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Abstract
The aim of this project is to develop the in-house multiphysics solver
Alya for the study of arterial mechanics. In general, arterial wall con-
sist of isotropic layers consisting of extracellular matrix and anisotropic
layers consisting of matrix and set of collagen fibers. Therefore with
an aim to capture the arterial mechanics, isotropic and anisotropic
constitutive material model are implemented in Alya. The implemented
isotropic material model are Neohookean and Mooney Rivlin hypere-
lastic models whereas the implemented anisotropic material model is
Holzaphal model for soft tissues. Numerical studies consisting of single
hexahedral element and geometries with multiple hexahedral elements
are performed to verify the implementation. Results when compared
against literature and other solvers such as Code Aster and Abaqus,
show a reasonable agreement. Lastly, a model of artery subjected to
blood pressure is simulated using the Holzaphal constitutive model
and Neohookean model with one and multiple processors. The results
of both cases demonstrate the capability of implemented models to run
efficiently in multiple processors and achieve good scalability.
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Notations
F Deformation Gradient

x Spatial Coordinates

X Undeformed Coordinates

u Displacement

P First Piola Krichoff stress

b Body Force

S Second Piola Krichoff stress

w Virtual Displacement

B0 Undeformed Configuration

B Deformed Configuration

ẍ Acceleration

ρ0 Initial Density

fint Internal Force Vector

f(b)ext External Force Vector

K Stiffness Matrix

LK Linear Stiffness Matrix

NLK Non-Linear Stiffness Matrix

LB Linear Strain Displacement Matrix

4



NLB Non Linear Strain Displacement Matrix

C Right Green Cauchy Tensor

C 4th Order Tangent Constitutive Matrix

E Green Langrangian Strain

I1 First invariant of C

I2 Second invariant of C

I3 Third invariant of C

Ψ Strain Energy Function

Ψvol Volumetric part of Strain Energy Function

Ī (i)
c Distortional part of Ii

σ Cauchy Stress

b Left Green Cauchy Tensor

af , bf , u0, κ0 Material Parameters
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Chapter 1 Introduction
1.1 Motivation

Computational bio-mechanics is a broad area that aims to simulate
biological systems using numerical methods. The ultimate aim [1] of
researchers in this discipline is to build computational models based on
histology of biological systems in order to understand and capture the
working of the biological systems. Computational bio-mechanics is par-
ticularly interesting for researchers in area of solid mechanics as it poses
an important challenge of constitutive modeling of biological tissues.
Constitutive models govern the macroscopic behavior of the biological
systems in response to external stimulus due to constituents of the ma-
terial. The constitutive modeling of biological tissues pose a challenge
for taking into the account of the fact that these materials are alive and
show response to minute external stimulus [2] . Further challenges in-
clude multiscale modeling of biological tissues that captures the relevant
properties of all scales.

With advancements in computational bio-mechanics in general and con-
stitutive modeling of biological tissues in particular, patient specific
models can be built with wide range of applications involving clinical
prevention, diagnoses and treatment of disease and injuries.

1.2 Overview
Biological tissues are broadly classified into either soft or hard tissues.

The later includes mineralization tissues with firm inter-cellular matrix.
In human beings such tissues exist in bones, tooth enamel, dentin etc.
Their behavior can be modeled using linear elastic constitutive model as
they undergo very small deformations[2]. Soft tissues on the other hand
occur in tendons, ligaments, muscles, arteries etc. and are composed of
extra-cellular matrix of collagen and fibre embedded in ground matrix.
Such tissues undergo very high deformation and can only be modeled
using non- linear material models. Moreover a ground substance in these
tissues gives nearly incompressible hyperelastic behavior to them.

The properties of soft tissues are broadly classified into two namely ac-
tive and passive[2]. The active properties are the ones contingent on bio-
physical processes such as metabolism, growth etc. Whereas the passive
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properties only depend on the composition of tissues. The constitutive
models addressed in this work only account for the passive properties of
the soft tissues.

In the literature, traditionally the passive properties of soft tissues are
modeled as follow: Most of the data available in the literature apply
small strains < 10% to tissues of interest to assume linear elastic be-
havior [3]. For soft tissues undergoing large deformations, isotropic and
anisotropic [4] material models are employed. These material models
take into account the histology and physiology of the tissues in different
spatial and time scales. At simpler level the soft tissue are modelled
as composite materials with individual components such as matrix and
fibre. Hence a constitutive model would be a model the gives the addi-
tive (uncoupled) behavior of each component under different biophysical
stimuli.

1.3 Goals
Alya is the BSC in-house HPC-based multi-physics simulation code

[9]. It is designed from scratch to run efficiently in parallel supercom-
puters, solving coupled problems. The source code of ALYA is divided
into several modules. The Solidz module of Alya is both an implicit
and explicit FE solver developed in Fortran and is capable of solving
finite-strain nonlinear three-dimensional solid mechanics problems. The
computational models implemented in this module have been extensively
tested, verified and validated [10].

The aim of this project is to replicate and implement existing compu-
tational material models in Alya. These computational material mod-
els target at capturing passive constitutive modeling of soft tissues for
bio-mechanical applications such as modeling flow of blood in arter-
ies, cardiovascular modeling etc. In the literature, passive response of
the soft tissues has been studied using isotropic and anisotropic hy-
perplastic models. Isotropic hyperelastic models such as Neohookean
and Mooney Rivlin models are used to study behavior of arterial layers
with isotropic matrix. Whereas the transverse isotropic models such as
Holzaphel model for arterial walls are used for to take into account the
directional properties of the collagen fibres.

In short the aim of this project is:
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1- To implement following material models in Alya: 1) Neohookean
hyperelastic model 2) Mooney Rivlin hyperelastic model 3) Holzaphel
transverse isotropic hyperelastic model.
2- Qualitatively and quantitatively verify these implementations against
results in publications and against commercial softwares such as Code
Aster and Abaqus.
3- Develop the above mentioned implementations for parallel processing
environment.

1.4 Outline
The report is organized as follow:

Chapter 2

Chapter 2 introduces the readers to the architecture of Solidz module
of Alya and describes the implicit implementation of the finite element
algorithm.

Chapter 3

In chapter 3, a set of hyperelastic constitutive equations capable of re-
producing the basic passive properties of biological tissues is proposed.
First, several hyperelastic formulations are reviewed from the literature
and then implementation of the two hyperelastic models namely Neo-
Hookean and Mooney Rivlin are described in detailed and verified in
different case studies.
Chapter 4

In Chapter 4, a literature review on anisotropic hyperelastic models is
presented. A detailed description and formulation of the ingredients of
Holzaphel anisotropic hyperelastic model is described in depth. The im-
plemtation is verified agaisnt numerical studies performed in literature.

Chapter 5

A case study is presented involving a quarter model of artery subjected
to blood pressure. The case study have been solved using one (series)
and multiple processors (parallel) to make sure the developed constitu-
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tive models work efficiently in BSC’s MPI environment as well.

Chapter 6

The achievements and learning outcomes of this study are summed up,
final conclusions are drawn and future work lines are outlined.
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Chapter 2 Implementation of Alya/ Im-
plicit

The objective of this chapter is to give an overview of the funda-
mental equations and their implementation in finite element algorithm
of the Alya Solidz module. A special focus has been put on explain-
ing the implicit algorithm of Alya. The chapter is organized as follow:
First, a continuum mechanical framework involving definition and nota-
tion of the variables used in finite element implementation is explained.
This framework will serve as basis for constitutive models presented in
the forthcoming chapters. In later part of chapter, the algorithm used
to implement implicit Total Lagrangian formulation (TL) algorithm is
mentioned.

2.1 Continuum Finite Deformation Framework

For clarity of readers before explaining the finite deformation frame-
work, its important to explain notations involved. Scalar, vectors, second
order tensors and fourth order tensors are denoted by light faced italics
(a,b), boldface lower case letters (a,b), bold face upper case letter (A,B)
and black board capital letters (A,B) respectively. Multiplication of two
second order tensors is presented as AB. Tensor products between two
vectors and tensors is presented as a ⊗ b and A⊗B respectively.

Let ϕ be a function that maps a material point X ε B0 in the reference
configuration to its corresponding point x = ϕ (X) εB in the deformed
configuration (see figure 2.1). The deformation gradient tensor F is de-
fined as:

F := Gradx = 50x (2.1)
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Figure 2.1: Schematic of deformed body and undeformed body
where ∇∇∇0 is the gradient operator with respect to the reference con-

figuration. In Einsteain notation, the components of F are given by
Fi,j = ∂xi

∂xJ
. Since x(X)=X+u(X), with u the displacement vector,

thus the deformation gradiet can be given by F = I +∇∇∇0u, and ∇∇∇0u is
the displacement gradient.

2.2 Governing equation
The governing equation to be solved numerically in solid mechan-

ics is the equation of balance of momentum in terms of the reference
configuration.

DivP + b0 = ρẍ, ∀XεB0 (2.2)

where ρ0 is the mass density(per unit reference volume) and Div is the di-
vergence operator with respect to the reference configuration, such that
DivP = ∇0.P. In the above expression, tensor P and vector b0 stand
for, respectively, the first Piola-Kirchhoff stress and the distributed body
force on the undeformed body.

Typically, the first Piola-Kirchhoff stress is determined from Second Pi-
ola Krichoff Stresss S by following expression S = F−1P.

2.3 Finite element spatial discretization
2.3.1 Weak form

To derive weak form of equation(2.2)lets assume an arbitrary admis-
sible displacement field w such that w(X∂tB0) = 0 where X∂tB0 ∈ ∂tB0.
The weak form of the balance of momentum (2.2) is as follow:∫

B0
DivP.wdV +

∫
B0

b0.wdV =
∫
B0
ρ0ẍ.wdV (2.3)
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Equation (2.3) is a week form of equation (2.2) in a sense that it satisfies
the balance of momentum in integral sense against test function w over
the domain B0. While equation fulfil the condition locally at each point
XεB0. After integration equation (2.3) by part and assuming the applied
tractions t̄0 = Pn0, following equation is obtained.∫

∂tB0
t̄0wdS +

∫
B0

b0.wdV =
∫
B0

P.GradwdV +
∫
B0
ρ0ẍ.wdV (2.4)

Where the First Piola Krichoff Stress P(F) is defined by the material
constitutive law and is a function of the deformaion gradients F and
material parameters.

2.3.2 Finite element discritization [12]
Let x be polynomial approximation of degree k to actual statial co-

ordinates x = ϕ(X), such that:

xεXk = xhεC0[Bh
0 ] : xh | ωe0εPk(ωe0)∀ωe0εB0h

The polynomial approxiamtion of actual displacments is wh such that:

whεX
k
c = whεX

k
h : wh | ∂uωe0 = 0∀ωe0εB0h (2.5)

where B0h = Ueω
e
0 is the fintie element approximation of an actual un-

deformed body. Now writing equation (4) in terms of approximate func-
tional fields.∫

∂tB0h
t̄0.whdS +

∫
B0h

b0.whdV =
∫
B0
P.GradwhdV +

∫
B0h

ρ0ẍh.whdV

(2.6)

Figure 2.2: Finite element discretization of unreformed body B0 discretised into finite elements.
Polynomial shape function Na(ξ) of an element are defined to ap-

proximate the spatial coordinates such that they have value 1 on node a
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and 0 on rest of the nodes. Using the polynomials interpolation function
the approximated spatial fields are defined as:

xeh(X) =
∑
aεωe0

Na(ξ)xa and we
h(X) =

∑
aεωe0

Na(ξ)wa (2.7)

Now writing equation (6) in form of the dicritized interpolation polyno-
mials Na(ξ)

∑
e

∫
ωe0

(ρ0N
aN bdV )ẍa.wb +

∑
e

∫
ωe0

(P(Naxa)∇0N
bdV ).wb

=
∑
e

∫
∂tωe0

(t̄0N
bdV ).wb +

∑
e

∫
ωe0

(b0N
bdV ).wb (2.8)

Where xaεR3 such that for all wb, with wb = 0 and ∂tω
e
0. In short

notation form, the above equation can be written as:∑
e

M e,baẍa +
∑
e

f e,bint(xa) =
∑
e

f e,bext. (2.9)

Where M e,ba =
∫
ωe0
ρ0N

aN bdV

f e,bint(xa) =
∫
ωe0

P(Naxa)∇0N
bdV

f e,bext =
∫
∂tωe0

t̄0N
bdS +

∫
ωe0

b0N
bdV

2.3.3 Newton-Raphson iteration
The Newton Raphson scheme will be presented in context of static

analysis. In order to initiate Newton-Raphson iteration, the initial nodal
displacement of the first load step are set to zero.

xa,i=0
n+1 = 0

Where superscript ’i’ indicates the iteration step, i = 0 is the initial
guess before iteration and subscript n indicate the loading step.

Now rb,i−1 be the remainder or residual of the balance of momentum
equation at iteration step i− 1.

r b,i−1 := f bint(xa,i−1
n+1 )− f bext,n+1 (2.10)
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Using a Taylor expansion around the value at iteration i−1, the balance
of momentum equation can be linearized into:

f bint(xa,i−1
n+1 ) + ∂f bint

∂xa (xa,i−1
n+1 )4 xan+1 = f bext,n+1 (2.11)

As (4xan+1 = xa,in+1 − xa,i−1
n+1 ).

xa,in+1 = xa,i−1
n+1 − [Aba(xa,i−1

n+1 )]−1rb,i−1 (2.12)

Where Kba := ∂f bint
∂xa = Aba(xa,i−1

n+1 ) represents the Jacobian matrix (or
global stiffness matrix Kba). Next section explains in detailed derivation
on the formulation of the stiffness matrix in context of Total Lagrangian
formulation. The iteration is continued until convergence is reached with
the criteria |xa,in+1 − xa,i−1

n+1 | <tolerance.

2.3.4 Stiffness matrix
In context of finite strain deformation, the stiffness matrix is formu-

lated as follow:

Ki−1
n+1 = LKi−1

n+1 + NLKi−1
n+1 (2.13)

LKi−1
n+1 =

∫
LBΓi−1

n+1 Ci−1
n+1LBi−1

n+1dV (2.14)

NLKi−1
n+1 =

∫
NLBΓi−1

n+1 Ci−1
n+1NLBi−1

n+1dV (2.15)

Where LB and NLB are linear and non-linear strain displacement trans-
formation matrices.Furthermore, a detailed derivation of C and S will
be a topic of next chapter.

2.4 Algorithm of Alya-Implicit
A detailed algorithm of Alya-Implicit is mentioned in flow chart illus-

trated in figure 2.3. This flow chart summarizes all the steps previously
mentioned in this chapter.
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Figure 2.3: Algorithm of Alya-Implicit
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Chapter 3 Isotropic constitutive models for
soft tissues

Adequate modelling of the constitutive properties of soft tissues is sig-
nificant for reproducing the biomechanical problems in numerical stud-
ies. In the literature, more models are based on the theories of continuum
mechanics concepts than discrete mechanics. In continuum mechanics
the main assumption is that the properties of the medium are repre-
sented by the continuous functions with continuous derivatives. The
following represents a brief overview of such continuum mechanics based
theories.

Fung [3], was among the pioneers to characterize the behaviour of soft
tissues by presenting a potential function. Later on many other mod-
els such as Neohookean and Mooney Rivlin [2],[3] hyperelastic models
were employed to capture the behaviour of soft tissues. Since experi-
mentation [3] has revealed that soft tissues are highly compressible with
poison ratio ranging from 0.48- 0.49, therefore most of these models
assumes that the soft tissues are homogenous, isotropic and nearly in-
compressible. Based on these assumption the strain energy function can
be formulated in terms of first, second and third invariant or in form of
principle stretches like in case of Ogden model [2]. Furthermore these
strain energy functions are usually expressed in exponential, logarithmic
and polynomial function.[2],[3]

In this chapter, two of the most commonly used isotropic hyperelas-
tic models namely Neohookean hyperelastic model and Mooney Rivlin
hyperelastic model presented, implemented in Alya and verified against
numerical studies conducted in open source software Code Aster.

3.1 Hyperelastic formulations
The idea behind the formulation of hyperelastic model is that:

1. The strain energy function must be zero in unloaded state ψ(F =
I) = 0

18



2. The strain energy function should grow monotonously ψ(F) ≥ 0

3. The work performed should be the path followed
∫

Γ1
S : dE =∫

Γ2
S : dE

4. For the closed deformation cycle, the deformation work must be
zero

∮
S : dE = 0.

In the literature several the isotropic hyperelastic models have been pro-
posed such as Neohookean , Mooney Rivlin , Fung model etc. These
hyperelastic models have strain energy function a function of invariants
of Right ( and Left) Green Cauchy C tensor as shown:

Ψ(C) = Ψ(I1, I2, I3) (3.1)
Where the invariants of Right Green Cauchy tensor C are as follow:

• First invariant: I1 = Tr(C) = Cii

• Second invariant: I2 = (C:C−I2)
2 = (CijCji−C2

ii)
2

• Third invariant: I3 = det(C) = J2

As mentioned before in this chapter, two of the most commonly used
isotropic hyperelastic models namely Neohookean hyperelastic model
and Mooney Rivlin hyperelastic model will be discussed.

3.1.1 Neohookean Hyperelastic model
The strain energy function for the Neohookean model is an additive

split of volumetric part and distortional part.

Ψ(C) = Ψ̄0(C̄) + Ψvol(J) (3.2)

Ψ(C) = C10(Ī1 − 3) +D1(J − 1)2 (3.3)
Where the material parameters such as C10 and D are related to the
shear µ and the bulk modulus κ as follows:

C10 = µ

2 ;D = κ

2 (3.4)
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Ī1 = J− 2
3 I1 is the distortional part of the first invariant of the Right

Green Cauchy tensor C.As in finite element formulation require the use
of the second order tensor like Second Piola Kirchhoff Stress S and fourth
order tensor like tangent constitutive matrix C. The Second Piola Kri-
choff Stress S being second derivative of the strain energy function is
expressed as follow:

S = 2.∂Ψ̄0(C̄)
∂C

+ 2.∂Ψvol(J)
∂C

(3.5)

S = 2C10J
− 2

3 (I− 1
3I1C−1)− pJC−1 (3.6)

Where
p = 2D(J − 1)

The fourth order tangent constitutive tensor C being the second deriva-
tion of the strain energy function is expressed as follow:

C = 4.∂
2Ψ̄0(C̄)
∂C.∂C

+ 4.∂
2Ψvol(J)
∂C.∂C

(3.7)

C = 4
3C10J

− 2
3 (1

3Tr(C)C−1 ⊗C−1 − I⊗C−1 −C−1 (3.8)

⊗I + Tr(C)ΠC−1)− pJ(C−1 ⊗C−1 − 2ΠC−1)

Where [Π]ijkl is the fourth order identity tensor given by:

[Π]ijkl = 1
2(δikδjl + δilδjk) (3.9)

And ΠC−1 is the fourth order tensor given by:

[ΠC−1]ijkl = 1
2([C−1]ik[C−1]jl + [C−1]il[C−1]jk) (3.10)

3.1.2 Mooney Rivlin hyperelastic formulation
The Mooney Rivlin formulation consist of strain energy function

which is the linear combination of the distortional part of the first and
second invariant of the Right Green Cauchy tensor C shown as follow:

Ψ(C) = C10.(Ī1 − 3) + C01.(Ī2 − 3) +D(J − 1)2 (3.11)

20



Where the material constants C10 and C01 are related by the following
expression:

D = 2(C01 + C10)(1 + ν)
3(1− 2ν) (3.12)

Where ν is the poisson ratio.
The corresponding strain energy function S is as follow:

Svolij = 2D(J − 1)JC−1
ij (3.13)

Sisoij = 2(C10J
− 2

3 .(δij−
1
3 .C

−1
ij I1)+C01.J

− 4
3 (I1δij−Cij−

2
3 .C

−1
ij I2)) (3.14)

The tangent constitutive matrix C for Mooney Rivlin model is as follow,

C = 4.∂
2Ψ̄0(C̄)
∂C.∂C

+ 4.∂
2Ψ̄vol(J)
∂C.∂C

(3.15)

C = 4C10.
∂2Ī1

∂Cij.∂Ckl
+ 4C01

∂2Ī2

∂Cij.∂Ckl
− pJ(C−1

ij ⊗C−1
kl − 2ΠC−1) (3.16)

Where

δ2I1

δCijδCkl
= I

− 1
3

3 .(C−1
ki .C

−1
lj I1 − C−1

ij (3.17)

.δkl − C−1
kl .δij + 1

3 .C
−1
kl .C

−1
ij I1)

δ2I2

δCij.δCkl
= −2

3 .I
− 2

3
3 .C−1

kl .(Ī1.δij − Cij −
2
3 . (3.18)

C−1
ij I2) + I

− 2
3

3 .(δkl.δij − δik.δjl + 2
3 .C

−1
ki .

C−1
lj I2 −

2
3 .C

−1
ij .(I1δkl − Ckl)

δ2J

δCij.δCkl
= 1

4 .I
1
4
3 .(C−1

kl .C
−1
ij − 2.C−1

ki .C
−1
lj ) (3.19)
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3.2 Verification of the implemented models

The above mentioned constitutive models are implemented in Alya/Solidz
solver in a Fortran 90 subroutine. The implemented subroutines have
been shown in appendix A and B. Now the next step is to verify the
implementation for which the following one element and multi element
numerical studies have been carried out and results are compared with
Code Aster.

1. Unit volume hexahedral element subjected to axial load.

2. Unit volume hexahedral element subjected to biaxial load.

3. Unit volume hexahedral element subjected to in plane shear load.

4. Cantiliver thing beam comprising of 3750 solid hexhedral elements
subjected to out of the plane end loading.

The schematic of numerial experimentation on single hexahedral element
is illustrated in figure (3.1) . A brief description of each test is as follow:

1. In uniaxial test a pressure of 10 unit is applied on the surface
formed by nodes 5678. While surface formed by nodes 1234 has
all degree of freedoms constrained.

2. In biaxial test a pressure of 10 unit is applied on the surfaces
formed by nodes 5678 and 2368. While surfaces formed by nodes
1234 and 1457 has all degree of freedoms constrained.

3. In shear test, a displacement of the prescribed displacements are
u23 = u33 = u63 = u83 = 0.5 units.
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Figure 3.1: Configuration of single element case studies

3.2.1 Single element studies using Neohookean model
The results of single element uniaxial, biaxial and shear test has

been for the Neohookean model are tabulated in table 3.1, 3.2 and 3.3
respectively.The material properties that are used in the analysis are
C10 = 1, D = 0.04
Degree of
freedom

u51 u52 u53 u61 u62 u63 u71 u72 u73 u81 u82 u83

Code
Aster

0.1745216 0.1745216 0.6947036 0.1745216 0.1745216 0.6947036 0.1745216 0.1745216 0.6947036 0.1745216 0.1745216 0.6947036

Alya-
Solidz

0.1745216 0.1745216 0.6947036 0.1745216 0.1745216 0.6947036 0.1745216 0.1745216 0.6947036 0.1745216 0.1745216 0.6947036

Percentage
relative
error

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.1: Neohookean model: Comparison of results of uniaxial test from Code Aster and Alya

Degree of free-
dom

u61 u62 u63 u81 u82 u83

Code Aster 0.60302997 0.42918513 0.6030296 0.60302997 -
0.42918513

0.6030299

Alya-Solidz 0.60302992 0.42918515 0.6030299 0.60302992 -
0.42918515

0.603011

Percentage rel-
ative error

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.2: Neohookean model: Comparison of results of biaxial test from Code Aster and Alya
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Degree of
freedom

u21 u22 u23 u31 u32 u33 u61 u62 u63 u81 u82 u83

Code
Aster

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

Alya-
Solidz

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

0.247533E-
001

Percentage
relative
error

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.3: Neohookean model: Comparison of results of shear test from Code Aster and Alya

3.2.2 Single element studies using Mooney Rivlin
Model

The results of single element uniaxial, biaxial and shear test has
been for the Neohookean model are tabulated in table 3.4, 3.5 and 3.6
respectively. The material properties used in this analysis are D=0.04,
C10 = 1 and C01 = 0.5
Degree of
freedom

u51 u52 u53 u61 u62 u63 u71 u72 u73 u81 u82 u83

Code
Aster

0.16134937 0.16134937 0.638458 -
0.16134937

0.16134937 0.638458 -
0.16134937

-
0.16134937

0.638458 0.16134937 -
0.16134937

0.63845826

Alya-
Solidz

0.16134937 0.16134937 0.638458 -
0.16134937

0.16134937 0.638458 -
0.16134937

-
0.16134937

0.638458 0.16134937 -
0.16134937

0.63845826

Percentage
relative
error

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.4: Mooney Rivlin model: Comparison of results of uniaxial test from Code Aster and
Alya
Degree of
freedom

u61 u62 u63 u81 u82 u83

Code
Aster

0.535520465 0.3863573 0.535520465 0.535520465 -0.3863573 0.535520465

Alya-
Solidz

0.53552048 0.38635717 0.53552048 0.53552048 -0.3853571 0.53552048

Percentage
relative
error

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.5: Mooney Rivlin model: Comparison of results of biaxial test from Code Aster and
Alya
Degree of
freedom

u21 u22 u23 u31 u32 u33 u61 u62 u63 u81 u82 u83

Code
Aster

0.9898 0.98713 0.5 0.9898 -0.96713 0.5 0.9898 -0.2426 0.5 0.9898 0.2426 0.5

Alya-
Solidz

0.98932 0.96711 0.5 0.98932 -0.96711 0.5 0.98932 -0.242623 0.5 0.98932 0.242623 0.5

Percentage
relative
error

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 3.6: Mooney Rivlin model: Comparison of results of shear test from Code Aster and Alya

3.2.3 Cantilever beam test
The test case involves a cantilever beam (length = 1unit, width =

0.3 unit and height = 0.1unit) consisting a mesh of 50 ∗ 15 ∗ 5 eight
node hexahedral elements. The model shows a very reasonable mesh
convergence (relative error of 1e−8) for this mesh. The beam is subjected
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to end pressure of 0.1 unit as illustrated in figure 3.2. As can be seen
the end pressure is applied on an area of 0.3 ∗ 0.02 unit2.

Figure 3.2: Configuration of cantiliver beam case study

A static implicit analysis is carried out using 10 load/displacement
boundary condition increments. The reason for this test is two fold.
Firstly, to check the accuracy and stability of the implemented consti-
tutive model for geometries involving several finite elements. Secondly,
to do a comparative analysis between Neohookean and Mooney Rivlin
model.
Displacement magnitude contours obtained from Neohookean and Mooney
Rivlin model from Alya-Solidz are displayed in figure 3.3. The displace-
ment magnitude along line AB ( as shown in figure 3.3) are plotted in
figure 3.4. Moreover figure 3.4(top) serves to compare Mooney Rivlin
model and Neohooken model. To evaluate the convergence rate of the
Neohookean and Mooney Rivlin model the residual errors of the norm
of energy gradient ‖ 5 E‖ is plotted in figure 3.5.
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Figure 3.3: Displacement magnitude obtained in the cantiliver beam from Neohooken (top) amd
Mooney Rivlin model (bottom)
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Figure 3.4: (Top)Comparison between Mooney Rivlin and Neohookean model from from Alya-
Solidz, (Bottom left) Comparison of results between Code Aster and Alya-Solidz for Neohookean
model, (Bottom Right) Comparison of results between Code Aster and Alya-Solidz for Mooney
Rivlin model1

The convergence rate of simulations run for both models is shown
in figure 3.5. As can be seen for both models the convergence rate
is linear at start of every increment and becomes nearly quadratic as
solver approaches to the solution. This behaviour of the solver is quite
understandable as Newton Raphson method gives nearly quadratic con-
vergence rate local to the solution. Nevertheless, a better convergence
rate (almost quadratic) can be achieved if analysis is performed with
more load increments.

Figure 3.5: Convergence analysis of a) Neohookean model b) Mooney Rivlin model
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3.3 Conclusions and discussion
From the aforementioned numerical studies we can establish the fol-

lowing conclusions.

1. The implemented Neohookean and Mooney Rivlin subroutines in
Alya-Solidz are very accurate as can be seen in comparison to Code
Aster. This serves to verify the implementation.

2. Mooney Rivlin model exhibit more nonlinearity than neoheookean
model ( as can be seen in figure 3.4) and hence is more recom-
mended for biomechanics studies involving finite deformation.

3. On log-log plot shown in figure 3.5 a near quadratic rate is ob-
served local to the solution which establishes the robustness of the
implemented material models.
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Chapter 4 Anisotropic hyperelasticity
Biological soft tissues such as arteries, myocardium muscles, liga-

ments, tendons etc. show highly anisotropic behaviour. Thus, incor-
porating hyperelasticity in constitutive modelling of soft tissues is an
important aspect. The histology of tissues dictate that there are up to
two set of collagen fibers in soft tissues that confer upon anisotropic
properties to the soft tissues. The simplest form of anisotropy can be
represented by transverse isotropy where the set of collagen fibers are
aligned in a specific direction. The most widely used transverse isotropic
model has been presented by Holzaphel et al[4,8]. Holzaphel et al pre-
sented several constitutive model for soft tissues, each with different
features such as [4,8,11]:

1. Rate independent transverse isotropic constitutive model for my-
ocardium tissues consisting of one family of fibers.

2. Rate independent transverse isotropic constitutive model for arte-
rial tissues consisting of two families of collagen fibers.

3. Rate independent transverse isotropic constitutive model for arte-
rial tissues with dispersed collagen fibers.

4. Elastoplastic constitutive model for soft tissues.

Above mentioned constitutive models from 1-3 describes behaviour of
soft tissues within strain range before plasticity is induced in the mate-
rial. In this work, the implementation of the second constitutive model
i.e. Rate independent transverse isotropic constitutive model for arte-
rial tissues consisting of two families of collagen fibers is presented. The
reason of selecting this material model is due to its extensive usage in
literature for capturing the mechanics of various arteries.
The outline of the chapter is as follow. In Section 4.1, the theoreti-
cal framework to be used as the background for the description of the
arterial mechanics is discussed. This consists of the general equations
governing the isotropic and anisotropic response of arterial tissues based
on the use of an elastic free-energy function. In Section 4.2, all required
ingredients that are necessary to implement the Holzaphel constitutive
model are derived from the free energy functions. Section 4.3 discuss
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the verification of the implemented Holzaphel model using several case
studies from the literature.

4.1 Constitutive model for soft tissues
Arterial layers can be seen as composites reinforced by two families

of collagen fibres arranged in symmetrical spirals. The isochronic strain
energy Ψ function is additively split into isotropic Ψ̄iso and anisotropic
Ψ̄aniso functions. At low blood pressure, the collagen fibers don’t play
any role and entire behaviour of the artery is governed by Ψ̄iso part,
whereas at high pressure, the fibers (Ψ̄aniso part)govern the response of
arteries. Hence the potential is written as:

ψ̄(C̄,a01,a02) = ψ̄iso(C̄) + ψ̄aniso(C̄,a01,a02) (4.1)

Where ai, i = 1, 2 represents the reference directions of the two families
of fibers.
In terms of invariants the free energy function is represented as,

Ψ(C̄,A1,A2) = Ψ̄iso(Ī1) + Ψ̄aniso(Ī4, Ī6) (4.2)

Whereas the invariants are represented as:

I1(C) = trC, I4(C,a01) = C : A1, I6(C,a02) = C,A2
(4.3)

Where A1 and A2 are defined as:

A1 = a01 ⊗ a01, A2 = a02 ⊗ a02 (4.4)

The isotropic behaviour is presented by Neo-Hookean model as follow:

Ψ̄iso(Ī1) = µ

2 (Ī1 − 3) (4.5)

Where µ physically represents the shear modulus. The fact that colla-
gen fibers are only active at high pressure promts to model anisotropic
behavior with exponential terms as follow:

Ψ̄aniso(Ī4, Ī6) = af
2bf

∑
i=4,6

[exp[bf (Īi − 1)2]− 1] (4.6)

The volumetric part Ψvol is presented as follow:

Ψvol(J) = 1
2κ(J − 1)2 (4.7)
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From the strain energy function the distortional part of Cauchy stress
can be derived as:

σ = 1
J

F
∂Ψ
∂F

(4.8)

σ = σvol + σ̄iso + σaniso (4.9)

σ̄iso = aJ−1(b̄− 1
3 Ī1I) (4.10)

σ̄aniso = 2afJ−1 ∑
i=4,6

(Īi − 1)exp[bf (Īi − 1)2](āi ⊗ āi −
1
3 ĪiI) (4.11)

σvol = κ0(J − 1)I (4.12)

Now the Second Piola Krichoff Stress is obtained by applying pull back
operation on Cauchy stress i.e.

S = JF−1σF−T (4.13)

Now the corresponding tangent constitutive matrix C for the isotropic
strain energy function Ψ̄iso(Ī1) is already presented in equation (4.5).
Here the final form of tangent constitutive matrix derived for anisotropic
strain energy function Ψ̄aniso(Ī4, Ī6) is presented as follows:

C̄aniso = 4
∑
i=4,6
{1

3ψ
α[Īi(C−1 �C−1 − 1

3C−1 ⊗C−1)] (4.14)

−J− 2
3Dev(a0 ⊗ a0)⊗C−1 − J− 2

3 ⊗Dev(a0 ⊗ a0)]

+J− 4
3ψααDev(a0 ⊗ a0)⊗Dev(a0 ⊗ a0)}

Where
ψαα = af [1 + 2bf (Īi − 1)2]exp[bf (Īi − 1)2] (4.15)

ψα = af (Īi − 1)exp[bf (Īi − 1)2] (4.16)

Dev(a0 ⊗ a0) = a0 ⊗ a0 −
1
3 ĪiC̄−1 (4.17)

−(C−1 �C−1)ijkl = −1
2(C−1

ik C−1
jl + Ce−1

jk C−1
il )

For detail derivation readers can refer to the appendix C.
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4.2 Numerical Experiments

The Holzaphel model for arterial walls has been implemented in the
subroutine sld-stress-model-134.f90 in Alya-Solidz. The implementation
is verified using a number of quantitative and qualitative numerical stud-
ies involving one element and multi elements geometries. Results of nu-
merical studies involving one element are compared with work of Nolan
et al [5]. While the results of the multi-element geometry are compared
with Abaqus 6.14. The numerical studies will serve to verify the imple-
mentation and establish it’s good robustness.

4.2.1 Single element studies

The following single element studies are carried out and compared
with results presented by Nolan et al.
In this case study the stretch λ2 is imposed in direction 2 on a cube
with unit volume, while no lateral stretch is permitted in 1 and 3 direc-
tion (λ1 = λ3 = 1) as shown in figure 4.1. This loading condition has
bio-mechanical relevance as arterial tissues undergo high circumferential
(hoop) strains but no radial or axis strain.

Figure 4.1: Schematic of uniaxial stretch test

A finite element analysis is carried out on a cube with unit volume
(figure 4.1) with the prescribed boundary conditions as follows:
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Figure 4.2: Schematic of geometry and nod
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For λ2 = 1.2, the value of prescribed displacement u is 0.2 unit. Hence
the value of u is varied in range [0, 0.2]. The Cauchy stress component
for the proposed uniaxial test for various angles θ is given in figure 4.2.

Figure 4.3: Uniaxial test: Ratio of Cauchy stress σ11
σ22

obtained for single set of fibers for θ in
range [30 90]
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4.3 Plain strain shear stress

In this case study, a pure in plane shear loading is applied to a cube
with unit volume. This type of loading is pure isochoric and volume
preserving i.e. J = det(F ) = 1. The material properties employed for
this study are µ = 0.05, κ = 1,af = 1 and bf = 100.
For finite element implementation the deformation gradient in equation
(4.17) is translated into boundary conditions as shown in figure 4.4 and
equation (4.18).

F =


√
F 2

12 + 1 F12 0
F12

√
F 2

12 + 1 0
0 0 1

 (4.18)

|u1′| =
1√
2
− 1√

2− u2′
(4.19)

Figure 4.4: Schematic illustrating the kinematics of the pure shear deformation of the (1,2)
section of a unit cube

For the in plane shear stress two numerical tests have performed:
With 1)One set of fibers a01. 2)Two set of fibers a01, a02. The first test
has been performed at fiber orientations θ in range [30◦, 90◦] and results
are displayed in figure 4.5. For the second inplane shear test , two set of
fibers are used and results are displayed for θ = 30.
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Figure 4.5: In plane shear test: Ratio of cauchy stress σ33
σ12

obtained for two set of fibers for θ in
range [45◦, 90◦]

Figure 4.6: In plane shear test:Normalized Cauchy stress obtained for two set of fibers for θ =
30◦

4.3.1 A thin plate under axial load
In the proposed numerical study, a thin axial plate modelled using

4 node planar element is subjected to axial pressure load. The study is
performed at using one set of fibres orientated θ at +30◦, −30◦ and 0◦.
A schematic of the numerical study is presented in figure below. The
material parameters used for this study are D = 0.04, C10 = 1.0, af =
80.0, bf = 5.0 and C01 = 0.5.
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Figure 4.7: Schematic of thin plate under axial load.
The study is conducted in Alya and results are compared with a

similar study in Abaqus. The study serves two purpose. 1) Verify the
implementation of the Holzaphel model in Alya. 2) Demonstrated the
effect of fibre orientation θ on the deformation.

At fibre orientation θ = 0◦
The applied pressure for this study is 10 units. A comparison of

results from Alya and Abaqus are shown in figure 4.8. Since the the
fibre orientation θ = 0◦, therefore the plate undergoes symmetric de-
flection about the x axis and (as will be seen in the following studies)
the plate undergo less deformation compared to when θ = ∓30◦. Maxi-
mum relative error of displacement field generated in Abaqus and Alya
is 2.1%.

Figure 4.8: Fiber Orientation θ = 0◦, (Left) results from Alya, postprocessed in Matlab (Right)
Results from Abaqus

At fibre orientation θ = 30◦
The applied pressure for this study is 10 units. A comparison of

results from Alya and Abaqus are shown in figure 4.9. Since the the
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fibre orientation is θ = 30◦., therefore the plate undergoes unsymmetric
deflection about the x axis and the deflection tends to be more towards
lower right corner of the plate than upper right corner. Maximum rela-
tive error of displacement field obtained from Abaqus and Alya is 3.9%.

Figure 4.9: Fiber Orientation θ = 30◦, (Bottom) results from Alya, postprocessed in Matlab
(Top) Results from Abaqus

At fibre orientation θ = −30◦

The applied pressure for this study is 10 units. A comparison of
results from Alya and Abaqus are shown in figure 4.11. Since the the
fibre orientation is θ = −30◦. therefore the plate undergoes unsym-
metric deflection about the x axis and the deflection tends to be more
towards upper right corner of the plate than lower right corner. Maxi-
mum relative error of displacement field obtained from Abaqus and Alya
is 3.9%.
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Figure 4.10: Fiber Orientation θ = −30◦, (Right) results from Alya, postprocessed in Matlab
(Left) Results from Abaqus

4.4 Discussion and Conclusion
Following conclusions can be derived from one element and thin plate

study:

1. The results of one element uniaxial and in-plane shear test show
excellent similarity to the results displayed by Nolan et al [5] for
similar studies. These results establishes the accuracy of the im-
plementation.

2. The thin plate study for fibre orientated θ at ∓30◦,−30◦ and 0◦

shows a maximum of 4% difference from results obtained from
Abaqus. The difference in the values if displacement is coming
from the fact that the volumetric term of the strain energy func-
tion Ψvol(J) in Abaqus is different from the one implemented in
Alya, as shown in equation [7].

Ψvol(J) = 1
D

((J)2 − 1
2 − lnJ) (4.20)

As the plate is undergoing increase in volume because of the axial
load therefore J 6= 1, therefore the volumetric term Ψvol(J) played
a role in producing the difference in values of the displacement.

3. The thin plate study illustrated the effect of fibre orientation on
the displacement. It can be seen in figure that for θ = 0◦ the
plate undergoes symmetric and lesser deformation compare to θ =
∓30◦ as fibers are oriented along the axial pressure load. For θ =
∓30◦ the plate undergoes unsymmetric deformation which can be
attributed to the inclined orientation of the collagen fibers as at
θ = 30◦ the plate deflects more in lower right corner, whereas for
θ = −30◦ there is an increased deflection at upper right corner.
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Chapter 5 Finite Element analysis of real-
istic arterial deformation

In this chapter, a practical numerical study involving simulation of
a quarter piece of artery under pressure expansion is performed. The
reason of presenting this numerical study is twofold 1) To simulate a re-
alistic problem using the Holzaphel and Neohookean model. 2) To test
Holzaphel model in MPI environment of Supercomputig Center Alya.
For this purpose the numerical study is conducted using single and mul-
tiple processors to gauge the performance of implemented subroutines
in Alya.

5.1 Pressure expansion of an artery
In this study a quarter model of artery under pressure expansion is

presented. The artery model consist of an annulus with inner radius
of ri = 6cm and external radius of r0 = 9cm. The length of artery
in z direction is 3cm and is constrained with both ends in z direction.
The schematic of artery mode illustrating the geometric dimensions,
boundary conditions and pressure loading is shown in figure 5.1(A).

Figure 5.1: (A) Schematic illustrating the geometry, lines of symmetry and boundary conditions
of the artery model (B) illustration of fibre orientations

Two set of fibres are placed at ∓β0 = 50◦ with respect to the circum-
ferential direction in local rz plane (as shown in figure 5.1(B)). In Alya
the fibre vectors can only be defined on global Cartesian coordinate axis
, therefore an algorithm is developed which for every nodal point and
given β0 evaluates the fiber orientations global coordinate axis.
A mesh sensitivity study verifies that the model shows convergence in
displacement for a mesh of hexahedral elements with 1044 elements.
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Moreover the analysis is carried out using Holzpahel model and the Neo-
hookean model to highlight the difference between employing anisotropic
and isotropic models for arterial studies.

Material parameter Material parame-
ter

K1 1e7(Ba)
K2 2
µ0 3e5(Ba)
κ 1e7(Ba)

Table 5.1: Holzaphel and Neohookean material parameters employed in the artery model

5.2 Results

The obtained displacement and von misses stress in the study is
show in figure 5.2. It can be seen that the displacement and Von Mises
stresses are unsymmetrical along the circumference. This is due to the
two set of fibre, which make stresses distribute uneven with respect to
the circumferential direction. Moreover it can be seem in figure 5.3 that
Neohookean model gives symmetrical displacement field with respect to
the circumferential direction.

Figure 5.2: Holzaphel model: (Left) Displacement field (Right) Stress Von Mises field obtained
from artery subjected to uniform pressure loading
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Figure 5.3: Neohookean model: Displacement field obtained from artery subjected to uniform
pressure loading

5.3 Parallel Efficiency
One of the key feature of our computational model is its parallel effi-

ciency. This serves to solve very large problems (for example simulation
with very refined mesh etc. ) in a reasonably wall clock time or a simple
problem very quickly. In this numerical study a refined artery model is
run using up to 100 processors. The parallel efficiency is gauged using
scalability. Strong ideal scalability means how problem of a definite size
is solved faster linearly with increase in the number of processors. This
scalability measure is linear when the speedup increases linearly with
the number of processors involved. To measure it, this artery simulation
with refined mesh of 727,000 elements is used as bench mark and is ran
with 1 , 33, 66 and 100 processors, taking the smallest one as the refer-
ence value. The tests were carried out in Marenostrum supercomputer
consisting of 10 240 IBM PPC processors.
Figure 5.4 shows the result of the scalability test where speedup ratios
is plotted on y-axis and no. of processors are plotted on x-axis. The
speedup of a problem of size x with n processors is the execution time
on one processor divided by the time on n processors.
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Figure 5.4 shows that with increasing processors the speed up ratio also
increases, which proves the yields good scalability with multiple proces-
sors.

Figure 5.4: Strong scalability test
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Chapter 6 Discussion and Future research
In this final chapter, the conclusion, learning outcomes and future

avenues of research as a continuation of this project are outlined.

6.1 Conclusion and Discussion
In this study constitutive material models are implemented in Alya

with an aim to develop the Solidz module of Alya for study of arte-
rial mechanics. For this purpose two of the most widely used isotropic
hyperelastic material models, namely Neohookean and Mooney Rivlin
models are implemented in Alya. Whereas the most popular anisotropic
hyperelastic material model namely, Holzaphel model for arterial walls is
implemented for anisotropic arteries consisting of collagen fibre. The im-
plemented material models are verified in one element and multi element
numerical studies against literature and other finite element solvers.

1. For Neohookean and Mooney Rivlin material model the conclu-
sions are as following:

One element numerical studies involving finite deformations caused
by uniaxial, biaxial and multiaxial loading conditions are per-
formed. Results when compared with similar studies performed
in Code Asters show nearly 0% relative error which verifies the
accuracy of implementation. In numerical experiment involving
cantilever beam under tip loading, the Neohookean model and
Mooney Rivlin model are compared and it has been established
that Monney Rivlin model is capable to capture more nonlinear-
ity in material response , both model are robust and give almost
quadratic convergence.

2. For Holzaphel material model the conclusions are as follow.

One element numerical studies involving shear and uniaxial test
exactly replicated the results presented by Nolan et al [5] which
establishes the accuracy of the implementation of Holzaphel model
in Alya. Moreover the tensile beam study highlights the influence
of fiber orientations on the deformation and verifies both quanti-
tatively and qualitatively the Holzpahel model implementation for
multi-element geometries.
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3. For the arterial model study that conclusions are following.

The implemented material models are very robust for realistic
biomedical studies . The presence of collagen fiber set orientations
yield unsymmetric deformation in artery whereas for Neohookean
model due to its isotropic nature, symmetric deformation is ob-
tained. Moreover scalability analysis with this numerical study
as benchmark shows parallel efficiency of the Holzaphel material
model.

6.2 Future Research
There are two possible avenues of future research as a continuation

of this project.

1. Improving the anisotropic constitutive model of arterial walls by
incorporating plasticity and damage-softening models in Alya. An
excellent anisotropic plasticity model and damage softening model
has been proposed by Holzaphel et al [9] and Aelxander et al [8]
respectively which should be incorporated in framework on Alya.

2. Use the implemented material models in other biomedical applica-
tions such as fluid-solid interaction analysis of blood flow in arteries
etc.

6.3 Outcomes
The outcome of this study are categorized into the following.

6.3.1 Outcomes for Barcelona Supercomputing Cen-
tre

This project has contributed in advancing the in house multiphysics
solver Alya for studies related to arterial mechanics. This material mod-
els implemented in this study will be used by the research group working
on fluid-structure modelling of aorta.

6.3.2 Personal learning outcome
For myself this was a tremendous learning experience in following

ways.

1. Learn the following concepts as part of the project: nonlinear finite
element analysis, constitutive modelling, arterial mechanics and
parallel computing running simulations on supercomputer.
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2. Had exposure working with following solvers and tools.

• Alya
• Abaqus
• Code Aster
• Fortran 90
• Operating system Linux
• GNU Plot
• Paraview

3. Last but not least, learnt about a scientific methodology of inves-
tigating and approaching a research question and how to work out
a complex problem by breaking it down into subcomponents and
solving each one of them to solve the bigger problem.

4. Learnt to work independently as well as in close collaboration with
colleagues in a research oriented environment.
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Chapter 8 Appendix

8.1 Appendix A:Mooney-Rivlin Model

Given below is the fortran 90 subroutine of Mooney-Rivlin model
implemented in Alya-Solidz
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8.2 Appendix B: Neohookean Model

Given below is the fortran 90 subroutine of Neohookean model model
implemented in Alya-Solidz
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8.3 Appendix C: Derivation of anisotropic part of
tangent constitutive matrix Cf of Holzaphel model

(Note that the derivation is performed for just one set of fibres, for the
second set of fibre the derivation is similar. From here onward a01,a02
will be referred as a0i)

The anisotropic strain energy function for the Holzaphel model is pre-
sented as follow:

Ψaniso(Īi) = af
2bf

∑
i=4,6

[exp[bf (Īi − 1)2]− 1] (c.1)

The corresponding Second Piola Kricoff stress which is the derivative of
equation c.1 with respect to Right Green Cauchy tensor C is as follow.

S̄f = 2Ψaniso(Īi)
∂C

= 2ψaniso
∂Īi
∂C

(c.2)

S̄f = 2J− 2
3ψαDev(a0 ⊗ a0)

Where

∂Īi
∂C

= ∂Īi

∂C̄
: ∂C̄
∂C

= J− 2
3 (a0i ⊗ a0i −

1
3 ĪiC̄

−1) (c.3)

= J− 2
3Dev(a0i ⊗ a0i)

Dev(•) = (•)− (1
3)[(•) : C̄]C̄−1

Anisotropic part of tangent constitutive matrix C̄aniso is the derivative
of equation c.2 , shown as follow:

C̄aniso = 2∂S̄f
∂C

(c.4)

To calculate anisotropic part of the tangent constitutive matrix C̄aniso,
following relations are required , which can be calculated with principles
of tensor calculus.

∂Dev(a0i ⊗ a0i)
∂C

= −1
3[C−1 ⊗Dev(a0i ⊗ a0i) (c.5)

−J
2
3 Īi(C−1 �C−1 − 1

3C−1 ⊗C−1)]
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−(C−1 � C−1)ijkl = −1
2(C−1

ik C
−1
jl + C−1

jk C
−1
il ) =

∂C−1
ij

∂C−1
kl

(c.6)

∂J
∂C

= 1
2JC−1,

∂J̄
∂C

= J− 2
3 (I− 1

3C̄⊗ C̄−1) (c.7)

(I)ijkl = (δikδjl + δilδjk)
2

(c.8)

Now using equation (c.2) and the chain rule the anisotropic elasticity
¯Caniso, follows from the definition (c.4) as

C̄aniso = 4[ψαDev(a0i ⊗ a0i)⊗
∂J− 2

3

∂C
+ J− 2

3 (c.9)

Dev(a0i ⊗ a0i)⊗
∂ψα

∂C
+ J− 2

3ψα
Dev(a0i ⊗ a0i)

∂C
] (c.10)

Now the equations (c.5), (c.6) and (c.7) are plugged in the equation (c.8)
and following formulation of C̄aniso is obtained.

C̄aniso = 4{1
3ψ

α[Īi(C−1 �C−1 − 1
3C−1 ⊗C−1)] (c.11)

−J− 2
3Dev(a0i ⊗ a0i)⊗C−1

−J− 2
3 C−1 ⊗Dev(a0i ⊗ a0i)]

+J− 4
3ψααDev(a0i ⊗ a0i)⊗Dev(a0i ⊗ a0i)}

Where

ψαα = d2 ψaniso

d Īi d Īi
= af [1 + 2bf (Īi − 1)2]exp[(Īi − 1)2]

8.4 Appendix D: Holzaphel Model for arterial walls
Given below is the fortran 90 subroutine of Neohookean model model

implemented in Alya-Solidz
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