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Introduction

A major difficulty in the numerical simulation of the Incompressible Navier-Stokes equation is that
the  Velocity  and  Pressure  are  coupled  through  the  incompressibility  constraint.  Pressure  is  an
implicit  variable  which  instantaneously  adjusts  itself  in  such  a  way  that  the  velocity  remains
divergence free. The most attractive feature of Fractional Step Methods is that, at each time step,
one only needs to solve a sequence of decoupled elliptic equations for the velocity and pressure,
making it very efficient for large scale numerical simulations. 

Fractional  step methods consist  of Standard,  Incremental  and Rotational  forms of Pressure and
Velocity correction methods. Pressure correction methods consist of a basic predictor – corrector
procedure between pressure and velocity fields. Using an initial approximation of  the pressure, the
momentum equation can be solved to obtain an intermediate velocity field. This velocity, in general,
does  not  satisfy  the  divergence-free  constrain  and  must  therefore  be  corrected.  By  taking  the
divergence of the momentum equation and enforcing the incompressibility constraint, a Poisson
equation for the pressure is obtained. Solving this equation for pressure, the final velocity can then
be obtained.

Governing Equation

Consider an open and bounded domain Ω with boundary Γ for t ≥ 0. Since the non-linear term in
the  Navier  Stokes  equations  does  not  affect  the  convergence  rate,  it  is  omitted  and  the  time
dependent Stokes equations given below is considered.

 

where u(x,t) is the velocity vector, p(x,t) is the kinematic pressure, f(x,t) is the body force vector and
ν is the kinematic viscosity. Homogeneous Dirichlet boundary condition is considered for velocity
for the sake of simplicity. 

Pressure Correction Schemes

Pressure-correction schemes are time-marching techniques composed of two sub-steps for each
time step: the pressure is treated explicitly or ignored in the first sub-step and is corrected in
the second one by projecting the provisional velocity onto the Divergence free space.

Non – Incremental Explicit Pressure Correction Scheme (Standard Form)

There  is  a  lot  of  Literature  available  on  the  Implicit  form  of  the  Non-Incremental  pressure
correction  scheme,  however,  the  explicit  form  was  implemented  in  Alya,  a  Computational
Mechanics simulation code developed at BSC as it has lower computational time compared to the
implicit method.

For  the  Explicit  Euler  time stepping method,  Pressure  is  ignored  in  the  first  sub step  and the
intermediate velocity û is found from the explicit equation 



                                            ûk+1

Δ t
=  uk

Δ t
+ f k+1 + ν∇

2ûk+1                          (1)            

The pressure is corrected in the second sub step by projecting the intermediate velocity into the 
divergence free space, to get the pressure Poisson equation given  by : 

                                            Δ t ∇ 2 pk +1 = ûk +1                                                (2)     

Finally, the end of step velocity is found as,

                                    uk +1  = ûk +1 -  Δ t ∇ pk +1                                    (3)

The stability of the scheme depends on the time step Δ t .  The time step size cannot be greater
than the critical time step for the Explicit method. However,  Δ t also determines the pressure
stability and hence cannot be much lesser than the critical time step.

It is observed that the boundary condition  ∇ pk+1 . n = 0 is enforced at the boundaries on the
pressure. This artificial boundary condition induces a numerical boundary layer that prevents the
scheme from being fully first order on the velocity in the H1 norm and on the pressure in the L2
norm.

Explicit Rotational Pressure Correction Scheme

To overcome the problem of artificial boundary condition, the Pressure in the step 2 is replaced by a
pressure like term given by 

ϕ
k+1  = pk+1 + ν∇ .ûk+1

This change enforces a consistent boundary condition on Pressure.

The end of step velocity is now given by:

 uk +1  = ûk +1 -  Δ t ∇ϕk +1

These  two  schemes  were  implemented  as  FORTRAN  code  in  Alya.  The  details  of  the
implementation cannot be provided as it is property of BSC. The code verification was done using
the Method of Manufactured Solutions (MMS).

Method of Manufactured Solution

A manufactured solution is an exact solution to some PDE or set of PDE’s that has been constructed
by solving the problem backwards. Using the manufactured solution the source term of the PDE is
evaluated. Now, the solution to the PDE  with this source term is found to evaluate the error.

To compute the discretization error, several measures are possible. The normalized L2 norm error is
given by 

e2 = √ 1
N
∑

n

(un−U n)
2



where un is the manufactured solution evaluated at n and U n is the discrete solution. The 
normalized L1 error is given by

e1 = 
1
N ∑

n

(un−U n)

Similarly, the infinity norm of the global error is given by 

e∞ = maxn(un−U n)

In the tables below W( ,1) denotes the L1 norm, W( ,2) denotes the L2 norm and W( ,i) denotes the
infinity norm. These values for the primary variable are denoted by W(0, ) and for the gradient of
the primary variable by W(1, ).

Mesh and Time Convergence Analysis using MMS

Results  for  the Mesh and Time convergence  analysis  for  the  Explicit  non-incremental  pressure
correction  method  are  given  below.  The  domain  is  a  cubical  cavity  of  unit  size  along  each
dimension. The original mesh has 1000 hexahedral elements. Second order interpolation was used
for both Velocity and Pressure. 

For the explicit method, the Courant Friedrichs Lewy (CFL) condition (which relates the time step
size to the element size) of value 1 is used. Hence it is difficult to isolate the spacial errors or
temporal errors. Changing the element size changes the critical time step and the resulting global
error is a combination of both temporal and spacial errors.

Mesh Convergence

The mesh convergence is done by dividing each element in the mesh and then finding the global
error for the refined mesh. The divided element has half the dimensions of the original element.

Time integration using 2nd order Adam Bashforth method for the time derivative term. Critical time
step was used.

1. Using Quadratic Solution

     u    =  (1.0 + x + y^2+z^2)
     v    = -(1.0 + y + x^2 + z^2)
     w    =  (x^2 + y^2)

     p  =  2x + 3y

No mesh division

Norm Velocity Error Pressure Error

W(0,1) 2.00E-03 6.37E-02
W(0,2) 1.78E-03 6.34E-02
W(0,i) 1.02E-03 1.72E-01
W(1,1) 4.35E-02 1.87E-01
W(1,2) 4.47E-02 2.79E-01
W(1,i) 3.32E-02 8.47E-01



Division = 1 

Division = 2 

It is seen that Velocity and Pressure have second order of spacial convergence for the L2 norm
which verifies the code for Explicit  non-incremental pressure correction method. Another exact
solution – Taylor Green Vortex is used for a square cavity of unit size along each dimension as
shown below.

2. Taylor Green Vortex

u = - cos(x) sin(y) f(t)
v =   sin(x) cos(y) f(t)

where f(t) = exp(-2 pi^2 t)

p = - 0.25 ( cos( 2x ) + cos ( 2y ) ) f(t)^2

No mesh Divisions

Norm Velocity Error Pressure Error Velocity Order Pressure Order

W(0,1) 5.00E-04 1.78E-02 1.9997691411 1.8427966648
W(0,2) 4.45E-04 1.80E-02 2.0002432123 1.8212921262
W(0,i) 2.57E-04 8.74E-02 1.9933549976 0.9735815839
W(1,1) 2.17E-02 9.00E-02 1.0039146899 1.0512420941
W(1,2) 2.24E-02 1.83E-01 1.0001290194 0.6039138758
W(1,i) 1.66E-02 8.40E-01 1.0040038621 0.0128982452

Norm Velocity Error Pressure Error Velocity Order Pressure Order

W(0,1) 1.25E-04 4.80E-03 1.999942291 1.8891009837
W(0,2) 1.11E-04 4.94E-03 2.0001621643 1.862335775
W(0,i) 6.44E-05 4.41E-02 1.9950418562 0.9867246804
W(1,1) 1.08E-02 4.39E-02 1.0022607569 1.0352834082
W(1,2) 1.12E-02 1.24E-01 1.000064514 0.5636305256
W(1,i) 8.27E-03 8.38E-01 1.0012207756 0.0035785242

Norm Velocity Error Pressure Error

W(0,1) 9.39E-03 2.75E-01
W(0,2) 9.64E-03 2.04E+00
W(0,i) 1.57E-02 5.64E+00
W(1,1) 9.68E-02 5.12E+00
W(1,2) 9.30E-02 7.41E+00
W(1,i) 1.33E-01 2.32E+01



Mesh Division = 1

Mesh Division = 2

Again the results suggests second order of convergence in space for Velocity and Pressure. Hence
we can imply that the Spatial errors dominate over the temporal errors as we used second order
interpolation for Velocity and Pressure.

Time convergence – First Order Adams Bashforth method for the time derivative term

By varying the time step around the critical time step (tc) .

For Linear Solution

     ux =  2x +  y + 3z
     uy = - x - 3y - 4z
     uz =  6x + 7y - z
     p  = -5x + 6y + 2z  =>  p(1,1,1)=3, p(0,0,0)=0

For timestep = 2 tc

Norm Velocity Error Pressure Error Velocity Order Pressure Order

W(0,1) 2.28E-03 7.20E-02 2.0438171437 1.931573186
W(0,2) 2.27E-03 6.61E-01 2.0838424764 1.623284705
W(0,i) 3.95E-03 2.91E+00 1.986906599 0.9546798578
W(1,1) 4.69E-02 2.41E+00 1.0461466543 1.084555048
W(1,2) 4.59E-02 4.92E+00 1.0185052155 0.5893863754
W(1,i) 6.67E-02 2.28E+01 0.9968686931 0.0232734098

Norm Velocity Error Pressure Error Velocity Order Pressure Order

W(0,1) 5.59E-04 2.07E-02 2.0255402807 1.7977589215
W(0,2) 5.79E-04 2.22E-01 1.9745517044 1.5715216098
W(0,i) 9.89E-04 1.50E+00 1.9967001573 0.9593812336
W(1,1) 2.30E-02 1.16E+00 1.0268676669 1.0517406694
W(1,2) 2.28E-02 3.37E+00 1.0089559053 0.5452742667
W(1,i) 3.34E-02 2.26E+01 1.0000001189 0.0102638149

Norm Velocity Error Pressure Error

W(0,1) 1.50E-04 2.40E-01
W(0,2) 1.70E-04 1.38E-01
W(0,i) 2.31E-04 2.08E-01
W(1,1) 9.45E-04 1.46E-01
W(1,2) 1.41E-03 2.46E-01
W(1,i) 4.50E-03 8.46E-01



For timestep = tc

For timestep = 0.5 tc

The results suggest first order temporal accuracy for velocity, but poor convergence for pressure. 

The  poor  pressure  convergence  is  theoretically  because  of  the  artificial  neumann  boundary
condition for pressure.    ∇ pk+1 . n = 0

However when plotting the pressure contour lines this above condition on pressure contour lines
being perpendicular to the surface at the boundaries is not seen.

Norm Velocity Error Pressure Error Velocity Order Pressure Order

W(0,1) 8.08E-05 1.94E-01 0.8968169971 0.3075755411
W(0,2) 9.32E-05 1.10E-01 0.8655542481 0.3296710755
W(0,i) 1.59E-04 1.64E-01 0.5431421649 0.3393416153
W(1,1) 6.00E-04 1.20E-01 0.6556466872 0.2803622943
W(1,2) 9.13E-04 2.11E-01 0.624974104 0.2170540613
W(1,i) 3.20E-03 8.08E-01 0.4906676347 0.0666232624

Norm Velocity Error Pressure Error Velocity Order Pressure Order

W(0,1) 4.29E-05 1.60E-01 0.9139946715 0.2810565455
W(0,2) 5.10E-05 8.92E-02 0.8691788368 0.2957796233
W(0,i) 1.03E-04 1.31E-01 0.6290938336 0.3221383916
W(1,1) 3.78E-04 1.06E-01 0.6674467691 0.1827979481
W(1,2) 5.89E-04 1.83E-01 0.6330503532 0.2092255646
W(1,i) 2.15E-03 7.65E-01 0.5761186873 0.0791540488



Second order Adam Bashforth method for taylor green vortex

For time step = 0.25 tc

 

For time step = 4 tc 

There is not much difference in the Velocity and Pressure errors suggesting that the spacial errors
dominate the temporal errors. The temporal errors need to be isolated to find the exact temporal
order of convergence. To find the temporal errors accurately, it is required to find a solution in the
finite element space so that the spacial errors are 0. This has been left as future work.

Using the Rotational form of non-incremental Fractional step pressure correction method

For the linear solution

Errors for the standard form of Fractional step
           

Norm Velocity Error Pressure Error

W(0,1) 9.22E-03 7.93E-01
W(0,2) 9.44E-03 4.55E+00
W(0,i) 1.55E-02 1.39E+01
W(1,1) 9.80E-02 1.91E+01
W(1,2) 9.46E-02 2.16E+01
W(1,i) 1.43E-01 7.26E+01

Norm Velocity Error Pressure Error

W(0,1) 9.80E-03 1.71E-01
W(0,2) 1.02E-02 1.20E+00
W(0,i) 1.58E-02 2.67E+00
W(1,1) 9.58E-02 1.93E+00
W(1,2) 9.20E-02 2.88E+00
W(1,i) 1.23E-01 7.56E+00

Norm Velocity Error Pressure Error

W(0,1) 2.19E-04 1.44E-01
W(0,2) 2.75E-04 8.08E-02
W(0,i) 6.26E-04 1.16E-01
W(1,1) 2.62E-03 1.01E-01
W(1,2) 3.83E-03 1.60E-01
W(1,i) 1.32E-02 7.45E-01



Errors for the Rotational form of Fractional step

The  results  suggest  that  the  Rotational  form has  lead  to  the  reduction  in  the  global  error  for
Pressure. This is an improvement comparing it to the standard form of Fractional step pressure
correction method. However, analyzing the pressure contour lines for different cases suggests that
the artificial boundary condition, which was theoretically predicted for Standard form of Fractional
step methods is not seen when implemented in Alya.

Pressure Contour lines for different cases for Standard FS

1. cubic cavity

for the taylor green vortex

Norm Velocity Error Pressure Error

W(0,1) 2.19E-04 3.91E-02
W(0,2) 2.75E-04 2.73E-02
W(0,i) 6.26E-04 9.63E-02
W(1,1) 2.62E-03 1.01E-01
W(1,2) 3.83E-03 1.58E-01
W(1,i) 1.32E-02 7.45E-01



zoomed in 

The pressure contour lines are not perpendicular to the surface as was theoretically predicted.

For the 2d cavity

Exact solution from the Guermond paper



zoomed in view

Pressure contour lines are not perpendicular to the surface as was theoretically predicted.

For flow around a cylinder



zoomed in view

Conclusion

• The  review  of  the  different  fractional  step  methods  –  Pressure  correction,  Velocity
Correction, Consistent splitting and Inexact Factorization methods from the Literature was
done.

• The Pressure correction method in the Standard and Rotational form was implemented in
Alya, a computational mechanics software developed at BSC.

• The implemented  code was verified  using the method of  manufactured solutions.  Mesh
convergence  analysis  suggested  second  order  of  spacial  convergence  in  Velocity  and
Pressure as predicted. The special errors dominate the temporal errors, hence the temporal
order of convergence could not be found correctly.

• Various cases – Flow in a cubical cavity, Flow in a square cavity, Flow around a cylinder
were run in Alya. Even though, the Rotational form of pressure correction method reduced
the Pressure error compared to the Standard form, it is found that implementation of the
Standard form did not give artificial boundary conditions in the results as was theoretically
predicted. Hence, the Rotational form is not necessitated. How the implementation of the
Standard form was able to overcome the theoretical problem has to be further investigated. 
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