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1 Introduction

Many physical phenomena are governed by PDEs and these equations can be approximated by
finite element (FE) methods, which results in a sparse linear system of equations to be solved
via numerical linear algebra. The ever-increasing demand of reality in the simulation of the
complex scientific and engineering problems faced nowadays involves the solution of coupled
problems.

Coupled convection-diffusion and stokes problems are very common in industrial application.
One classical application is in the transport of air contaminants. In some circumstances, the
stokes problem that model the convective part of the problem is conditioned by the amount
of contaminants and, in the other way around, contaminants are convected by the underlying
(Navier-)Stokes problem. Another application of the coupled (Navier-)Stokes and convection-
diffusion problems is in the medical industry which focuses on solving problems relevant to
bioscience and biology. The proteins (actin filament in cells and hemoglobin in bloods) or
monomers (amino acid and polysaccharides) exist in living body maintaining the vital signs.
Here we are trying to model this kind of fluid with the goal to provide some numerical point
of view for medical industry.

This report first provide the fractional-step method for solving Navier-Stokes equations,
transient convection-diffusion equation numerically, the coupling procedure for the coupled
problems, and finally show an example with the algorithm[1].

The original code is from the module “Finite Element in Fluids”. In session of “unsteady-
convection-diffusion equations” and session of “stokes flows”, both problems are solved individ-
ually with linear parameters. Here the work is to couple the two kind of PDEs and also couple
the existing code based on the developed algorithm.

2 Coupled convection-diffusion and stokes model

2.1 Physical background

We are going to propose a model which describes one kind of fluid which are incompressible
and work as convection field for some substance, existing in many life entities.For example, in
the computational biology community, there are many mathematical models trying to simulate
the vital movement such as blood circulation and cell migration which play important roles in
medical industry. 

ut −∇ · (ν(ρ)∇)u−∇p = 0 with
u = uD on ΓD
u = uN on ΓN

(1)


ρt + u · ∇ρ−∇ · (µ∇ρ) = s(u) with
ρ = ρD on ΓD
ρ = ρN on ΓN

(2)

This set of equations we are dealing with a fully coupled problem since the unknown depend
on the solution of each other with set up a very broadly approach in engineering.It is a non-linear
problem,so a linearization of the system have to be done.
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2.2 Compact integral forms

In order to establish the weak, or variational, form of the strong form of our problem, we shall
here make frequent application of the bilinear forms,

a(u,v) =

∫
Ω

∇u : ∇vdΩ ∀u,v ∈ H1(Ω) (3)

b(v, q) = −
∫

Ω

q∇ · vdΩ ∀v ∈ H1(Ω) q q ∈ L2(Ω) (4)

and the trilinear form,

c(v; w,u) =

∫
Ω

w · (v · ∇)udΩ ∀u,v,w ∈ H1(Ω) (5)

2.3 Navier-Stokes equations

Consider the general form of Navier-Stokes equations prescribed a purely Dirichlet boundary
condition: 

ut − ν∇2u + (u · ∇)u +∇p = b in Ω×]0, T [
∇ · u = 0 in Ω×]0, T [
u = uD on ΓD×]0, T [
u(x, 0) = u0(x) in Ω

(6)

Solving equation 6 shows mainly two difficulties:

• Incompressibility constraint. The unknowns, velocity and pressure, cannot be discretized
anyhow.Solution is guaranteed if interpolation spaces verify a stability condition known
as inf-sup or LBB condition.

• Transient problem. The unknowns should advance in each time step which is similar to
unsteady-convection-convection equation.

An effective method to solve the Navier-Stokes equations is the projection method com-
puting the velocity field and pressure field separately by the computation of an intermediate
velocity which is then projected onto the subspace of the solenoidal vector function.Basic to the
derivation of the projection method is a theorem of orthogonal decomposition due to Ladyzhen-
skaya(1969),which is based on the Helmholtz decomposition principle.This theorem implies that
any vector field v defined on a simply connected domain can be uniquely decomposed into a
divergence-free(solenoidal) part vsol and an irrotational part virrot.Thus,

v = vsol + virrot = vsol +∇φ (7)

Since ∇×∇φ = 0 for some scalar function,φ.Taking the divergence of equation 7,

∇ · v = ∇2φ with ∇ · vsol = 0 (8)

So we obtain a Poisson equation for the scalar function φ.If the vector field v is obtained
first, the above equation 8 would help solve for the scalar function φ and the divergence-free
part of v can extracted,

vsol = v −∇φ (9)

Equation 9 is the key point and principle of solenoidal projection method for solving incom-
pressible Navier-Stokes equations.
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2.3.1 Fractional-step method for Navier-Stokes equations

Here we use the Chorin’s projection method which is member of fractional methods. The typ-
ical algorithm for solving time-discretized equations of the projection method consists of two
consecutive steps. First given previous time-step velocity field un,an intermediate velocity field
un+1
int is computed with the pressure term omitted,not satisfying the condition of incompress-

ibility,shown as equation 10:{
un+1
int −u

n

4t + (u∗ · ∇)u∗∗ − ν∇2u∗∗ = bn+1

un+1
int = un+1

D on ΓD
(10)

for the treatment of the nonlinear convective term,there are three choices of velocities v∗

and v∗∗,
for the explicit Euler method,conditionally stable:

v∗ = v∗∗ = vn

for a semi-implicit method,unconditionally stable:

v∗ = vn v∗∗ = vn+1
int

for the implicit Euler method, unconditionally stable:

v∗ = v∗∗ = vn+1
int

It is now necessary to derive a weak form of equation 10 to construct a finite element
version for the first step.The goal for the current problem is to find the intermediate velocity
un+1
int ∈ Sint, such that for all ω ∈ Vint,

(w,
un+1
int − un

4t
) + c(u∗; w,u∗∗) + a(w,u∗∗) = (w,bn+1)

where the trilinear and bilinear forms have the same definition as before.And the functional
spaces Sint and Vint completely fulfill the Dirichlet boundary condtions,namely un+1

int = un+1
D on

Γ.
For semi-implicit and fully implicit method, the discretized algebraic system resulting from

Galerkin method is shown in equation 11

M1(
un+1
int − un

4t
) + (C(u∗) + K)un+1

int = fn+1 (11)

where M1 is the consistent mass matrix, C is the convection matrix, K is the viscosity
matrix, and vector fn+1 includes the applied body force b and Dirichlet boundary conditions.

In terms of the computational complexity, the fully implicit option,v∗ = vn+1
int , requires the

times integration to repeat computations of the inverse of the nonlinear and non-symmetric
matrix M1 +4t(C(un+1

int ) + K). Predictor-corrector methods are usually implemented in this
case. For the semi-implicit methods,v∗ = vn,a modified convective term is adopted to maintain
unconditional stability.

The second step of Chorin’s projection is to determine the velocity vn+1 and pressure pn+1

solving equation 12
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
un+1−un+1

int

4t +∇pn+1 = 0 in Ω

∇ · un+1 = 0 in Ω
n · un+1 = n · un+1

D on Γ

(12)

Note that the last step involves the remaining term (pressure) and condition (incompress-
ibility) of the Navier-Stokes equations.However, the boundary condition only prescribes the
normal component of the velocity,not the tangential components.This is an key aspect of the
method: the tangential components of the velocity cannot be controlled on the boundary ac-
cording to Helmholtz decomposition principle,where a condition on the normal component can
be prescribed only.In accordance with equation 9, the first of equation 12 can be rewritten as

un+1 = un+1
int −4t∇pn+1

Now, the weak form of the second step equation 12 is: find the end-of-step velocity un+1 ∈ S
and the pressure pn+1 ∈ Q,such that, ∀ (w, q) ∈ V ×Q,{

(w,
un+1−un+1

int

4t ) + b(w, pn+1) = 0

b(un+1, q) = 0
(13)

where the function space S and V verify the prescribed boundary condition, n · un+1 =
n · un+1

D on Γ. Similarly, the discretized formulation of equation 13 is,{
M2(

un+1−un+1
int

4t ) + Gpn+1 = 0

GTun+1 = 0
(14)

or equivalently, (
M2/4t G

GT 0

)(
un+1

pn+1

)
=

(
M2u

n+1
int /4t
0

)
(15)

2.3.2 Viscosity splitting fractional-step method

Although it is enough to solve to the Navier-Stokes equation through Chorin’s projection
method,the difficult regarding the imposition of Dirichlet boundary condition in the second
step still exists.To alleviate this problem, Balsco,Codina and Huerta(1997;1998) introduced a
viscosity splitting fractional-step method where the projection idea is avoided in the second
step. They add a new diffusion term in the momentum equation in the second step,which thus
loses its inviscid property for preventing control of the prescribed tangential component of the
velocity at the boundary, as shown in equation 16:

un+1−un+1
int

4t − ν∇2(un+1 − un+1
int ) +∇pn+1 = 0 in Ω

∇ · un+1 = 0 in Ω
un+1 = un+1

D on Γ

(16)

Combined with equation 10 of the first step in Chorin’s projection method, this formulation
allow us to impose the original Dirichlet boundary conditions directly in both step,although
the LBB condition is required to make it solvable.
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2.3.3 Spatial discretization

The weak formulation can be obtained by projection equation 6 onto a space of weighting
function w1 ∈ V for the momentum equation and q ∈ Q for the incompressibility condition.The
following variational problem is thus the result:given b,uD and u0, find u(x, t) ∈ S×]0, T [ and
p(x, t) ∈ Q×]0, T [,such that, ∀(w1, q) ∈ V ×Q,{

(w1,ut) + a(w1,u) + c(u; w1,u) + b(w1, p) = 0
b(u, q) = 0

(17)

In a matrix form {
Mu̇(t) + Ku + Gp(t) = f(t,v(t))
GTu(t) = h(t)

(18)

Let us denote some node indexes with superscripts a, b and the space indexes with sub-
scripts i,j.Let Na

u be the standard shape function associated to the velocity node a and N c
p the

standard shape function associated to be pressure node c. In general, the velocity and pressure
interpolation may be different.So previous matrices in equation 18 are:

Mab
ij = (Na

u,N
b
u)δij Gcb

j = −(Nc
p, ∂jN

b
u)

Kab
ij = (Na

u,u
n+α · ∇Nb

u)δij + ν(∇Na
u,∇Nb

u)δij

h(t) = −(vd(t),Np) f(t,v(t)) = −Kabvd(t)

where δij is the Kronecker δ.

2.3.4 Time discretization

Here we have to solve equation 18, a transient-diffusion Navier-Stokes equation.The technique
used for unsteady-transportation-diffusion equation which updates the solution in each time
step can also be applied to the current case.However, we could adopt Chorin-Temam projec-
tion method, where we compute the velocity and pressure fields through the computation of
an intermediate velocity, which is then projected onto the subspace of the solenoidal vector
function.

The first step includes the viscous and convective terms in the Navier-Stokes equation.
Luckly we do not have convective terms here,thereby making C(u∗) = 0 in equation 11 to
satisfy the current problem,

M1(
un+1
int − un

4t
) + Kun+1

int = fn+1 (19)

where u∗∗ = un+1
int for implicit Euler method.Rewrite equation 19 in terms of computation,

the complete matrix form of first step for equation 6 is,

(M1 +4tK)un+1
int = M1u

n +4tfn+1 (20)

The second step of the projection method determines the end-of-step velocity un+1 and
pressure pn+1. Instead of the original projection method in the second step,here we adopt the
viscosity splitting fractional-step method as equation 16, which helps alleviate the difficulties
regards the imposition of Dirichlet boundary conditions in the original method.The problem
now is to translate equation 16 from strong form to a final matrix form,
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[
M2

4t + K G

GT 0

] [
un+1

pn+1

]
=

[
M2u

n+1
int

4t + Kun+1
int

0

]
(21)

The final projection method has been applied to construct the matrix formulation for equa-
tion 6 into two consecutive,equation 20 and 21.

2.4 Convection-diffusion equation

2.4.1 Time discretization

Finite difference schemes are the most common method for time discretization,for example,
θ-family method,Runge-Kutta methods and Padé’ approximation.Here for simplification,we
adopt θ-family methods which is widely used for integrating 1st-order differential equations.
This is a single step method,meaning the solution ρn+1 of the problem at time tn+1 = tn +4t
is determined by that at time tn:

ρ(tn+1)− ρ(tn)

4t
= θρt(t

n+1) + (1− θ)ρt(tn) +O((1/2− θ)4t,4t2)

or, neglecting the truncation errors,

4ρ
4t
− θ4ρt = ρnt where 4ρ = ρn+1 − ρn (22)

Replacing ρt in equation 32, the time-discretized scheme is

4ρ
4t

+ θ[u · ∇ −∇ · (µ∇)]4ρ = θsn+1 + (1− θ)sn − [u · ∇ −∇ · (µ∇)]ρn (23)

Several methods are obtained with different values of the θ parameter.The solution is condi-
tionally stable if θ < 1/2, for example,the forward Euler method,θ = 0.On the other hand, the
solution is unconditionally stable if θ ≥ 1/2, for example, Backward Euler,θ = 1,Galerkin,θ =
2/3, and Crank-Nicolson,θ = 1/2 are the most usual ones.In these methods, Crank-Nicolson is
the only method with second-order accuracy.

2.4.2 Spatial discretization

Sequentially, we implement the spatial discretization using Galerkin method, integrating over
the computational domain and imposing the boundary conditions, we get equation 24

(w2,
4ρ
4t

) + θ[c(a;w2,4ρ) + a(w2,4ρ)] =

−[c(a;w2, ρ
n) + a(w2, ρ

n)]+

(w2, θs
n+1 + (1− θ)sn) + (w2, θh

n+1 + (1− θ)hn)Γn

(24)

with

a(w2, ρ) =

∫
Ω

∇w2 · (µ∇ρ)dΩ (w2, s) =

∫
Ω

wsdΩ

c(a;w2, ρ) =

∫
Ω

w2(a · ∇ρ)dΩ (w2, h)Γn =

∫
Γn

whdΓ
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If we consider the homogeneous Neumann condition, the discretized form can written as equa-
tion 25

[
M3

4t
+ θ(C3 + K3)]4ρ = −(C3 + K3)ρn + f3 (25)

where

M3 =

∫
Ω

NiNjdΩ C3 =

∫
Ω

Ni(a · ∇Nj)dΩ

K3 =

∫
Ω

∇Ni · (µ∇Nj)dΩ f3 =

∫
Ω

Ni(θs
n+1 + (1− θ)sn)dΩ

However, equation 25 does not consider the stabilization technique.Among many stabiliza-
tion techniques such as Streamline-Upwind Petrov-Galerkin(SUPG) and the Galerkin/Least-
squares methods. Here we choose the GLS for spatial discretization.Noting that here the
residual is defined

R(4ρ) :=
4ρ
4t
− θ4ρt − ρnt (26)

And also, the perturbation operator P is

P :=
w

4t
+ θL(w) (27)

(w2,
4ρ
4t

) + θ[c(a;w2,4ρ) + a(w2,4ρ)] + τ(
w

4t
+ θL(w),R(4ρ)) =

−[c(a;w2, ρ
n) + a(w2, ρ

n)] + (w2, θs
n+1 + (1− θ)sn) + (w2, θh

n+1 + (1− θ)hn)Γn

(28)

⇐⇒

(w2,
4ρ
4t

) + θ[c(a;w2,4ρ) + a(w2,4ρ)] +
τ

4t
(w,R(4ρ)) + τ(θL(w),R(4ρ)) =

−[c(a;w2, ρ
n) + a(w2, ρ

n)] + (w2, θs
n+1 + (1− θ)sn) + (w2, θh

n+1 + (1− θ)hn)Γn

(29)

In a full matrix form,

[
M3

4t
+ θ(C3 + K3) + A3]4ρ = −(C3 + K3 + B3)ρn + f3 (30)

where

A3 =

∫
Ω

[
Ni

4t
+ θ(u · ∇Ni −∇ · µ∇Ni)]τ [

Nj

4t
+ θ(u · ∇ −∇ · µ∇)Nj]

f3 =

∫
Ω

{Ni + [
Ni

4t
+ θ(u · ∇Ni −∇ · µ∇Ni)]τ}[θsn+1 + (1− θ)sn]dΩ

B3 =

∫
Ω

[
Ni

4t
+ θ(u · ∇Ni −∇ · µ∇Ni)]τ(u · ∇Nj −∇ · µ∇Nj)dΩ
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2.5 Coupling procedure

It is interesting to note that the original two equations are coupled by each other,where
the solution of the Stokes equation is decided by the convection-diffusion equation,and vice
versa.Precisely, the viscosity coefficient ν of Stokes equation is a function of ρ which is the
solution from convection equation,and, the source term s(u) is also a function of u which is ob-
tained from the convection-diffusion equation. The two terms from the two equation establish
the relationship between the equations.Although the matrix form of these equation have been
derived, a clear solving procedure is also necessary,

step 1 Given initial conditions and boundary condition for equation 31 and equation 32.The
initial conditions define the original states in the whole computational domain while the
boundary conditions implies the solution on the boundary.

step 2 Define n as the total time step,i as the loop variable starting from 0. In this step, the
total time is discretized into a consecutive small time step, and the loop variable clarifies
a special time step.

step 3 Solve the convection-diffusion equation firstly to derive ρi+1 with ui and ρi in equation
30.Noting here the convective and source term are functions of u,we have to update
convection matrix and source vector in each time step.

step 4 Solve for ui+1
int with ρi+1 and equation 20. This is the first step of Chorin’s projection

method, computing an intermediate velocity field without the incompressibility condition.

step 5 Solve for ui+1 and pi+1 with ui+1
int and equation21. A whole implementation of the projec-

tion method is finished after the determination of the end-of-step velocity and pressure.

step 6 After we have obtain the solution at a certain time step, we could update loop variable
i = i + 1 meaning we are going to compute the velocity of next step through finite
difference method.

step 7 Iterate from step 2 to step 7 until i = n.

3 Algorithm implementation and examples

We solve the follow coupled problems as an examples for our algorithm:{
ut −∇ · (ν∇)u−∇p = 0 with
vx = 1 + sin(ωt− π/2) in Γ1,Γ2

(31)


ρt + u · ∇ρ−∇ · (µ∇ρ) = s(u) with
ρ = 1 in Γ1,Γ2

ρ = 0 in Γ4

(32)

where ω = 2πf and f = 1/T .u is the velocity of the Stokes flow, ρ is the density of
a transported substance, µ is the diffusion coefficient of the substance and s(u) the source
term.The viscosity component is given as ν = ν0 + ν

1+exp(−10(ρ−0.5))
.Impose two values of ν0 one

that induce a convective dominant problem and other where the convective and diffusion effect
are comparable. The source term is given as s(u) = 1

1+exp(−10(||u||−0.5))
.The reaction term will

be σ = 0.
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The code is developed based on the one from the Finite element for flow problems with some
modifications. Figure 1 is the solution at the final time step, t = 2∗π. For the behavior in each
time step, they are much like steady problem, symmetric field. Besides, another point,since
the Dirichlet boundary condition for equation 32 is periodic, what we expect to see is the
corresponding periodic dynamic behavior which could be seen from the code. Hereby the
problem is solved.

(a) Dynamics pressure (b) Substance density ρ

(c) Flow streamline (d) Velocity field

Figure 1: Solution for transient coupled equation

4 Conclusions

In this project, we studied the projections method for solving general transient (Navier-)Stokes
equations,and based on this method, the coupled algorithm for transient convection-diffusion
equations and Stokes equations becomes easier to implemented in with time integration scheme.
Results are well explained according to the boundary conditions and initial conditions. How-
ever, this work reported here also suggests that more work is needed to carry out systematic
numerical experiment on more complicated initial conditions which would affect the behavior
of the velocity field.
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