). No condition is imposed for
density, and for the temperature two options are possible: for isothermal walls
the temperature is prescribed, whereas for adiabatic walls the normal heat flux
is set to zero.

Symmetric boundary conditions are often considered to reduce the compu-
tational cost of a simulation when both the flow field and the geometry are
symmetric. The boundary conditions to impose in a symmetric boundary con-
sists of zero normal velocity on the symmetry plane, i.e. v · n = 0, and zero
normal gradient of all the conservation variables.

In external problems (infinite domain) artificial boundary conditions must be
implemented to bound the computational domain. Usually they are referred as
far-field (or artificial) boundary conditions. The first issue in these cases is which
boundary conditions lead to a well-posed problem and how many boundary
conditions can be posed in the first place. For the Euler equations, the answer
is the number of incoming waves, which can be determined using the theory of
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characteristics. The number of boundary conditions that lead to a well-posed
problem is shown in Table 2.1 [33].

Boundary type No. of BCs
Supersonic inflow nsd + 2
Subsonic inflow nsd + 1

Supersonic outflow 0
Subsonic outflow 1

Table 2.1: Number of boundary conditions at artificial boundaries
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Chapter 3

The Hybridizable Discontinuous
Galerkin Method

The main idea about HDG is eliminating the continuity constrain from the fi-
nite element space and imposing it on the inter-element boundaries [32]. This
is done: First, by introducing a new variable, being the traces of the primal
variable, along the element interfaces. This numerical trace is single valued at
the interfaces between elements, thus, it imposes the continuity of the primal
variable between elements. By doing this, the numerical solution of the primal
variable in elements is now function of the numerical traces. Second, the con-
tinuity of the normal flux is imposed between elements through a global jump
operator, and the numerical flux is defined in terms of the numerical traces
of the primal variable in a way that provides stability for the method. This
will lead to a global system of equations with less coupled degrees of freedom
which includes only the numerical traces of the primal variable on the elements’
interfaces, and this is the major advantage of HDG method compared to the
standard DG method.

3.1 Broken Computational Domain
Consider a domain Ω which is partitioned into nel disjoint elements Ωi,

Ω =
nel⋃
i=1

Ωi, Ωi ∩ Ωj = 0 for i 6= j

with boundaries ∂Ωi, which define an interface Γ. The union of all nfc faces
(edges in 2D) is what defines Γ,

Γ :=
nel⋃
i=1

∂Ωi =
nel⋃
i=1

nifc⋃
f=1

Γfi

where nifc is the number of faces of element Ωi, and Γfi is the f−th face of
element Ωi. Note that the faces on the boundary of the computational domain,
∂Ω, also belong to Γ. Figure 3.1 shows an example of an HDG mesh for an
approximation order p = 6 [32]. The dots in any triangular element represent
the nodes of that element, and the red lines represent the interface Γ.



12 Chapter 3. The Hybridizable Discontinuous Galerkin Method

Figure 3.1: Coarse mesh of a 2D domain Ω using triangular elements (left) and illus-
tration of the corresponding HDG mesh when using elements of order p = 6 (right).

3.2 Hybrid Variable and Transmission Conditions
Looking at the HDG mesh in Figure 3.1, it can be seen that an element-by-
element computation is possible if the variables on the interface Γ is given and
applied as Dirchlet boundary condition for each element. In fact, these variables
on the interface, called traces of the primal variable or hybrid variables are
defined as:

Û :=

 ρ̂
ρ̂v

ρ̂E

 (3.2.1)

In fact, on the boundary of the computational domain, ∂Ω, Û and/or the cor-
responding flux, F , are determined following the discussion on Section 2.3.4.
But in the interior faces Γ \ ∂Ω (the skeleton of the partitioned domain), a
global problem is solved to determine the hybrid variables. It is obtained im-
posing continuity of the conservative variables and the normal component of the
fluxes across interior faces. Namely, on Γ\∂Ω impose the following transmission
conditions:

JρnK = 0,

Jρv ⊗ nK = 0,

JρEnK = 0,

⇔ JU ⊗ nK = 0(nsd+2)×nsd , (3.2.2a)

JF · nK = JF knkK = 0. (3.2.2b)

where the jump J·K operator is defined at each internal face of Γ, i.e. on Γ\∂Ω,
using values from the elements to the left and right of the face (say, Ωr and Ω`),
namely

J}K = }r + }`,

and always involving the normal vector n [32].
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3.3 Approximation Spaces and Functional Set-
tings

The following vector spaces are used:

W (D) = {w ∈ [H1(D)]nsd+2, D ⊆ Ω},
M (S) = {µ ∈ [L2(S)]nsd+2, S ⊆ Γ}.

Moreover, the following discrete finite element spaces are introduced

W h(Ω) = {w ∈ [L2(D)]nsd+2;w|Ωi∈ [P p(Ωi)]
nsd+2 ∀Ωi} ⊂W (D),

Mh(S) = {µ ∈ [L2(S)]nsd+2;µ|Γi∈ [P p(Γi)]
nsd+2 ∀Γi ⊂ S ⊆ Γ} ⊂M(S).

where P p(Ωi) and P p(Γi) are the spaces of polynomial functions of degrees at
most p ≥ 1 in Ωi and Γi respectively.

For any two vector functions u and v in [L2(D)]nsd+2, we denote (u,v)D =∫
D
u · v ∂Ω where D is a generic subdomain in Rnsd and 〈u,v〉S =

∫
S
u · v ∂Γ

where S ⊆ Γ is a generic domain in Rnsd−1. Moreover, for any two tensor
functions U and V in [L2(D)](nsd+2)×(nsd+2), we denote (U,V)D =

∫
D

U : V ∂Ω
and 〈U,V〉S =

∫
S

U : V ∂Γ.

3.4 The Strong Forms
A starting point to solve equation (2.3.5) using the HDG method is to re-write
an equivalent strong form of the problem in the broken computational domain
as 

∂U

∂t
+ ∇·F (U ) = S(U) in Ωi × (0, T ),

U(x, t0) = U 0(x) ∀x ∈ Ωi,

HBC(U ,U∞) = 0 on ∂Ω,

JU ⊗ nK = 0(nsd+2)×nsd on Γ \ ∂Ω,

JF · nK = 0 on Γ \ ∂Ω.

(3.4.1)

where the last two equations correspond to the imposition of the continuity of
the conservative variableU and the normal fluxes respectively along Γ\∂Ω,HBC

is a generic boundary condition operator that must be defined to account for
the boundary conditions described in Section 2.3.4, and U∞ denotes the free-
stream value of the conservation variables. Its definition depends upon the type
of boundary (e.g far-field, wall, etc), the flow regime (e.g. subsonic, supersonic).

The HDG formulation rewrites (3.4.1) as two equivalent problems. First,
the local element-by-element problem with Û defined as Dirchlet boundary
conditions 

∂U i

∂t
+ ∇·F (U i) = S(U i) in Ωi × (0, T ),

U i = Û on ∂Ωi × (0, T ),

U i = U 0 in Ωi × {0},

(3.4.2)
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for i = 1, ..., nel. In this approach, it is assumed that Û ∈ [L2(Γ)]nsd+2 is given.
In each element Ωi this problem produces an element-by-element solution U i

as a function of Û , and these problems can be solved independently element-
by-element. The strong form of the local problems is written in detailed form
as

∂ρ

∂t
+ ∇·(ρv) = 0,

∂ρv

∂t
+ ∇·

(
ρv ⊗ v + (γ − 1)(ρE − 1

2
ρv·v)Insd

)
=

1

Fr
2ρb,

∂ρE

∂t
+ ∇·

(
γρEv − (γ − 1)1

2
(ρv·v)v

)
=

1

Fr
2v · ρb.

in Ωi × (0, T ),

(3.4.3a)

(ρ, ρvT , ρE) = (ρ̂, ρ̂vT , ρ̂E) = Û
T

on ∂Ωi × (0, T ), (3.4.3b)
(ρ, ρvT , ρE) = (ρ0, ρ0v

T
0 , ρ0E0) = U 0 in Ωi × {0}. (3.4.3c)

All variables in the previous equations are defined element-by-element, and this
should formally be denoted by a subindex i, however unless needed to clarify
an equation, the element index is not indicated.

Second, a global problem is defined to determine Û , this problem corre-
sponds to the imposition of the continuity of the conservative variables and the
normal fluxes along the internal interface Γ\∂Ω and the imposition of boundary
conditions 

JU ⊗ nK = 0(nsd+2)×nsd on Γ \ ∂Ω,

JF · nK = 0 on Γ \ ∂Ω,

HBC(U ,U∞) = 0 on ∂Ω.

(3.4.4)

Note that the first equation imposes the continuity of U along Γ \ ∂Ω. But
U = Û on Γ as imposed by the second equation in the local problems (3.4.2).
Therefore, this equation is imposed automatically because Û is unique for ad-
jacent elements. Finally, the global problem is simply{

JF · nK = 0 on Γ \ ∂Ω,

HBC(U ,U∞) = 0 on ∂Ω.
(3.4.5)

3.5 The Weak Forms
The weak formulation for each element equivalent to (3.4.2) is as follows: for
i = 1, ..., nel, given Û on ∂Ωi, find U i ∈W (Ωi) that satisfies

(
w,

∂U i

∂t

)
Ωi
−
(
∇w,F (U i)

)
Ωi

+
〈
w, F̂ ·n

〉
∂Ωi

=
(
w,S(U i)

)
Ωi

(3.5.1)
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for all w ∈W (Ωi). The numerical traces of the fluxes F̂ is defined face-by-face
(i.e. for j = 1, ..., nifc) on each element (i.e. for i = 1, ..., nel) as

F̂ j · nj := F j(Û) · nj + τ j(Û)
(
U i − Û

)
(3.5.2)

where the stabilization matrix τ j of dimension (nsd + 2) × (nsd + 2) can be
defined as

τ j(Û) := |An(Û)| (3.5.3)

τ j(Û) := max
x∈Γji

(|v̂ · nj|+ ĉ)Insd+2 (3.5.4)

τ j(Û) := (|v̂ · nj|+ ĉ)Insd+2 (3.5.5)

which correspond to the Roe, the global Lax-Friedrichs and the local Lax-
Friedrichs solvers respectively, see [20].

The weak formulation equivalent to the global problem (3.4.5) is: find Û ∈
M (Γ) for all µ ∈M (Γ) such that

nel∑
i=1

〈
µ, F̂ · n

〉
∂Ωi\∂Ω

+
〈
µ, Ĥ

BC
(U , Û ,U∞)

〉
∂Ω

= 0. (3.5.6)

By inserting the definition for the traces of the numerical fluxes given by (3.5.2)
into both the local (3.5.1) and global (3.5.6) problems, we get the following
equation for the local problems(
w,

∂U i

∂t

)
Ωi
−
(
∇w,F (U i)

)
Ωi

+
〈
w,F (Û) · n

〉
∂Ωi

+
〈
w, τ (Û)U i

〉
∂Ωi

−
〈
w, τ (Û)Û

〉
∂Ωi

=
(
w,S(U i)

)
Ωi

(3.5.7)

and the following equation for the global problem

nel∑
i=1

[〈
µ,F (Û) · n

〉
∂Ωi\∂Ω

+
〈
µ, τ (Û)U i

〉
∂Ωi\∂Ω

−
〈
µ, τ (Û)Û

〉
∂Ωi\∂Ω

]
+
〈
µ, Ĥ

BC
(U , Û ,U∞)

〉
∂Ω

= 0

(3.5.8)
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3.6 The Semi-Discrete Forms
The semi-discrete forms of the local and global problems are written as: find
(Uh

i , Û
h
) ∈W h(Ωi)×Mh(Γ) that satisfies

(
wh,

∂Uh
i

∂t

)
Ωi
−
(
∇wh,F (Uh

i )
)

Ωi
+
〈
wh,F (Û

h
) · n

〉
∂Ωi

+
〈
wh, τ (Û

h
)Uh

i

〉
∂Ωi

−
〈
wh, τ (Û

h
)Û

h〉
∂Ωi

=
(
wh,S(Uh

i )
)

Ωi

(3.6.1)
nel∑
i=1

[〈
µh,F (Û

h
) · n

〉
∂Ωi\∂Ω

+
〈
µh, τ (Û

h
)Uh

i

〉
∂Ωi\∂Ω

−
〈
µh, τ (Û

h
)Û

h〉
∂Ωi\∂Ω

]
+
〈
µh, Ĥ

BC
(Uh, Û

h
,U∞)

〉
∂Ω

= 0

(3.6.2)

for all (wh,µh) ∈W h(Ωi)×Mh(Γ) and all t ∈ (0, T ). This semi-discrete HDG
formulation could be discretized in time using implicit or explicit time-stepping
methods leading to system of non-linear equations.

3.7 Imposition of Boundary Conditions

As mentioned earlier, the definition of the numerical boundary flux Ĥ
BC

(U , Û ,U∞)
depends on the particular boundary condition considered. Following the work
from [20, 14], this section introduces the definition of the numerical boundary
flux for the boundary conditions commonly arising in the simulation of external
flows.

3.7.1 Far-field Boundary Conditions

The numerical flux at a far-field boundary is defined, using a flux vector splitting
technique [7, Sec. 4.4] as

Ĥ
BC

(U , Û ,U∞) = A+
n(Û)

(
U − Û

)
+ A−n(Û )

(
Û −U∞

)
(3.7.1)

where An = [∂F (Û)/∂Û ] · n and the matrices A+
n and A−n are defined, after

diagonalising the Jacobian matrix An = PLΛPR, as

A+
n =

1

2
(An + |An|) A−n =

1

2
(An − |An|). (3.7.2)

In the above expression, |An| = PL|Λ|PR, where |Λ| is a diagonal matrix
containing the absolute value of the eigenvalues of An and PL and PR are the
matrices of left and right eigenvectors of An respectively.

It is worth noting that equation (3.7.1) can also be written as

Ĥ
BC

(U , Û ,U∞) = A+
n(Û)U −A−n(Û)U∞ +

(
F (Û) (3.7.3)
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From an implementation point of view the use of equation (3.7.1) is obvi-
ously preferred, specially when linearisation of the boundary term is sought.
However, equation (3.7.3) offers an extra insight into the upwind character of
the numerical boundary flux.

3.7.2 Wall Boundary Conditions

At an inviscid wall the normal velocity of the hybrid variable Û is set to zero
whereas the density and the total energy are extrapolated from the interior
values. The numerical normal flux is defined as

Ĥ
BC

(U , Û) =
(
ρ− ρ̂,vT − (v · n)nT − v̂T , ρE − ρ̂E

)T
. (3.7.4)

Alternatively, the wall boundary conditions can be written in terms of a
ghost state U out as

Ĥ
BC

(U , Û ,U∞) = U out − Û . (3.7.5)

where

U out :=
(
ρ,vT − (v · n)nT , ρE

)T (3.7.6)

3.8 Time Discretization
To solve the arising unsteady problem, time-marching scheme is needed. Ex-
plicit or implicit schemes could be used. It is known that explicit schemes are
conditionally stable, meaning that a limit on the value of time step is present,
which is the Courant–Friedrichs–Lewy (CFL) condition [7, Chap. 3]. Implicit
schemes are generally more expensive when compared to explicit schemes con-
sidering time step of the same value. However, implicit schemes are uncondi-
tionally unstable, meaning that larger time step could be used, which makes it
more favourable in some cases. For example, when solving problems over long
time span, or when very fine meshes are used. In this work, only implicit time
schemes are considered.

3.8.1 Backward Differentiation Formulas

The backward differentiation formulas (BDF) are linear multistep implicit meth-
ods used for time integration of stiff differential equations and is written as [8]:

∂un

∂t
≈ 1

∆t

k∑
j=0

αkju
n−j (3.8.1)

where k is the order of the method, and αk0, ..., αkk are real constants.
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The BDF method is A-stable for k ≤ 2 and completely unstable for k > 6.
The k-step BDF method with k up to 2 are:

BDF1 :
∂un

∂t
≈ 1

∆t
(un − un−1)

BDF2 :
∂un

∂t
≈ 1

∆t
(
3

2
un − 2un−1 +

1

2
un−2)

3.9 Spatial Discretization and Implementation De-
tails

This section is devoted to the detailed presentation of the discrete version of
both the local and global problems.

Introducing the identity matrix I of dimension nsd+2, the following compact
form of the interpolation functions is introduced

N = [N1I N2I . . . NnenI]T ,

N̂ = [N̂1I N̂2I . . . N̂nfnI]T ,

∇N = [J−1∇(N1I) J−1∇(N2I) . . . J−1∇(NnenI)]T

where,

J =


∂(x1I)
∂ξ1

. . .
∂(xnsdI)

∂ξ1
... . . . ...

∂(x1I)
∂ξnsd

. . .
∂(xnsdI)

∂ξnsd

 ,

Nn =

 N1n1I N2n1I . . . Nnenn1I
...

... . . . ...
N1nnsdI N2nnsdI . . . NnennnsdI


T

,

N̂n =

 N̂1n1I N̂2n1I . . . N̂nfnn1I
...

... . . . ...
N̂1nnsdI N̂2nnsdI . . . N̂nfnnnsdI


T

.

For any element in the computational domain, the nodal values of the conser-
vative variables are defined as

u(e) = [U
(e)T

1 U
(e)T

2 . . . U (e)T

nen ]T

where U (e)
i is the conservative variables vector evaluated at node i of that ele-

ment, which in turns is defined as

U
(e)
i = [U

(e)1

i U
(e)2

i . . . U
(e)nsd+2

i ]T
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The polynomial interpolation of the conservative variables within the reference
element is defined as

U (e)h(ξ) =
nen∑
i=1

Ni(ξ)U
(e)
i = NTu(e) ∈W h

The polynomial interpolation of the vector test function within the reference
element is defined similarly as

w(e)h
T

(ξ) = w(e)TN ∈W h

Similarly, for any face on Γ, the nodal values of the trace of the conservative
variables are defined as

û(f) = [Û
(f)T

1 Û
(f)T

2 . . . Û
(f)T

nfn ]T

where Û
(f)

i is the trace of the conservative variables vector evaluated at node i
of that face, which in turns is defined as

Û
(f)

i = [Û
(f)1

i Û
(f)2

i . . . Û
(f)nsd+2

i ]T

For any element in the computational domain, the nodal values of the trace of
the conservative variables on the adjacent faces on Γ are defined as

û(e) = [û(1) û(2) . . . û(nefc)]T

The polynomial interpolation of the trace of the conservative variables on the
reference face is defined as

Û
(f)h

(ξ) =
nfn∑
i=1

N̂i(ξ)Û
(f)

i = N̂
T
û(f) ∈Mh

The polynomial interpolation of the vector test function within the reference
face is defined similarly as

µ(f)h
T

(ξ) = µ(f)T N̂ ∈Mh

For any element in the computational domain, the convective flux vector is
defined as

f(U (e)h(ξ)) = [F T
1 (U (e)h(ξ)) . . . F T

nsd(U
(e)h(ξ))]T

where F k(U
(e)h(ξ)) is the convective flux vector in direction k in that element,

which in turns is defined as

F k(U
(e)h(ξ)) = [F 1

k (U (e)h(ξ)) F 2
k (U (e)h(ξ)) . . . F nsd+2

k (U (e)h(ξ))]T
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For any element in the computational domain, the source term vector is defined
as

s(U (e)h(ξ)) = [S1(U (e)h(ξ)) S2(U (e)h(ξ)) . . . Snsd+2(U (e)h(ξ))]T

For any face on Γ, the stabilization matrix given by (3.5.4) or (3.5.5) is defined
as

τ (Û
(f)h

(ξ)) = τ(Û
(f)h

(ξ))I

For any face on ∂Ω, the boundary condition vector is defined as

ĥ
BC

(U (e)h(ξ), Û
(f)h

(ξ),U∞(ξ)) = [ĥBC
1

, ĥBC
2

, ..., ĥBC
nsd+2

]T

Now, both the local and global problems can be written in vector form. The
Local problem for any element in the computational domain is written as:∫

Ωe

NNTdΩ
du(e)

dt
−
∫

Ωe

∇Nf(U (e)h(ξ)) dΩ +

∫
∂Ωe

Nnf(Û
(e)h

(ξ)) dΓ

+

∫
∂Ωe

NNT τ(Û
(e)h

(ξ)) dΓ u(e) −
∫
∂Ωe

NN̂
T
τ(Û

(e)h

(ξ)) dΓ û(e)

=

∫
Ωe

Ns(U (e)h(ξ)) dΩ

(3.9.1)

The global problem is written as:

nel∑
e=1

[∫
∂Ωe\∂Ω

N̂nf(Û
(e)h

(ξ)) dΓ +

∫
∂Ωe\∂Ω

N̂NT τ(Û
(e)h

(ξ)) dΓ u(e)

−
∫
∂Ωe\∂Ω

N̂N̂
T
τ(Û

(e)h

(ξ)) dΓ û(e)

+

∫
∂Ωe∩∂Ω

N̂ĥ
BC

(U (e)h(ξ), Û
(e)h

(ξ),U∞(ξ)) dΓ

]
= 0

(3.9.2)



3.10. Linearised Equations 21

3.10 Linearised Equations
The discretization of the local problems and the global one is written in one
residual vector form:

R(Uh, Ûh) =

{
RU (Uh, Ûh)

RÛ (Uh, Ûh)

}
= 0 (3.10.1)

To find the solution of the non-linear system of equations (3.10.1), Newton-
Raphson iterations are needed. For every time step n, the initial guess is taken
from the solution of the previous step n− 1, namely{

0Un
h

0Û
n

h

}
=

{
Un−1
h

Û
n−1

h

}
(3.10.2)

Using the concept of directional derivative

R(kUn
h,

kÛ
n

h) ≈R(k−1Un
h,

k−1Û
n

h)+DR(k−1Un
h,

k−1Û
n

h) [δU ∗] = 0 (3.10.3)

where k is the Newton-Raphson iteration, δU ∗ = {δUT , δÛ
T
}T is a small per-

turbation in the parameter U ∗ = {UT , Û
T
}T and D R [δU ∗] is the directional

derivative of R with respect to δU ∗.
Furthermore, equation (3.10.3) is written as

D R(k−1Un
h,

k−1Û
n

h) [δU ∗] = −R(k−1Un
h,

k−1Û
n

h) (3.10.4)

The directional derivative D R [δU ∗] is computed as

D R [δU ∗] =
∂R
∂U ∗

=

[
∂RU

∂U
∂RU

∂Û
∂RÛ

∂U
∂RÛ

∂Û

]{
δU

δÛ

}
(3.10.5)

Thus, equation (3.10.4) is written as

k−1[
∂RU

∂U
∂RU

∂Û
∂RÛ

∂U
∂RÛ

∂Û

]n k−1{
δU

δÛ

}n
=

k−1{
−RU

−RÛ

}n

(3.10.6)

which is written for convenience as
k−1[

AUU AUÛ

AÛU AÛÛ

]n k−1{
δU

δÛ

}n
=

k−1{
−RU

−RÛ

}n

(3.10.7)

or written in compact form as

k−1[K]n k−1{δU ∗}n = k−1{−R}n (3.10.8)
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After solving for k−1{δU ∗}n, the modified guess for the next iteration is
computed as {

kUn
h

kÛ
n

h

}
=

{
k−1Un

h
k−1Û

n

h

}
+

k−1{
δU

δÛ

}n
(3.10.9)

Noting that the matrix AUU in (3.10.7) is of a block-diagonal structure [20],
therefore, k−1δUn is eliminated and a reduced system in terms of

k−1
δÛn is

obtained. As a result, the practical solution procedure is as follows; a Global
problem is solved first where

k−1
δÛn is obtained, then the local problems are

solved to obtain k−1δUn.

Local problems

Considering equation (3.10.7) and noting that the matrix AUU is of a block-
diagonal structure, therefore the local element-by-element problem is written
for each element e = 1, ..., nel as:

k−1[AUU
e ]n k−1{δU e}n +k−1 [AUÛ

e ]n k−1{δÛ e}n = k−1{−RU
e }n (3.10.10)

The solution for the local problem is obtained by inverting the matrix
k−1[AUU

e ]n, which is of size nen(nsd + 2)× nen(nsd + 2), yielding:

k−1{δU e}n = −k−1[AUU
e ]n

−1 k−1[AUÛ
e ]n k−1{δÛ e}n +k−1 [AUU

e ]n
−1 k−1{−RU

e }n
(3.10.11)

which is written in a more appropriate way as:

k−1{δU e}n = −k−1[Ze]
n k−1{δÛ e}n +k−1 {ze}n (3.10.12)

with

[Ze] = [AUU
e ]−1[AUÛ

e ], (3.10.13a)
{ze} = [AUU

e ]−1{−RU
e }. (3.10.13b)

Global problem

Considering again equation (3.10.7), the second equation yields the global
problem equation which reads

k−1[AÛU ]n k−1{δU}n +k−1 [AÛÛ ]n k−1{δÛ}n = k−1{−RÛ}n (3.10.14)

which is written as an assembly of elemental contributions as:

nel∑
e=1

{
k−1[AÛU

e ]n k−1{δU e}n +k−1 [AÛÛ
e ]n k−1{δÛ e}n

}
=

nel∑
e=1

k−1{−RÛ
e }n

(3.10.15)
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By substituting the solution of the local problem (3.10.12) into the global
problem (3.10.15), the following linear system of equations is obtained

nel∑
e=1

[
k−1[AÛÛ

e ]n − k−1[AÛU
e ]n k−1[Ze]

n
]
k−1{δÛ e}n

=
nel∑
e=1

{
k−1{−RÛ

e }n − k−1[AÛU
e ]n k−1{ze}n

}
(3.10.16)

which is written in a more appropriate way as:

k−1[K̂]n k−1{δÛ}n = k−1{R̂}n (3.10.17)

with

[K̂] = Anel
e=1

[
[AÛÛ

e ]− [AÛU
e ][Ze]

]
, (3.10.18a)

{R̂} = Anel
e=1

{
{−RÛ

e } − [AÛU
e ]{ze}

}
. (3.10.18b)
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Chapter 4

Shock Capturing

The main idea behind the numerical treatment of shocks and other flow dis-
continuities is the introduction of a numerical or artificial viscosity term to the
governing conservative equation. This term has the effect of broadening the
thickness of a shock over a few elements in the mesh, thereby smearing the
discontinuity and removing spurious oscillations at its front. Discontinuity sur-
faces are thus replaced by thin transition layers over which the flow variables
(density, pressure, velocity) vary rapidly, but continuously [7, Chap. 4].

4.1 Introduction to Shock Capturing in DGmeth-
ods

As mentioned before, the simulation of shocks using low order-methods is a
mature research field; however the situation is different for high-order methods.
HDG method, like other DG methods, have built-in stabilization due to the
definition of the inter-element numerical fluxes which is able to solve transport
or convection-dominated problems. It produces stable solution even in some
cases with weak discontinuities or discontinuous boundary conditions, see [10].
However in non-linear hyperbolic problems with strong shocks, solutions suffer
from spurious oscillations near the discontinuities when high-order approxima-
tions are used, this is known as Gibbs phenomena, see [1, 2]. In DG methods,
the amount of natural inherent dissipation is proportional to O

(
hp+1

)
, where h

is a representative for the element size and p is the order of the interpolating
polynomial within the element [22]. By fixing h and increasing p, the natural
dissipation is reduced. This means that the dissipation inherent in DG meth-
ods is insufficient for high-order interpolations and therefore, an extra artificial
dissipation is added to eliminate the high-frequencies in the solution, thus elim-
inating Gibbs-type oscillations.

Many approaches have been proposed in the literature to resolve shocks with
high-order methods. The most straightforward approach is to reduce the order
of interpolation only in the vicinity of the shock [3, 4], which would increase the
amount of natural dissipation. For this, some sort of discontinuity detector or
sensor is needed to identify the elements where the order will be reduced. This
approach gives satisfactory results when the order of interpolation is reduced to
p ≤ 1. However, this leads to the degradation of accuracy and therefore, exces-
sive mesh refinement is required near the shock. This makes it computationally
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expensive especially for transient shocks; because re-meshing would be needed
in each time step.

Other approaches use high-order Total Variation Diminishing (TVD) schemes
that add controlled amount of non-linear dissipation. The two words "con-
trolled" and "non-linear" associated to the added dissipation are very meaning-
ful. On one hand, the amount of added dissipation is automatically "controlled"
by means of a limiter which impose constraints on the gradient of the variable
being solved (slope limiter) or on the flux function (flux limiter). On the other
hand, the word "non-linear" means that the diffusion coefficient of the added
dissipation depends on the local behaviour of the solution, i.e. higher diffusion
near discontinuities than in smooth regions of the flow, see [7, Chap. 4]. The
high-resolution TVD schemes was introduced in the context of finite differences
by van Leer in [34], and have been extended to DG methods, see for instance
[11]. TVD schemes also have the disadvantage of reducing the order of approx-
imation near the shock.

Alternatively, other approaches have been proposed to keep the high-order
approximation everywhere in the domain such as the Essentially Non-Oscillatory
(ENO) [9] and the Weighted Essentially Non-Oscillatory (WENO) [12] meth-
ods. These methods use some sort of reconstructed higher-order polynomials in
the elements near the shock which render stable non-oscillatory solution. The
extension of these approaches to DG methods are presented, for instance, in
[26, 25, 37, 38, 27, 39]. As reported by Persson and Peraire in [22], these meth-
ods appear to have a very high cost when the order of interpolation is increased.

A simpler approach to keep the high-order approximation everywhere in the
domain is by explicitly adding a viscous term to the equations, this approach
goes back to the early artificial viscosity method proposed by Von Neumann
and Richtmyer [36]. For low order approximations, i.e. p ≤ 0, the addition of
artificial viscosity yields shocks which are smeared over multiple cells. How-
ever, for high-order approximations, sub-cell shock capturing can be achieved
and the shock can be captured within a single element as reported by Pers-
son and Peraire in [22]. Persson and Peraire introduced a viscous term to the
original equation which has a constant diffusion coefficient per element. This
viscous term is activated only in the elements where the shock exists. For this,
they used a shock sensor which is based on the rate of decay of the expansion
coefficients of the solution or one of the components of the solution in vector
problems.

Further work have been done following the work by Persson and Peraire.
Barter and Darmofal [2] showed the importance of having a smooth variable dif-
fusion coefficient in the artificial viscosity term by incorporating a PDE model
for the artificial viscosity term. Another work by Persson [21] introduced two
smooth diffusion coefficients which are C0 and C2-continuous. In this work,
Persson showed that constant diffusion coefficient per element introduced new
irregularities in the solution, while the C0 and C2-continuous coefficients gave
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significantly smoother solutions.

Using the same approach of artificial viscosity method, other shock sensors
were introduced. A smooth sensor based on the dilation (divergence of the ve-
locity ∇·v) was used for instance by Premasuthan et al. [23, 24]. The concept
is understood clearly by recalling that shocks are strong compression waves, i.e.
high negative dilation, and therefore, the artificial viscosity term is switched
off in the regions of positive dilation and increased gradually by increasing the
negative dilation. This approach was used in the context of HDG by Nguyen
and Peraire in [15] and by Moro et al. in [13].

The main focus of this thesis is the two shock-capturing techniques based
on artificial viscosity method, the first proposed by Persson and Peraire in
[22] using resolution indicator sensor combined with the C0-continuous diffusion
coefficient proposed by Persson in [21], and the second proposed by Moro et al.
in [13].

4.2 Artificial Viscosity Method
By adding artificial diffusion to Euler equations, the modified partial differential
equation is written as:

∂U

∂t
+ ∇·F −∇·G = S (4.2.1)

where G =
[
G1, . . . ,Gnsd

]
is the viscous flux tensor which could be defined

using the following two approaches:

• Laplacian viscous flux:

G = ε∇U (4.2.2)

• Enthalpy-Preserving viscous flux:

G = ε∇UH (4.2.3)

whereU is the vector of conservative variables defined before asUH = (ρ, ρvT , ρE)T ,
and UH = (ρ, ρvT , ρH)T . The definition given by (4.2.3) preserves the enthalpy
H across the shock in the steady state case [2, 13, 15, 22], and requires the def-
inition of ∇ρH as

∇ρH = ∇ρE + ∇p,

where the pressure gradient is

∇p = (γ − 1)

(
∇ρE − 1

ρ
∇(ρv)T · ρv +

ρv · ρv
2ρ2

∇ρ

)
.

Therefore,

∇ρH = γ∇ρE + (γ − 1)

(
ρv · ρv

2ρ2
∇ρ− 1

ρ
∇(ρv)T · ρv

)
. (4.2.4)
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4.2.1 Discontinuity Sensor and Amount of Artificial Vis-
cosity

Despite all the research going on in this field, the amount of optimal added
artificial viscosity is unknown. The objective of the shock-capturing technique
is to add the artificial viscosity only at the shock with a reasonable amount that
allows for obtaining a sharp but resolvable shock. Based on that, the two main
components for any shock-capturing technique is a discontinuity sensor sε, that
detects the position of the shock, and the diffusion coefficient ε that smears the
shock over a resolvable length scale.

The diffusion coefficient ε is dependant on the sensor sε, and for it to be
consistent, it must have the units of length times velocity :

ε = lscalevscalef(sε) (4.2.5)

where lscale and vscale are the length and velocity scales, respectively, and
f(sε) is a dimensionless soft-max function that depends on the sensor to switch
on/off the viscosity term.

As reported in [13], a natural choice for the velocity scale would be the
fastest wave across the shock, given by λmax = |v ·n|+ c; however, this requires
the extraction of the vector n normal to the shock front. Therefore, a simpler
choice is considered by setting the velocity scale to

√
v · v + c2 instead of λmax.

vscale =
√
v · v + c2 (4.2.6)

The length scale will be discussed for each shock-capturing technique sepa-
rately.

Resolution indicator sensor (Persson-Peraire sensor)

Persson and Peraire used a shock sensor which is based on the rate of decay
of the expansion coefficients of one of the components of the solution. For
smooth solutions, the coefficients in the expansion are expected to decay very
quickly. On the other hand, when the solution is not smooth, the strength of the
discontinuity will control the rate of decay of the expansion coefficients. This
in turns could detect in which elements higher frequencies in the solution exists
and therefore, the shock location is determined, see [22] for the mathematical
details.

Another variation for writing the shock sensor proposed in [22] is presented
in the work of Casoni [5] in a discretized form as:

sε(ρ) = log10

ρTV −TPHV
−1ρ

ρTV −TV −1ρ
(4.2.7)

where ρ is the vector of nodal values of ρ, V is the Vandermonde matrix, which
maps the orthogonal basis onto the Lagrangian one (see [30] for more details),
and PH is an orthonormal projection matrix onto the space of monomials of
degree p (see [5] for more details).
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The dimensionless switch function f(sε) is defined as:

f(sε) =


0 if sε < s0 − κ
1

2

(
1 + sin

π(sε − s0)

2κ

)
if s0 − κ < sε < s0 + κ

1 if s0 + κ < sε

(4.2.8)

where s0 = −6 log10 p and κ = 2 log10 p where p is the order of interpolation.

Taking into account the conclusions of the work by Barter and Darmofal in
[2] on the importance of having a continuous artificial viscosity field to avoid in-
stabilities in the solution or degradation in the accuracy, Persson [21] proposed
a C0-continuous artificial viscosity that is achieved by smoothing the length
scale, lscale, as well as the switch function, f(sε). The length scale is defined as
lscale = h(x)/p, where h(x) is a piecewise linear reconstruction of the minimum
element size obtained by averaging the minimum size, he, of all the elements
surrounding a vertex. The same procedure is followed to achieve a continuous
switch function.

Dilation-Based sensor

The shock sensor based on dilation which is proposed by Moro et al. in [13] is
given as

sε = −kh
h(x)

p

∇·v
c∗

(4.2.9)

where kh ∈ [1, 2] is a correction factor, and c∗ is the critical speed of sound
defined as

c∗ =

√
γRT0

2

γ + 1
(4.2.10)

which is required for the non-dimensionalization of ∇·v.

The proposed switch function is given by

f(sε) =
log(1 + eα(sε−β))

α
(4.2.11)

where α = 104 and β = 0.01 are chosen by the author after some numerical tests
to recover optimal asymptotic convergence. This function f(sε) switches-on the
viscosity term for positive values of sε, i.e. negative dilation.

Finally, the length scale is defined as lscale = khh(x)/k in order to obtain
sub-cell shock-capturing.
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4.3 Artificial Viscosity Method in HDG
The HDG formulation of Euler equation combined with the shock-capturing
term is presented in this section.

4.3.1 The Strong Forms

The local element-by-element problems for i = 1, ..., nel are
∂U i

∂t
+ ∇·F (U i)−∇·G(U i,∇U i) = S(U i) in Ωi × (0, T ),

U i = Û on ∂Ωi × (0, T ),

U i = U 0 in Ωi × {0},

(4.3.1)

And the global problem is written as{
J
(
F (U)−G(U ,∇U)

)
· nK = 0 on Γ \ ∂Ω,

HBC(U ,U∞) = 0 on ∂Ω.
(4.3.2)

4.3.2 The Mixed Strong Forms

In order to avoid the second-order term in the local problems, equation (4.3.1)
is written as a system of first-order equation. Therefore, the local element-by-
element problems for i = 1, ..., nel are

li = ∇ρ in Ωi × (0, T ),

Li = ∇ρv in Ωi × (0, T ),

qi = ∇ρE in Ωi × (0, T ),

∂U i

∂t
+ ∇·F (U i)−∇·G(U i, li,Li, qi) = S(U i) in Ωi × (0, T ),

U i = Û on ∂Ωi × (0, T ),

U i = U 0 in Ωi × {0},

(4.3.3)

where the three new variables l,L, and q are called mixed variables and they
correspond to the gradients of the conservative variables. This increases the
number of unknowns per node in the local problems from nsd+2 to n2

sd+3nsd+2.
However, this is not an issue, because it applies only to the elements flagged by
the shock sensor.

On the other hand, the global problem is written as{
J
(
F (U )−G(U , l,L, q)

)
· nK = 0 on Γ \ ∂Ω,

HBC(U ,U∞) = 0 on ∂Ω.
(4.3.4)

where it is important to note that the number of globally coupled degrees of
freedom remains unchanged.
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4.3.3 The Weak Forms

The weak formulation for each element equivalent to (4.3.3) is as follows: for
i = 1, ..., nel, given Û on ∂Ωi, find U i ∈W (Ωi), li, qi ∈ V (Ωi) and Li ∈N (Ωi)
that satisfies

(
g, li

)
Ωi

+
(
∇·g, ρ

)
Ωi

=
〈
g · n, ρ̂

〉
∂Ωi
,(

Q,Li
)

Ωi
+
(
∇·Q, ρv

)
Ωi

=
〈
Q · n, ρ̂v

〉
∂Ωi
,(

d, qi
)

Ωi
+
(
∇·d, ρE

)
Ωi

=
〈
d · n, ρ̂E

〉
∂Ωi
,(

w,
∂U i

∂t

)
Ωi
−
(
∇w,F (U i)−G(U i, li,Li, qi)

)
Ωi

+
〈
w,
(
F (U i, Û )−G(U i, Û , li,Li, qi)

)
· n
〉
∂Ωi

+
〈
w, τ (Û)

(
U i − Û

)〉
∂Ωi

=
(
w,S(U i)

)
Ωi

(4.3.5)

for all w ∈ W (Ωi), g,d ∈ V (Ωi) and Q ∈ N (Ωi) where the following vector
and matrix spaces are defined

V (D) = {g,d ∈ [H1(D)]nsd , D ⊆ Ω},
N (D) = {µ ∈ [H1(D)]nsd×nsd , D ⊆ Ω}.

The weak formulation equivalent to the global problem (4.3.4) is: find Û ∈
M(Γ) for all µ ∈M (Γ) such that

nel∑
i=1

[〈
µ,
(
F (U i, Û)−G(U i, Û , li,Li, qi)

)
· n
〉
∂Ωi\∂Ω

+
〈
µ, τ (Û )

(
U i − Û

)〉
∂Ωi\∂Ω

]
+
〈
µ, Ĥ

BC
(U , Û ,U∞)

〉
∂Ω

= 0

(4.3.6)

The stabilization matrix τ is modified, where the viscous contribution to
the stabilization τG is added to the convective contribution τ F previously men-
tioned in equations (3.5.3), (3.5.4) and (3.5.5). Some definitions for τG are
available in the literature, see for instance [20, 17, 18, 19]. in this thesis, τG is
chosen as

τG =
ε

h
Insd+2 (4.3.7)

where h is the element size.
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4.3.4 Linearised Equations

The discretization of the local problems and the global one is written in one
residual vector form:

R(Uh, Ûh, lh,Lh, qh) =



RU (Uh, Ûh, lh,Lh, qh)

R∇ρ(Uh, Ûh, lh)

R∇ρv(Uh, Ûh,Lh)

R∇ρE(Uh, Ûh, qh)

RÛ (Uh, Ûh, lh,Lh, qh)


= 0 (4.3.8)

To find the solution of the non-linear system of equations (4.3.8), Newton-
Raphson iterations are needed. For every time step n, the initial guess is taken
from the solution of the previous step n− 1, namely

0Un
h

0lnh
0Lnh
0qnh
0Û

n

h

 =


Un−1
h

ln−1
h

Ln−1
h

qn−1
h

Û
n−1

h

 (4.3.9)

Similar to what was done for Euler equations without shock-capturing, the
linearised system of equations solved at each iteration is

k−1

∂RU

∂U
∂RU

∂l
∂RU

∂L
∂RU

∂q
∂RU

∂Û
∂R∇ρ

∂U
∂R∇ρ

∂l
0 0 ∂R∇ρ

∂Û
∂R∇ρv

∂U
0 ∂R∇ρv

∂L
0 ∂R∇ρv

∂Û
∂R∇ρE

∂U
0 0 ∂R∇ρE

∂q
∂R∇ρv

∂Û
∂RÛ

∂U
∂RÛ

∂l
∂RÛ

∂L
∂RÛ

∂q
∂RÛ

∂Û



n
k−1

δU
δl
δL
δq

δÛ



n

=

k−1
−RU

−R∇ρ
−R∇ρv
−R∇ρE

−RÛ



n

(4.3.10)
which is written for convenience as

k−1
AUU AU∇ρ AU∇ρv AU∇ρE AUÛ

A∇ρU A∇ρ∇ρ 0 0 A∇ρÛ

A∇ρvU 0 A∇ρv∇ρv 0 A∇ρvÛ

A∇ρEU 0 0 A∇ρE∇ρE A∇ρEÛ

AÛU AÛ∇ρ AÛ∇ρv AÛ∇ρE AÛÛ



n
k−1

δU
δl
δL
δq

δÛ



n

=

k−1
−RU

−R∇ρ
−R∇ρv
−R∇ρE

−RÛ



n

(4.3.11)
or written in compact form as

k−1[K]n k−1{δU ∗}n =k−1 {−R}n (4.3.12)
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After solving for k−1{δU ∗}n, the modified guess for the next iteration is
computed as 

kUn
h

klnh
kLnh
kqnh
kÛ

n

h

 =



k−1Un
h

k−1lnh
k−1Lnh
k−1qnh
k−1Û

n

h

+

k−1
δU
δl
δL
δq

δÛ



n

(4.3.13)

Local problems

The local element-by-element problem is written for each element e = 1, ..., nel
as (the super indices k − 1 and n for the Newton-Raphson iteration and time
step, respectively, are removed for simplicity):
AUU
e AU∇ρ

e AU∇ρv
e AU∇ρE

e

A∇ρUe A∇ρ∇ρe 0 0
A∇ρvUe 0 A∇ρv∇ρve 0
A∇ρEUe 0 0 A∇ρE∇ρEe



δU e

δle
δLe
δqe

 =


−RU

e

−R∇ρe
−R∇ρve

−R∇ρEe

−

AUÛ
e

A∇ρÛe

A∇ρvÛe

A∇ρEÛe

 δÛ e

(4.3.14)

By inverting the matrix on the left-hand-side of the previous equation, which is
of size nen(n2

sd +3nsd +2)×nen(n2
sd +3nsd +2), the solution for the local problem

reads

k−1
δU e

δle
δLe
δqe


n

=

k−1
zUe
z∇ρe
z∇ρve

z∇ρEe


n

−

k−1
ZU
e

Z∇ρe
Z∇ρve

Z∇ρEe


n

k−1δÛ e

n (4.3.15)

where
zUe
z∇ρe
z∇ρve

z∇ρEe

 =


AUU
e AU∇ρ

e AU∇ρv
e AU∇ρE

e

A∇ρUe A∇ρ∇ρe 0 0
A∇ρvUe 0 A∇ρv∇ρve 0
A∇ρEUe 0 0 A∇ρE∇ρEe


−1

−RU
e

−R∇ρe
−R∇ρve

−R∇ρEe

 ,

(4.3.16)
and

ZU
e

Z∇ρe
Z∇ρve

Z∇ρEe

 =


AUU
e AU∇ρ

e AU∇ρv
e AU∇ρE

e

A∇ρUe A∇ρ∇ρe 0 0
A∇ρvUe 0 A∇ρv∇ρve 0
A∇ρEUe 0 0 A∇ρE∇ρEe


−1

AUÛ
e

A∇ρÛe

A∇ρvÛe

A∇ρEÛe

 (4.3.17)



34 Chapter 4. Shock Capturing

Global problem

The global problem is written as (the super indices k − 1 and n for the
Newton-Raphson iteration and time step, respectively, are removed for simplic-
ity):

[
AÛU AÛ∇ρ AÛ∇ρv AÛ∇ρE

] 
δU
δl
δL
δq

+ [AÛÛ ]{δÛ} = {−RÛ} (4.3.18)

Writing the global problem an assembly of elemental contributions yields

nel∑
e=1

{ [
AÛU
e AÛ∇ρ

e AÛ∇ρv
e AÛ∇ρE

e

] 
δU e

δle
δLe
δqe

+ [AÛÛ
e ]{δÛ e}

}
=

nel∑
e=1

{−RÛ
e }

(4.3.19)
By substituting the solution of the local problem (4.3.15) into the global

problem (4.3.19), the following linear system of equations is obtained

k−1[K̂]n k−1{δÛ}n = k−1{R̂}n (4.3.20)

with

[K̂] = Anel
e=1

[
[AÛÛ

e ]−
[
AÛU
e AÛ∇ρ

e AÛ∇ρv
e AÛ∇ρE

e

]
ZU
e

Z∇ρe
Z∇ρve

Z∇ρEe


]
,

(4.3.21a)

{R̂} = Anel
e=1

{
{−RÛ

e } −
[
AÛU
e AÛ∇ρ

e AÛ∇ρv
e AÛ∇ρE

e

]
zUe
z∇ρe
z∇ρve

z∇ρEe


}
.

(4.3.21b)
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Chapter 5

Numerical Results

In this chapter, several numerical examples are presented to validate the HDG
method when applied to different problems governed by Euler equations. As
a start, the convergence of the BDF time integration scheme is validated by
means of a manufactured solution. Then the HDG formulation without shock-
capturing is tested by solving the subsonic flow over NACA0012 problem which
is known to have a smooth solution. This is followed by a simple example
with the aim of understanding the shock-capturing techniques, where the Sod’s
shock tube problem is employed. This problem has a known exact solution
that involves three different types of flow discontinuities which makes it a good
choice to test the proposed shock-capturing techniques. For this, the shock-
capturing techniques are applied to the exact solution of the problem to see the
features of each technique, i.e. understand how the shock sensors work and see
the amount of added viscosity at the discontinuities in each case. Afterwards,
the transonic flow over NACA0012 problem is solved by employing the different
shock-capturing techniques. Several variations including the use of constant and
variable viscosity per element are compared. In addition to that, the NURBS-
Enhanced Finite Element Method (NEFEM) [30] combined with HDG is also
exploited for the transonic flow example. Finally, a supersonic flow example
is considered to show the capability of the proposed method to solve problems
with strong shocks.

5.1 Testing BDF Convergence in Time for a Man-
ufactured Solution

By considering the quasi-linear form of Euler equations in 2D:

∂U

∂t
+Ax(U)

∂U

∂x
+Ay(U)

∂U

∂y
= S (5.1.1)

A manufactured solution is chosen in the following form:

U =


1.0 + 0.1 sin(3πx) cos(3πy) e−t/50

1.2 + 0.1 sin(3πx) cos(3πy) e−t/50

1.0 + 0.1 sin(3πx) cos(3πy) e−t/50

5.0 + 0.4 sin(3πx) cos(3πy) e−t/50

 ,
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The solution spatial and temporal derivatives are obtained as follows:

∂U

∂x
=


3π ∗ 0.1 cos(3πx) cos(3πy) e−t/50

3π ∗ 0.1 cos(3πx) cos(3πy) e−t/50

3π ∗ 0.1 cos(3πx) cos(3πy) e−t/50

3π ∗ 0.4 cos(3πx) cos(3πy) e−t/50


∂U

∂y
=


−3π ∗ 0.1 sin(3πx) sin(3πy) e−t/50

−3π ∗ 0.1 sin(3πx) sin(3πy) e−t/50

−3π ∗ 0.1 sin(3πx) sin(3πy) e−t/50

−3π ∗ 0.4 sin(3πx) sin(3πy) e−t/50


∂U

∂t
=


− 1

50
∗ 0.1 sin(3πx) cos(3πy) e−t/50

− 1
50
∗ 0.1 sin(3πx) cos(3πy) e−t/50

− 1
50
∗ 0.1 sin(3πx) cos(3πy) e−t/50

− 1
50
∗ 0.4 sin(3πx) cos(3πy) e−t/50


Finally, the source term S is defined according to equation (5.1.1).

Consider the square domain [0, 1] × [0, 1] shown in Figure 5.1a, where the
boundaries are identified according to the exact solution. Blue and green lines
are inlet and outlet boundaries, respectively. In order to test the convergence
in time, the spatial discretization error should be negligible compared to the
temporal one. Using elements of degree p = 8 on the mesh shown in Figure
5.1b satisfies that condition.

(a) Inlet (blue) and outlet (green) BCs (b) Mesh

Figure 5.1: Square domain with BC identified (left) and FE mesh used (right)

Running the HDG solver until tfinal = 10 using different values of time step
4t for BDF1 and BDF2, the error L2-norm of the conservative variables are
recorded in Table 5.1. It is clearly seen that the optimal convergence rate k is
achieved.
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BDF 4t ‖ρ−ρh‖L2
‖ρ‖L2

‖ρv1−ρvh1 ‖L2
‖ρv1‖L2

‖ρv2−ρvh2 ‖L2
‖ρv2‖L2

‖ρE−ρEh‖L2
‖ρE‖L2

degree Error Order Error Order Error Order Error Order

1

10 3.16e-05 - 1.13e-05 - 1.09e-05 - 2.55e-05 -
5 1.70e-05 0.89 5.81e-06 0.96 5.74e-06 0.93 1.38e-05 0.89
2.5 8.64e-06 0.98 2.90e-06 1.00 2.92e-06 0.97 7.06e-06 0.97
1.25 4.28e-06 1.01 1.44e-06 1.01 1.46e-06 1.00 3.50e-06 1.01
0.625 2.11e-06 1.02 7.14e-07 1.01 7.26e-07 1.01 1.73e-06 1.02

2

10 3.16e-05 - 1.13e-05 - 1.09e-05 - 2.55e-05 -
5 6.80e-06 2.22 1.39e-06 3.02 2.16e-06 2.34 5.86e-06 2.12
2.5 1.56e-06 2.12 3.51e-07 1.99 4.28e-07 2.34 1.34e-06 2.13
1.25 3.88e-07 2.01 0.80e-07 2.13 1.11e-07 1.95 3.33e-07 2.01
0.625 6.61e-08 2.55 1.43e-08 2.48 2.06e-08 2.43 5.68e-08 2.55

Table 5.1: History of convergence in time for BDF1 and BDF2
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5.2 Steady Subsonic Flow around NACA0012
This section shows a simulation of subsonic inviscid flow around NACA0012
aerofoil. The flow parameters are Mach number M∞ = 0.63 and angle of attack
α = 2°. This problem is known to have a smooth solution, i.e. no shocks are
involved. This example is included to show that the developed HDG solver is
working properly and efficiently as well as showing the benefits of using higher-
order elements.

The computational domain with the boundaries specified is shown in Fig-
ure 5.2a, where the blue and green lines represent inlet and outlet boundaries,
respectively, and the red surface of the aerofoil indicates slip wall boundary
condition. The five meshes shown in Figure 5.2 are used. Finite elements of
degrees 1 up to 7 are compared. Note that in each mesh refinement, the element
size is halved but only in the vicinity of the aerofoil surface. The data of the
meshes and the number of degrees of freedom in the HDG global problem for
each simulation are shown in Tables 5.2 and 5.3, respectively.

It is worth noting that even the problem is steady, yet the solution procedure
involves time marching until the steady state is reached. However, in most of
the cases only one time step is needed with ∆t = 105, see Table 5.4. Moreover,
much smaller initial ∆t had to be used for some cases to ensure the convergence
of the Newton-Raphson method, see Table 5.5. Note that for those cases which
need more than one time step, the ∆t is doubled in the successive time steps,
i.e ∆ti+1 = 2∆ti. The pressure and Mach number fields of the problem using
the coarsest mesh 5.2b and elements of order p = 7 are shown in Figure 5.3.

Number of elements hmin

Mesh 1 538 0.0157550
Mesh 2 816 0.0085586
Mesh 3 1,380 0.0040297
Mesh 4 2,458 0.0019568
Mesh 5 5,788 0.0007733

Table 5.2: Data of the meshes shown in Figure 5.2

P1 P2 P3 P4 P5 P6 P7
Mesh 1 6,752 10,128 13,504 16,880 20,256 23,632 27,008
Mesh 2 10,216 15,314 20,432 25,540 30,648 35,756 -
Mesh 3 17,296 25,944 34,592 43,240 51,888 - -
Mesh 4 30,856 46,284 61,712 77,140 - - -
Mesh 5 72,192 108,288 144,384 - - - -

Table 5.3: Number of degrees of freedom in the HDG global problem
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(a) Inlet (blue) - Outlet (green) - Slip wall
(red)

(b) Mesh 1

(c) Mesh 2 (d) Mesh 3

(e) Mesh 4 (f) Mesh 5

Figure 5.2: The computational domain with BCs specified and the five meshes used
for the simulation of subsonic flow over NACA0012
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P1 P2 P3 P4 P5 P6 P7
Mesh 1 X X X X X X ×
Mesh 2 X X X X X X -
Mesh 3 X X X X X - -
Mesh 4 X X × × - - -
Mesh 5 X X × - - - -

Table 5.4: Cases of subsonic flow around NACA0012 simulation done in only 1 time
step of size ∆t = 105

P1 P2 P3 P4
nSteps nIters nSteps nIters nSteps nIters nSteps nIters

Mesh 1 1 5 1 6 1 5 1 5
Mesh 2 1 5 1 6 1 6 1 6
Mesh 3 1 6 1 6 1 6 1 6
Mesh 4 1 6 1 6 8, ∆t0 = 10 26 15, ∆t0 = 0.1 53
Mesh 5 1 6 1 6 15, ∆t0 = 0.1 53 - -

P5 P6 P7
nSteps nIters nSteps nIters nSteps nIters

Mesh 1 1 6 1 6 15, ∆t0 = 5 42
Mesh 2 1 6 1 6 - -
Mesh 3 1 6 - - - -
Mesh 4 - - - - - -
Mesh 5 - - - - - -

Table 5.5: Number of time steps and iterations for the cases of subsonic flow around
NACA0012 simulation (In cases of nSteps = 1, the time step ∆t = 105)
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(a) Pressure field

(b) Mach number

Figure 5.3: The pressure and Mach number fields of the subsonic flow around
NACA0012 using Mesh 1 and elements of order p = 7
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Next, two important aerodynamic coefficients are shown for all the cases,
the lift coefficient CL and the drag coefficient CD, which are defined as

CL =
2L

ρ∞v2
∞c
, CD =

2D

ρ∞v2
∞c

(5.2.1)

where L is the lift force, D is the drag force, ρ∞ is the far-field density, v∞ is
the far-field velocity and c is the chord length of the aerofoil.

Following the schematic of flow shown in Figure 5.4, the lift and drag forces
are computed as

L = Fycos α− Fxsin α
D = Fysin α + Fxcos α

(5.2.2)

where Fx and Fy are the resultant horizontal and vertical forces acting on the
aerofoil. Furthermore, {Fx, Fy}T is computed by integrating the pressure times
the inward unit normal vector over the surface of the aerofoil, namely{

Fx
Fy

}
=

∫
∂Γ

p

{
n1

n2

}
dΓ (5.2.3)

Figure 5.4: Flow schematic

The integral in (5.2.3) is computed using Gauss quadratures by looping over
the elemental faces adjacent to the aerofoil. Note that the normal vector shown
in the equation would be the outward unit normal of the faces involved in
the computation. Figure 5.5 shows the number of degrees of freedom required
to converge the two coefficients, as the mesh is refined, for different orders of
approximation. In this figure, each line colour represents an order of approxi-
mation and each symbol represents a level of mesh refinement.

The advantage of higher-order approximation is clearly seen in the conver-
gence plot of the lift coefficient shown in Figure 5.5a. It is noticed that linear
elements didn’t lead to the convergence of CL even on the finest mesh (fifth
mesh), meaning that much more refined mesh is needed if linear elements are
to be used. The same conclusion also applies to quadratic elements, but it is
still outperforming linear elements where nearly the same accuracy is obtained
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using quadratic elements on the second mesh and linear elements on the fifth
mesh, in other words, linear elements needed 5 times more DOFs than quadratic
elements. This benefit becomes more clear if the order of approximation is in-
creased. For instance, elements of order 7 on the coarsest mesh gives the same
accuracy as quadratic elements on the finest mesh. It is observed that with
cubic elements, mesh convergence is achieved on third and fourth mesh, where
the computed lift coefficient is 0.3157. Furthermore, the third mesh was enough
for elements of order 4 and 5 to converge.

Considering the drag coefficient, Figure 5.5b again shows the benefit of re-
duced number of degrees of freedom when higher-order elements are employed.
Again, the finest mesh was not enough for linear elements to converge. The
converged value of CD = 0.00187 (18.7 drag counts) is achieved using elements
of order 3 on the fourth mesh, and elements of order 5 on the second mesh,
resulting in 50% reduction in the number of degrees of freedom. It is also ob-
served that elements of order 5, 6 or 7 on the coarsest mesh gives a value which
is 0.1 drag count more or less than the converged values.

It is important to note that the accuracy of the obtained values of CL and
CD is highly dependent on the discretization method, see Table 5.6 where values
of CL and CD obtained from different works are shown.

Scheme CL CD
The current work HDG high-order 0.3157 0.00187
R.Sevilla et al. [31] SUPG 0.329 0.00023
Jordi Vila (LaCàn-UPC) HDG order 0 0.314 0.0007

Table 5.6: The range of values of CL and CD for subsonic flow around NACA0012
published in different works
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(a) CL vs. nDOF

(b) CD vs. nDOF

Figure 5.5: Lift (up) and drag (down) coefficients for the subsonic flow over NACA0012
as a function of the number of global degrees of freedom for different orders of ap-
proximation
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5.3 Understanding Shock Capturing by an Ex-
ample

In this section, a comparison between the two discontinuity sensors, Persson-
Peraire and Dilation-Based, is done to show the flow features captured by each
sensor. Once a discontinuity is detected, artificial viscosity is added nearby to
capture a good structure of this discontinuity. Artificial viscosity is added near
discontinuities because higher-order polynomial interpolation of discontinuous
solution results in superior numerical oscillations. A detailed study is done for
Sod’s shock tube problem to further understand the previous statements.

5.3.1 Sod’s Shock Tube Problem Analysis

Sod’s shock tube is a classical problem with known exact solution used to val-
idate numerical schemes developed for solving Euler equations. It is an inter-
esting problem because it has three important ingredients that might exist in
complicated fluid flow problems, the three ingredients are: shock wave, con-
tact discontinuity and expansion fan (rarefaction wave). Those three waves are
steadily moving waves.

Figure 5.6: Shock tube problem, initial condition (top) and after diaphragm failure
(bottom)

Consider a domain Ω = [0, 1] × [0, 0.4], of slip-wall boundaries. Initially a
diaphragm placed at xD = 0.5 is separating two fluids, the fluid on left is a
stationary high pressure and density (p1 = 1, ρ1 = 1) fluid and the one on right
is a stationary low pressure and density (p2 = 1/3, ρ2 = 1/3) fluid. At time
t = 0, the diaphragm fails and the three waves start moving as seen in Figure
5.6, which results in five sections where the analytical solution is already known
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up to the point in time when either the shock wave or the rarefaction wave is
reflected by the respective ends of the shock tube [30].

At time t = 0.1, the positions of the three waves are plotted on a coarse
mesh as shown in Figure 5.7, where the blue and red lines are the expansion fan
head and tail, respectively, the yellow line represents the contact discontinuity
while the purple line is the position of the shock wave. It should be noted that
the analytical solution at the head and tail of the expansion fan is weakly dis-
continuous (continuous variables - discontinuous derivatives) and it is strongly
discontinuous (discontinuous variables) at the contact and shock waves.

Figure 5.7: The positions of the three waves at time t = 0.1 plotted on top of a coarse
mesh

Using elements of order p = 3, the analytical solution is computed at all
the nodes, and the solution within elements is interpolated using the standard
finite element polynomial approximation. As mentioned earlier, approximating
discontinuous solutions using higher-order polynomials results in numerical os-
cillations near the discontinuities, which can be clearly seen, for instance, in
the interpolated solution of density and velocity shown in Figure 5.8. Now, it
is clearly understood the reason why a shock capturing technique is needed for
higher-order elements.

The shock capturing technique is composed of two main ingredients, a dis-
continuity sensor and addition of artificial viscosity. Figure 5.9 shows the fea-
tures detected by each of the two discontinuity sensors, Persson-Peraire and
Dilation-Based, when applied to the solution shown in Figure 5.8, it also shows
the amount of added artificial viscosity in terms of the maximum per element,
i.e. the viscosity is computed at all the Gauss points of an element and only
the maximum value among them is shown. It is observed that Persson-Peraire
sensor detects both shock and contact discontinuity because of the high density
gradient nearby, it doesn’t detect the expansion fan because the density is more
smooth nearby. More viscosity is added near the shock than near the contact
because of the higher density gradient near the shock. On the other hand,
the Dilation-Based sensor detects both shock and expansion fan, it adds much
more artificial viscosity to the shock compared to the expansion fan, the reason
is the higher divergence of velocity near the shock, it doesn’t detect the contact
discontinuity because the velocity is divergence free at the contact. It is also
observed that Dilation-Based shock-capturing technique leads to the addition
of more artificial viscosity to the shock compared to the case of Persson-Peraire,
more than ten times the amount of viscosity. Furthermore, in case of Dilation-
Based, the artificial viscosity is added only to the elements with discontinuities
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in the solution, while in the case of Persson-Peraire, the artificial viscosity is
added also to the adjacent elements.

(a) Density (b) Velocity

Figure 5.8: The cubic polynomial interpolation of the analytical nodal values of density
and velocity at time t = 0.1 in the coarse mesh

(a) Persson-Peraire - max. visc.: 2.049e−03 (b) Dilation-Based - max. visc.: 2.381e−02

Figure 5.9: The maximum added artificial viscosity per element in the case of using
Persson-Peraire and Dilation-Based for the coarse mesh and elements of order p = 3

Another analysis is performed to understand the effect of h-refinement and
p-refinement on the discontinuity sensing and the addition of artificial viscosity.
First, h-refinement is considered where fine mesh shown in Figure 5.10 is used
for the analysis. Similar to what was done for the coarse mesh, the polynomial
interpolation, of the analytical nodal values of the solution, within elements is
shown in Figure 5.11 where the numerical oscillations near the discontinuities
is also observed. By refining the mesh, it is observed in Figure 5.12 that the
amount of added viscosity is slightly increased in the case of Persson-Peraire,
the reason could be the increase in the density gradient near the discontinuities.
On the other hand, in the case of Dilation-Based, the amount of added viscosity
is reduced nearly four times compared to the case of coarse mesh, the reason
could be the reduction in the length scale used to compute the amount of
viscosity. Note that in Figure 5.12b, the amount of added viscosity at the
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expansion fan is very small, order (1e−04) near the head and (1e−07) near the
tail.

Figure 5.10: The positions of the three waves at time t = 0.1 plotted on top of a fine
mesh

(a) Density (b) Velocity

Figure 5.11: The cubic polynomial interpolation of the analytical nodal values of
density and velocity at time t = 0.1 in the fine mesh

(a) Persson-Peraire - max. visc.: 2.600e−03 (b) Dilation-Based - max. visc.: 5.779e−03

Figure 5.12: The maximum added artificial viscosity per element in the case of using
Persson-Peraire and Dilation-Based for the fine mesh and elements of order p = 3

Second, a p-refinement is considered, where the order of polynomial approx-
imation is increased from p = 3 to p = 4. The analysis is done using the fine
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mesh shown earlier in Figure 5.10. It is observed in Figure 5.14 that the amount
of added viscosity is slightly increased in the case of Persson-Peraire compared
to the lower-order, the reason could be the higher numerical oscillations in the
density appearing in 5.13a compared to 5.11a. On the other hand, in the case
of Dilation-Based, the amount of added viscosity is slightly reduced compared
to the lower-order, the reason could be the reduction in the length scale used to
compute the amount of viscosity, another reason could be the lower divergence
of velocity across the shock as seen in 5.13b where the velocity changes from
nearly 0.5 to 0, while for the lower-order, velocity changes from nearly 0.53 to
0 as seen in 5.11b. Note that in Figure 5.14b, the amount of added viscosity at
the expansion fan is very small, order (1e−04) near the head and (1e−05) near
the tail.

(a) Density (b) Velocity

Figure 5.13: The quartic polynomial interpolation of the analytical nodal values of
density and velocity at time t = 0.1 in the fine mesh

(a) Persson-Peraire - max. visc.: 3.213e−03 (b) Dilation-Based - max. visc.: 5.270e−03

Figure 5.14: The maximum added artificial viscosity per element in the case of using
Persson-Peraire and Dilation-Based for the fine mesh and elements of order p = 4
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5.4 Steady Transonic Flow around NACA0012
The transonic flow around NACA0012 is a more complex problem compared to
the subsonic case discussed earlier in Section 5.2. The reason is the formation
of shocks above and under the aerofoil. For this, a shock capturing technique is
a must when higher-order elements are used. The transonic flow conditions are:
Mach number M∞ = 0.8 and angle of attack α = 1.25°. At first, the coarsest
mesh (Mesh 1) shown earlier in Figure 5.2b is used with elements of order p = 7.

Using the four combinations of shock-capturing techniques discussed earlier,
the steady-state solution of the pressure is shown in Figure 5.15. Furthermore,
the corresponding plots of the pressure coefficients are shown in Figure 5.16.
It is observed that the four combinations produce similar solutions where the
shocks are well resolved. However, the oscillations resulting from the use of
high-order elements are not damped out completely in all cases of shock cap-
turing techniques, this can be clearly seen in the pressure coefficient plot on
the top surface of the aerofoil as shown in Figure 5.16. It is noticed that the
undamped oscillations on the top surface of the aerofoil, upstream the shock, is
higher in both cases when Dilation-Based sensor is used as seen in Figures 5.16c
and 5.16d, while it is minimum in case of Persson-Peraire - Laplacian shown in
Figure 5.16a. Moreover, there is very small wiggle downstream the strong shock
on the top surface, which seems to be minimum in case of Persson-Peraire -
Enthalpy-Preserving shown in Figure 5.16b. As a conclusion, Persson-Peraire
- Laplacian shock-capturing technique seems to offer the best overall perfor-
mance.

Another point of interest is to compare the amount of added viscosity in
each of the four combinations. In this simulation, a smooth function of artificial
viscosity is used, and the maximum value at Gauss points of an element is shown
as seen in Figure 5.17. A more convenient plot for comparison is shown in
Figure 5.18, where the logarithmic scale of the non-zero values of the maximum
viscosity is shown using a fixed legend [−6, 0). It is noticed that the artificial
viscosity is added in the vicinity of the strong and weak shocks. Slightly higher
amount of viscosity is added at the strong shock on the top surface in both
cases of Persson-Peraire when compared to Dilation-Based, which implies the
need for adding more viscosity in both cases of Dilation-Based.

Using Dilation-Based - Enthalpy-Preserving shock-capturing technique, the
convergence plots of the lift and drag coefficients are shown in Figure 5.19. It
is important to note that the accuracy of the obtained values of CL and CD is
highly dependent on the discretization method, see Table 5.7 where values of
CL and CD obtained from different published work is shown.

Scheme CL CD
The current work HDG high-order 0.255 0.0192
R.Sevilla et al. [31] SUPG 0.345 0.023

Table 5.7: The range of values of CL and CD for transonic flow around NACA0012
published in different works
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

(c) Dilation-Based - Laplacian (d) Dilation-Based - Enthalpy-Preserving

Figure 5.15: The computed pressure using the four combinations of shock-capturing
techniques for the transonic flow around NACA0012 using Mesh 1 and p = 7
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

(c) Dilation-Based - Laplacian (d) Dilation-Based - Enthalpy-Preserving

Figure 5.16: The computed pressure coefficient along the aerofoil using the four combi-
nations of shock-capturing techniques for the transonic flow around NACA0012 using
Mesh 1 and p = 7
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

(c) Dilation-Based - Laplacian (d) Dilation-Based - Enthalpy-Preserving

Figure 5.17: The maximum artificial viscosity per element using the four combinations
of shock-capturing techniques for the transonic flow around NACA0012 using Mesh 1
and p = 7
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

(c) Dilation-Based - Laplacian (d) Dilation-Based - Enthalpy-Preserving

Figure 5.18: The logarithmic scale of the non-zero values of the maximum artificial
viscosity per element using the four combinations of shock-capturing techniques for
the transonic flow around NACA0012 using Mesh 1 and p = 7
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(a) CL vs. nDOF

(b) CD vs. nDOF

Figure 5.19: Lift (up) and drag (down) coefficients for the transonic flow over
NACA0012 as a function of the number of global degrees of freedom for different
orders of approximation using Dilation-Based - Enthalpy-Preserving shock-capturing
technique.
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In all the previous computations, the isoparametric formulation was used
with an added artificial viscosity which is a smooth (variable) function between
elements. Another variation that is exploited in this work is the use of a constant
artificial viscosity per element. This constant value is the maximum viscosity at
Gauss points of an element. In addition to that, the use of NURBS-Enhanced
FEM (NEFEM) spatial formulation [30] is also exploited for both variable and
constant viscosity per element.

Figure 5.20 shows a p-convergence plot of the lift and drag coefficients, using
Mesh 1 shown earlier in 5.2b. For the isoparametric formulation, it is noticed
that the use of constant viscosity per element doesn’t provide any difference
in terms of the results of CL while it shows a slight difference in the results of
CD. However, using constant viscosity introduced more difficulty in the com-
putations in terms of convergence, where much smaller value of the time step
had to be used to assure convergence (the time step is reduced by 5 orders of
magnitude compared to variable viscosity case).

As for the NEFEM formulation, The major difference appears in improved
results of CD when compared to the isoparametric case, which is reasonable
because the drag is affected by accurately representing the high-curvature of
the leading edge, which is guaranteed by employing the NEFEM formulation.
Again, using constant viscosity with NEFEM formulation shows a minor differ-
ence in the results of CD.

Finally, one can conclude that the use of variable viscosity improves the
numerical solution when compared to constant viscosity, and it also allows to use
much larger time step for the computation. Furthermore, NEFEM formulation
outperforms the standard isoparametric formulation.
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(a) CL vs. nDOF

(b) CD vs. nDOF

Figure 5.20: p-convergence plots of lift (up) and drag (down) coefficients for the
transonic flow over NACA0012 employing the coarsest mesh 5.2b and using Dilation-
Based - Enthalpy-Preserving shock-capturing technique.
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5.5 Steady Supersonic Flow around NACA0012
The supersonic flow around NACA0012 aerofoil is a problem with even stronger
non-linearities when compared to the transonic flow. The studied problem has
a far field Mach number M = 1.5 flowing over an aerofoil with zero angle of
attack. The coarsest mesh shown earlier in 5.2b is employed with elements of
order p = 7. In order to obtain the steady state solution, time marching is
employed where a very small time step of value 1e-5 is used for the first 100
steps, then the time step value is doubled afterwards in each successive step
until the final time.

Employing the two shock-capturing techniques, Persson-Peraire - Laplacian
and Persson-Peraire - Enthalpy-Preserving, the field results of the Mach num-
ber, density and pressure are shown in Figures 5.21, 5.22 and 5.23, respectively.
The shocks at the leading and the trailing edges of the aerofoil are well resolved
in both cases. The pressure coefficient along the aerofoil surface is shown in Fig-
ure 5.24, where again Persson-Peraire - Laplacian shock-capturing technique
seems to be the better option as the oscillations appearing at trailing edge are
relatively lower.

It is worth noting that employing Dilation-Based type shock-capturing tech-
niques did not yield a converging solution under the pre-mentioned time march-
ing setup.

In this simulation, a smooth (variable) function of artificial viscosity is used.
The maximum value of added viscosity at Gauss points of an element is shown
in Figure 5.25. A more convenient plot for comparison is shown in Figure 5.26,
where the logarithmic scale of the non-zero values of the maximum viscosity is
shown using a fixed legend [−6, 0).

It is observed that the amount of added viscosity at the trailing edge in case
of Persson-Peraire - Laplacian shock-capturing technique is slightly higher than
that in the case of Persson-Peraire - Enthalpy-Preserving, which explains the
lower oscillations at the trailing edge in case of Persson-Peraire - Laplacian.

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.21: The computed Mach number using Persson-Peraire type shock-capturing
techniques for the supersonic flow around NACA0012 using Mesh 1 and p = 7
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.22: The computed density using Persson-Peraire type shock-capturing tech-
niques for the supersonic flow around NACA0012 using Mesh 1 and p = 7

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.23: The computed pressure using Persson-Peraire type shock-capturing tech-
niques for the supersonic flow around NACA0012 using Mesh 1 and p = 7

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.24: The computed pressure coefficient along the aerofoil using Persson-
Peraire type shock-capturing techniques for the supersonic flow around NACA0012
using Mesh 1 and p = 7
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.25: The maximum artificial viscosity per element using Persson-Peraire type
shock-capturing techniques for the supersonic flow around NACA0012 using Mesh 1
and p = 7

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.26: The logarithmic scale of the non-zero values of the maximum artificial
viscosity per element using Persson-Peraire type shock-capturing techniques for the
supersonic flow around NACA0012 using Mesh 1 and p = 7
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Using a finer mesh (Mesh 2) shown earlier in Figure 5.2c with elements
of order p = 5, and employing the two shock-capturing techniques, Persson-
Peraire - Laplacian and Persson-Peraire - Enthalpy-Preserving, the field results
of the Mach number, density and pressure are shown in Figures 5.27, 5.28 and
5.29, respectively. The pressure coefficient along the aerofoil surface is shown
in Figure 5.30. The maximum value of added viscosity at Gauss points of an
element is shown as seen in Figure 5.31. A more convenient plot for comparison
is shown in Figure 5.32, where the logarithmic scale of the non-zero values of
the maximum viscosity is shown using a fixed legend [−6, 0).

By relating the field results to the amount of added viscosity, it is observed
that the regions of higher oscillations correspond to a lower amount of added
viscosity. For instance, the oscillations in the pressure at rear-bottom shock for
the case of Persson-Peraire - Laplacian in Figure 5.29a correspond to a region
of low added viscosity as seen in Figure 5.32a. Moreover, in the case of Persson-
Peraire - Enthalpy-Preserving, the oscillations in the pressure at front-top shock
in Figure 5.29b correspond to a region of low added viscosity as seen in Figure
5.32b.

Comparing the results of p = 7 and p = 5, it is observed that elements of
higher order, i.e. p = 7, provide more accurate solution at the smooth regions.
For instance, by comparing the density field results in Figures 5.22 and 5.28, it
is observed that no oscillations arise in at the smooth regions in case of p = 7
unlike p = 5. Another point which is worth noting is the lower oscillations at
the trailing edge of the aerofoil in case of p = 5 when compared to p = 7, see
Figures 5.24 and 5.30.

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.27: The computed Mach number using Persson-Peraire type shock-capturing
techniques for the supersonic flow around NACA0012 using Mesh 2 and p = 5
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.28: The computed density using Persson-Peraire type shock-capturing tech-
niques for the supersonic flow around NACA0012 using Mesh 2 and p = 5

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.29: The computed pressure using Persson-Peraire type shock-capturing tech-
niques for the supersonic flow around NACA0012 using Mesh 2 and p = 5

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.30: The computed pressure coefficient along the aerofoil using Persson-
Peraire type shock-capturing techniques for the supersonic flow around NACA0012
using Mesh 2 and p = 5
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(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.31: The maximum artificial viscosity per element using Persson-Peraire type
shock-capturing techniques for the supersonic flow around NACA0012 using Mesh 2
and p = 5

(a) Persson-Peraire - Laplacian (b) Persson-Peraire - Enthalpy-Preserving

Figure 5.32: The logarithmic scale of the non-zero values of the maximum artificial
viscosity per element using Persson-Peraire type shock-capturing techniques for the
supersonic flow around NACA0012 using Mesh 2 and p = 5
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Chapter 6

Conclusion

This work presented the Hybridizable Discontinuous Galerkin (HDG) method
for solving the compressible Euler equations. The HDG method is a specific
type of the Discontinuous Galerkin family meaning that it inherits the same
advantages of being locally conservative, stable for convection-dominated prob-
lems, high-order accurate as well as having optimal convergence rates. However,
the HDG method outperforms the other DG methods when it comes to solving
steady problems and transient problems using implicit time-stepping schemes.
This is due to the static condensation of the nodal variables that allows for ob-
taining a global system of equations with much less coupled degrees of freedom
as discussed in Chapter 3.

Euler equations which are of non-linear hyperbolic type is known to develop
shocks and other flow discontinuities in the solution in some cases, for example,
in transonic and supersonic flows. For this, the HDG formulation was combined
with a shock-capturing technique in order to resolve shocks accurately. Many
methods were mentioned in Chapter 4, but the main focus of this work was the
methods based on artificial viscosity. A diffusion term is added explicitly to the
equations, and is activated only in the elements at the shock. For this, a shock
sensor or detector is used. In particular, two shock sensors were discussed in
this work. First, the Resolution Indicator sensor, also referred-to as Persson-
Peraire sensor, defined element-by-element where it detects the elements with
higher frequencies in the solution (i.e. oscillations) and therefore, it is able to lo-
cate the shocks. Second, the Dilation-Based sensor which is a smooth point-wise
sensor that detects the regions of negative dilation (∇·v < 0) that correspond
to strong compression waves, i.e. shocks.

The proposed work has been validated by several numerical examples in
Chapter 5. One example was presented to show the performance of the HDG
solver without shock-capturing, that is, the steady subsonic flow over NACA0012
aerofoil. This example showed the good performance of the HDG method and
the benefits of using high-order elements in terms of computation cost.

The main focus of the numerical examples is the understanding of the differ-
ent shock-capturing techniques and the detailed comparison between them. The
Sod’s shock tube problem was used to demonstrate the need for shock-capturing
when high-order elements are used. It also showed the features inherent by both
the Resolution Indicator and Dilation-Based sensors. The Resolution-Indicator
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sensor was able to detect the shock and the contact discontinuity unlike the
Dilation-Based sensor which was not able to detect the latter, i.e. another sen-
sor would be needed to detect the contact discontinuity if the Dilation-Based
sensor is used.

Another example that was solved with shock-capturing is the transonic flows
over NACA0012. The two sensors were tested when combined with the two def-
initions of viscous flux, Laplacian and Enthalpy-Preserving. The four combina-
tions of the shock-capturing techniques were able to obtain reasonable results,
however, the Resolution Indicator sensor with Laplacian viscous flux gave the
best performance with minimal oscillations. It was also shown in this example
that the use of variable viscosity per element outperformed the use of constant
viscosity in terms of convergence. Moreover, employing the NURBS-Enhanced
Finite Element Method (NEFEM) gave better results when compared to the
standard isoparametric spatial discretization. The reason is the more accurate
representation of the aerofoil surface.

A final problem with stronger shocks was presented, that is, the supersonic
flow over NACA0012. This example showed that the Resolution Indicator sen-
sor is more robust than the Dilation-Based sensor and it yielded slightly better
results when combined with the Laplacian viscous flux. Finally, the benefits
of using higher-order elements was demonstrated where oscillation-free solution
was obtained in the smooth regions.

The final conclusion of the work would be using the shock-capturing tech-
nique composed of the Resolution Indicator sensor and Laplacian viscous flux.
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