
Industrial Training Report

Margarita Smolentseva
UPC, Master Program in Computational Mechanics

Introduction

The current report represents results of the following tasks:

• Develop a code to invert the quasi-geostrophic potential vorticity equation for the
ocean given the potential vorticity, vertical stratification and the upper boundary
condition

• Validate the code with analytical solutions of oceanographic interest

• Test the code under realistic conditions

The quasi-geostrophic potential vorticity equation is a kind of Navier-Stokes equation. This
equation is hard to solve in analytical way. For this reason numerical methods were used for
this task. Solution of this equation represents three-dimensional stream function which allows
to get the velocity speed of the ocean.

In 3 dimensional space the quasi-geostrophic potential vorticity equation takes the view:

∇2𝜓𝜓 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑓𝑓0

2

𝑁𝑁2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑞𝑞

With boundary conditions

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑧𝑧=0 =
𝑏𝑏𝑠𝑠
𝑓𝑓0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑧𝑧=−𝐻𝐻 = 0

Where

𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) - stream function;

𝑏𝑏𝑠𝑠 = 𝑏𝑏𝑠𝑠(𝑥𝑥, 𝑦𝑦) - surface buoyancy;

𝑞𝑞 = 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)- potential vorticity;

𝑁𝑁 = 𝑁𝑁(𝑧𝑧) - Brunt- Väisälä frequency stratification parameter;

𝑓𝑓0 = 2𝛺𝛺 sinФ – Coriolis parameter where 𝛺𝛺 = 7.2921 ∙ 10−5, Ф – latitude. In case of
Mediterranean sea in Barcelona surroundings latitude is considered as 41.39.

1

Discretization and system solution

In order to discretize the problem finite elements and finite differences methods were
considered. Finite elements method allows to get solution near bounds with high accuracy.
However, this method requires a lot of resources. Since for the current problem high accuracy
on the bounds is not important, finite differences method was chosen for discretization of the
problem because it works faster and requires less computational resources.

Let us rewrite the problem in the following way:

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑦𝑦2 +

𝑓𝑓0
2

𝑁𝑁2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑧𝑧2 +

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑓𝑓0

2

𝑁𝑁2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑞𝑞

Discretizing the problem as

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 +1 − 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 −1

2∆𝑧𝑧

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑧𝑧2 =

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 −1 − 2𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 +1

∆𝑧𝑧2

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2 =

𝜓𝜓𝑖𝑖−1𝑗𝑗𝑗𝑗 − 2𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖+1𝑗𝑗𝑗𝑗

∆𝑥𝑥2

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑦𝑦2 =

𝜓𝜓𝑖𝑖𝑖𝑖−1𝑘𝑘 − 2𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖+1𝑘𝑘

∆𝑦𝑦2

For grid 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 with steps ∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧 in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 directions relatively where 𝑖𝑖 ∈ [1,𝑁𝑁𝑥𝑥], 𝑗𝑗 ∈
�1,𝑁𝑁𝑦𝑦�,𝑘𝑘 ∈ [1,𝑁𝑁𝑧𝑧].

Neumann boundary conditions in vertical direction take the view:

𝜓𝜓𝑖𝑖𝑖𝑖2 − 𝜓𝜓𝑖𝑖𝑖𝑖0

2∆𝑧𝑧
=
𝑏𝑏𝑠𝑠�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗 �

𝑓𝑓0

𝜓𝜓𝑖𝑖𝑖𝑖𝑁𝑁𝑧𝑧+1 − 𝜓𝜓𝑖𝑖𝑖𝑖𝑁𝑁𝑧𝑧−1

2∆𝑧𝑧
= 0

In directions x and y periodic boundary conditions are used that is:

𝜓𝜓0𝑗𝑗𝑗𝑗 = 𝜓𝜓𝑁𝑁𝑥𝑥𝑗𝑗𝑗𝑗 ; 𝜓𝜓𝑁𝑁𝑥𝑥+1𝑗𝑗𝑗𝑗 = 𝜓𝜓1𝑗𝑗𝑗𝑗 ; 𝜓𝜓𝑖𝑖0𝑘𝑘 = 𝜓𝜓𝑖𝑖𝑁𝑁𝑦𝑦𝑘𝑘 ; 𝜓𝜓𝑖𝑖𝑁𝑁𝑦𝑦+1𝑘𝑘 = 𝜓𝜓𝑖𝑖1𝑘𝑘

Discretized problem takes the view:

𝜓𝜓𝑖𝑖−1𝑗𝑗𝑗𝑗 + 𝜓𝜓𝑖𝑖+1𝑗𝑗𝑗𝑗

∆𝑥𝑥2 +
𝜓𝜓𝑖𝑖𝑖𝑖−1𝑘𝑘 + 𝜓𝜓𝑖𝑖𝑖𝑖+1𝑘𝑘

∆𝑦𝑦2 + 𝑒𝑒𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 −1 �
𝑎𝑎
∆𝑧𝑧2 +

𝑏𝑏
2∆𝑧𝑧�

+ 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 +1 �
𝑎𝑎
∆𝑧𝑧2 −

𝑏𝑏
2∆𝑧𝑧�

= 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖

Where

2

𝑒𝑒 = 𝑒𝑒(𝑧𝑧) = −2 � 1
∆𝑥𝑥2 + 1

∆𝑦𝑦2 + 𝑎𝑎
∆𝑧𝑧2� ;𝑎𝑎 = 𝑎𝑎(𝑧𝑧) = 𝑓𝑓0

2

𝑁𝑁(𝑧𝑧)2 ; 𝑏𝑏 = 𝑏𝑏(𝑧𝑧) = 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑓𝑓0

2

𝑁𝑁(𝑧𝑧)2� = 1
2

𝑓𝑓0
2

𝑁𝑁(𝑧𝑧)
2
3

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ;

𝑖𝑖 ∈ [2,𝑁𝑁𝑥𝑥 − 1], 𝑗𝑗 ∈ �2,𝑁𝑁𝑦𝑦 − 1�,𝑘𝑘 ∈ [2,𝑁𝑁𝑧𝑧 − 1]

In matrix form, the problem has the following view:

𝑋𝑋𝑋𝑋 = 𝑞𝑞

Where

𝜓𝜓 = �𝜓𝜓111 𝜓𝜓112 … 𝜓𝜓11𝑁𝑁𝑧𝑧𝜓𝜓121𝜓𝜓122 … 𝜓𝜓1𝑁𝑁𝑦𝑦1 …𝜓𝜓𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧� – vector of 𝑛𝑛 length where 𝑛𝑛 =

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧 ;

𝑞𝑞 = �𝑞𝑞111 + 𝑠𝑠11 𝑞𝑞112 … 𝑞𝑞11𝑁𝑁𝑧𝑧 𝑞𝑞121 + 𝑠𝑠12 𝑞𝑞122 … 𝑞𝑞1𝑁𝑁𝑦𝑦1 + 𝑠𝑠1𝑁𝑁𝑦𝑦 … 𝑞𝑞𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧� – vector of 𝑛𝑛

length;

𝑠𝑠𝑖𝑖𝑖𝑖 =
2∆𝑧𝑧𝑏𝑏𝑠𝑠�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗 �

𝑓𝑓0
�
𝑎𝑎(∆𝑧𝑧)
∆𝑧𝑧2 +

𝑏𝑏(∆𝑧𝑧)
2∆𝑧𝑧

� ; 𝑥𝑥𝑖𝑖 = 𝑖𝑖∆𝑥𝑥; 𝑦𝑦𝑗𝑗 = 𝑗𝑗∆𝑦𝑦; 𝑖𝑖 ∈ [1,𝑁𝑁𝑥𝑥], 𝑗𝑗 ∈ �1,𝑁𝑁𝑦𝑦�

The matrix 𝑋𝑋 is 𝑛𝑛 by 𝑛𝑛 matrix defined in the following way (𝐼𝐼 is identity matrix):

𝑋𝑋 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑌𝑌
1
∆𝑥𝑥2 𝐼𝐼 0 ⋯ 0

1
∆𝑥𝑥2 𝐼𝐼

1
∆𝑥𝑥2 𝐼𝐼 𝑌𝑌

1
∆𝑥𝑥2 𝐼𝐼 ⋯ 0 0

0
1
∆𝑥𝑥2 𝐼𝐼 𝑌𝑌 ⋯

1
∆𝑥𝑥2 𝐼𝐼 0

⋯

0 0 0 ⋯ 𝑌𝑌
1
∆𝑥𝑥2 𝐼𝐼

1
∆𝑥𝑥2 𝐼𝐼 0 0 ⋯

1
∆𝑥𝑥2 𝐼𝐼 𝑌𝑌 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧×𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧

𝑌𝑌 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑍𝑍
1
∆𝑦𝑦2 𝐼𝐼 0 ⋯ 0

1
∆𝑦𝑦2 𝐼𝐼

1
∆𝑦𝑦2 𝐼𝐼 𝑍𝑍

1
∆𝑦𝑦2 𝐼𝐼 ⋯ 0 0

0
1
∆𝑦𝑦2 𝐼𝐼 𝑍𝑍 ⋯

1
∆𝑦𝑦2 𝐼𝐼 0

⋯

0 0 0 ⋯ 𝑍𝑍
1
∆𝑦𝑦2 𝐼𝐼

1
∆𝑦𝑦2 𝐼𝐼 0 0 ⋯

1
∆𝑦𝑦2 𝐼𝐼 𝑍𝑍

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧×𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧

3

𝑍𝑍 =

⎝

⎜
⎜
⎜
⎛

𝑙𝑙 𝑐𝑐1 0 ⋯ 0 0
𝑑𝑑2 𝑙𝑙 𝑐𝑐2 ⋯ 0 0
0 𝑑𝑑3 𝑙𝑙 ⋯ 𝑐𝑐𝑁𝑁𝑧𝑧−2 0

⋯
0 0 0 ⋯ 𝑙𝑙 𝑐𝑐𝑁𝑁𝑧𝑧−1
0 0 0 ⋯ 𝑑𝑑𝑁𝑁𝑧𝑧 𝑙𝑙 ⎠

⎟
⎟
⎟
⎞

𝑁𝑁𝑧𝑧×𝑁𝑁𝑧𝑧

𝑙𝑙 = −2 �
1
∆𝑥𝑥2 +

1
∆𝑦𝑦2 +

1
∆𝑧𝑧2� ; 𝑐𝑐𝑖𝑖 =

𝑎𝑎(𝑖𝑖∆𝑧𝑧)
∆𝑧𝑧2 −

𝑏𝑏(𝑖𝑖∆𝑧𝑧)
2∆𝑧𝑧

; 𝑑𝑑𝑖𝑖 =
𝑎𝑎(𝑖𝑖∆𝑧𝑧)
∆𝑧𝑧2 +

𝑏𝑏(𝑖𝑖∆𝑧𝑧)
2∆𝑧𝑧

; 𝑖𝑖 ∈ [2,𝑁𝑁𝑧𝑧 − 1]

𝑐𝑐1 =
2𝑎𝑎(∆𝑧𝑧)
∆𝑧𝑧2 ; 𝑑𝑑𝑁𝑁𝑧𝑧 =

2𝑎𝑎(𝑁𝑁𝑧𝑧∆𝑧𝑧)
∆𝑧𝑧2

In order to solve this system of equations iterative successive over relaxation method (SOR) was
chosen. This method is easy to program but it can take a lot of resources for big set of
equations. The current problem is large, however, the matrix consists of zeros principally which
saves time and computing resources. For the current problem the method takes the following
form. On every step it is necessary to compute residual:

𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖 =
1
∆𝑥𝑥2 �𝜓𝜓𝑖𝑖−1𝑗𝑗𝑗𝑗 + 𝜓𝜓𝑖𝑖+1𝑗𝑗𝑗𝑗 � +

1
∆𝑦𝑦2 �𝜓𝜓𝑖𝑖𝑖𝑖−1𝑘𝑘 + 𝜓𝜓𝑖𝑖𝑖𝑖+1𝑘𝑘� + 𝑒𝑒𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 + �

𝑎𝑎
∆𝑧𝑧2 +

𝑏𝑏
2∆𝑧𝑧�

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 −1

+ �
𝑎𝑎
∆𝑧𝑧2 −

𝑏𝑏
2∆𝑧𝑧�

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖 +1 − 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜔𝜔
𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖
𝑒𝑒

Here 𝜔𝜔 is overrelaxation parameter. The method converges only if 0 < 𝜔𝜔 < 2. This is necessary
condition but not insufficient. Also, the matrix should be symmetric and positive-definite. In
case if 𝜔𝜔 = 1, the method is Gauss-Seidel method. When 1 < 𝜔𝜔 < 2, we can talk about over
relaxation. It is important to define overrelaxation parameter in a proper way because it
influences on speed of method convergence. Sometimes, the error can grow dramatically
before convergence set in. In order to avoid it, Chebyshev acceleration was used for 𝜔𝜔
definition:

𝜔𝜔(0) = 1

𝜔𝜔�1
2� =

1
2
�1 −

ρJacobi
2

2
�

𝜔𝜔�𝑛𝑛+1
2� =

1
2
�1 −

ρJacobi
2

4
� n =

1
2

, 1, …

𝜔𝜔(∞) → 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

The Chebyshev acceleration allows to decrease the error with every iteration. Here 𝜌𝜌Jacobi is

the spectral radius of the Jacobi iteration and ρJacobi
2 is the spectral radius of the Gauss-Seidel

iteration which is defined as:
4

𝜌𝜌Jacobi =
∆𝑥𝑥 cos 2𝜋𝜋

𝑁𝑁𝑥𝑥2
+ ∆𝑦𝑦 cos 2𝜋𝜋

𝑁𝑁𝑦𝑦2
+ ∆𝑧𝑧 cos 𝜋𝜋

𝑁𝑁𝑧𝑧2

∆𝑥𝑥2 + ∆𝑦𝑦2 + ∆𝑧𝑧2

As 𝑁𝑁(𝑧𝑧) is a function, in order to calculate the derivative
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, the Newton method was used.

The whole algorithm was realized with Fortran 90, with use of NetCDF libraries for Fortran 90.

Validation

In order to validate the algorithm, the analytical solution was used. For 𝑞𝑞 = 0,𝑁𝑁(𝑧𝑧) = 𝑛𝑛0𝑓𝑓0 the
analytical solution takes the view:

𝜓𝜓��𝑘𝑘�⃗ , 𝑧𝑧� =
𝑏𝑏𝑠𝑠� �𝑘𝑘�⃗ �
𝑛𝑛0𝑓𝑓0𝑘𝑘

exp(𝑛𝑛0𝑘𝑘𝑘𝑘)

Where � designates the Fourier transform, 𝑥⃗𝑥 = (𝑥𝑥, 𝑦𝑦),𝑘𝑘�⃗ = �𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦�, 𝑘𝑘 = �𝑘𝑘�⃗ � is wave number.

The buoyancy is characterized by Gaussian distribution:

𝑏𝑏𝑠𝑠 = 𝑏𝑏0 exp�−
𝑥𝑥2

𝑅𝑅2�

Then, after Fourier transform it takes the view:

𝑏𝑏𝑠𝑠� �𝑘𝑘�⃗ � = 𝜋𝜋𝑏𝑏0𝑅𝑅2 exp�−
𝑘𝑘2𝑅𝑅2

4
�

Then the stream function then takes the view:

𝜓𝜓��𝑘𝑘�⃗ , 𝑧𝑧� =
𝜋𝜋𝑏𝑏0𝑅𝑅2

𝑛𝑛0𝑓𝑓0𝑘𝑘
exp�−

𝑘𝑘2𝑅𝑅2

4
� exp(𝑛𝑛0𝑘𝑘𝑘𝑘)

In order to check the solution obtained with the established algorithm, the fast Fourier
transform was realized with Fortran 90. The data is represented in NetCDF format. The
following experiments were received for grid with the size of 500 by 500 by 6, step 1 in all
directions.

5

Fig. 1 Analytical solution

Fig. 2. Result of the numerical computations for analytical buoyancy

As it can be seen from the figures 1 and 2, the numerical solution is close to analytical one and
represents the Gaussian integral curvature what was expected.

6

Test with real data

The following results were obtained while using real data of surface buoyancy and potential
vorticity 𝑞𝑞 equal to zero.

Fig. 3. Exact solution for stream function derived from buoyancy

Fig. 4. Stream function derived for buoyancy using numerical computations
7

The root-mean-square error (RMSE) for the solution is 0.0619702 which was computed as

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ �𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑢𝑢𝑚𝑚 − 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑥𝑥𝑎𝑎𝑐𝑐𝑡𝑡�
2

𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘

𝑛𝑛

where 𝑖𝑖 ∈ [1, 𝑁𝑁 𝑥𝑥], 𝑖𝑖 ∈ �1, 𝑁𝑁 𝑦𝑦 �, 𝑖𝑖 ∈ [1, 𝑁𝑁 𝜕𝜕], 𝑛𝑛 - the total number of points.

As it can be seen from the figures 3 and 4 and the value of root-mean-square-error, the

numerical solution has a good accuracy and quite close to the exact solution.

Conclusion

The quasi-geostrophic potential vorticity equation for the ocean given the potential vorticity
was discretized by finite differences method and the obtained system of equation was solved
with use of successive overrelaxation method. The resulted algorithm was tested with
analytical solution and real data and provided solutions with fine accuracy. In the work NetCDF
format was used for representation of results and work with appropriate NetCDF libraries for
Fortran 90 was studied. The basis of geophysical physics dynamics was studied.

8

References

Alemayehu Shiferaw, and Ramesh Chand Mittal, 2011, An Efficient Direct Method to Solve the
Three Dimensional Poisson’s Equation, American Journal of Computational Mechanics,
pp. 285-293 (http://www.SciRP.org/journal/ajcm)

Benoit Cushman-Roisin, and Jean-Marie Beckers, 2009, Introduction to Geophysical Fluid
Dynamics. Physical and numerical aspects (New York, USA: Academic Press)

Isaac M. Held, Raymond T. Pierrehumbert, Stephen T. Garner, and Kyle L. Swanson, 1995,
Surphace quasi-geostrophic dynamics, Journal of Fluid Mechanics, Volume 282, pp. 1-20
(Cambridge, U.K.: Cambridge University Press)

La Casce, J. H., 2012, Surface Quasigeostrophic Solutions and Baroclinic Modes with Exponential
Stratification, Journal of Physical Oceanography, Volume 42, pp. 569-580

Rindin E.A. 2003, Methods of solution of mathematical physics problems (Taganrog, Russia:
TRTU Press)

Wlliam H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannary, 2001, Numerical
Recipes in Fortran 77. The art of scientific computing, second edition (Cambridge, U.K.:
Cambridge University Press)

Margarita Smolentseva

14.09.2016

9

