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Abstract

Virtual Element Method (VEM) is a recent numerical technique which is a generalisation of the Fi-
nite Element Method on polygons and polyhedrons. Among other things, general shaped elements
allow the very efficient meshing of complicated domains, such as those arising many engineering
problems such as in poromechanics, fluid-structure interaction, crack propagation and wave scat-
tering to name a few. While the conventional finite element method still enjoys its status as the
method of choice for engineers, the handling of complicated geometries remains one of its difficulties
for such problems. In response to this, several methods have been recently introduced which allow
for very general polygonal elements, including the polygonal finite element method (PFEM), dis-
continuous Galerkin method and the Virtual element method. The difference between the various
Finite Element Methods and the Virtual Element Method is that VEM admits non-polynomial
basis functions which are not required to be computed in practice. Instead, the degrees of freedom
are chosen so that the stiffness matrix is computed exactly without explicitly knowing the basis
functions. This enables us to work with more general meshes than that of the Finite Element
Method.

The project focuses mainly on the theory and implementation of the Virtual Element Method,
to a variety of problems. Preliminary apriori error analysis was studied for the poisson problem.
A hybrid combination of Finite element method and Virtual element method was implemented in
order to test compatibility when there exists traditional finite elements and non traditional virtual
elements in the same mesh to reduce computational costs in large scale problems. A toolbox
was developed in matlab to generate efficient and sufficiently high order gauss quadrature rules
for numerical integration on arbitrary polygons with least number of gauss points. A number of
problems were solved in 2D including the fourth order nonlinear Rosenau equation with a mixed
approach. A 3D virtual element solver was implemented for generalized polyhedrons with any
number of faces and any number of sides on any face to solve the poisson problem and an order
of convergence analysis was performed. Alternative polyhedral mesh generation methods were
explored because of the absence of robust commercial polyhedral mesh generators by finding the
dual of a simply connected graph (Tetrahedral mesh) using METIS (METIS PartMeshDual) and
openFOAM (polyDualMesh). XML ascii vtk paraview format was used for visualization of general
polyhedrons. Tools like MATLAB, Fortran90 are used in conducting all the numerical experiments
on the Virtual Element Methods.
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Chapter 1

Basic Principles of Virtual
Element method

In this report we introduce Virtual element method for some simple elliptic and parabolic problems
and study the basic properties of the method. The novelty of the virtual element method is to
take the space and degrees of freedom in such a way that the elementary stiffness matrices can be
computed without actually computing these non-polynomial functions, but just using the degrees
of freedom. In doing so, we can easily deal with complicated element geometries and higher order
continuity requirements.

The virtual element method can be viewed as an extension of Finite element methods to general
polygonal and polyhedral elements. The strongest aspects in favour of the virtual element method
are its firm mathematical foundations, simplicity in implementation, and efficiency and accuracy
in computations. In particular, the virtual element method permits the analysis to be performed
without using any numerical quadrature formulas. It also admits the decomposition of the domain
into non overlapping elements that can be of very general shape(convex or non convex polygons).

1.1 Two Dimensional Elliptic Problem

Consider the model problem of the poisson equation in two dimensions:

−∆u = f in Ω

u = 0 on Γ

where Ω is a polygonal domain in R2 and f ∈ L2(Ω).

1.1.1 Continuous Problem

The weak formulation is given by

find u ∈ V := H1
0 (Ω) such that

a(u, v) =

∫
Ω

∇u.∇v dΩ =

∫
Ω

fv dΩ = (f, v)
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The weak form follows these properties.

• a(u, v) is symmetric i.e a(u, v) = a(v, u)

• a(u, v) is continuous/bounded i.e

a(u, v) =

∫
Ω

∇u.∇v ≤
(∫

Ω

|∇u|2)1/2

)(∫
Ω

|∇v|2)1/2

)
≤ γ|u|1|v|1

• a(u, v) is coervive i.e

a(v, v) =

∫
Ω

|∇v|2 = |v|21 ≥ α‖v‖21

• (f, v) is bounded
(f, v) ≤ c‖v‖1

By lax Milligram theorem, it is well known that the problem has a unique solution.

1.1.2 Discrete Problem

Let τh be a decomposition of Ω into elements K, and εh be the set of edges e of τh. Let h be the
maximum of all diameters of the elements of τh. The bilinear form a(u, v) and norm can be written
as

a(u, v) =
∑
K∈τh

aK(u, v) ∀u, v ∈ V

|v|1 =

( ∑
K∈τh

|v|21,K
)1/2

∀v ∈ V

The broken sobolev space and the broken semi-norm can be defined as

H ′(τh) = {v ∈ L2(Ω) : v|K ∈ H1(K),∀K ∈ τh}

|v|1,h =

(∑
K

‖∇v‖20,K
)1/2

For each h, we assume

• Vh ⊂ V = H1
0 (Ω)

• A symmetric bilinear form ah such that ah(u, v) =
∑
K a

K
h (u, v) ∀u, v ∈ Vh

• fh ∈ V ′h where V ′h is the dual space of Vh and contains all the bounded linear functions. This
implies that fh is bounded.
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The discrete problem is

find uh ∈ Vh such that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh

such that good approximation properties also hold i.e

‖u− uh‖r ≤ chmin(k+1,s)−r|u|s (1.1)

We assume certain properties on ah(uh, vh) for the convergence.

• k - consistency : For all p ∈ Pk(K) and for all vh ∈ Vh|K , we have

aKh (p, vh) = aK(p, vh) (1.2)

• Stability: There exists constants α∗ and α∗ such that ∀vh ∈ Vh|K

α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh) (1.3)

Proposition 1.1.1 Continuity of the discrete bilinear form.

aKh (uh, vh) ≤ |uh|1,K |vh|1,K ∀uh, vh ∈ Vh|K (1.4)

Proof: Let u, v ∈ Vh|K . Now for any λ ∈ R we have

aKh (u− λv, u− λv) = aKh (u, u)− 2λaKh (u, v) + λ2aKh (v, v)

Set λ =
aKh (u, v)

aKh (v, v)

=⇒ aKh (u, u)− aKh (u, v)2

aKh (v, v)

0 ≤ aKh (u− λv, u− λv) = aKh (u, u)− aKh (u, v)2

aKh (v, v)

=⇒ ≤
√
aKh (u, u)

√
aKh (v, v)

≤
√
α∗aK(u, u)

√
α∗aK(v, v)

= α∗|uh|1,K |vh|1,K
=⇒ aKh (uh, vh) ≤ |uh|1,K |vh|1,K

Theorem 1.1.1 Under the assumptions of symmetry, stability, k- consistency, continuity of ah(uh, vh)
and boundedness of fh, there exixts a unique uh ∈ Vh satisfying the discrete variational problem.
Further, for the approximation uI and uπ, there exists a constant c such that

|u− uh|1 ≤ c
(
|u− uI |1 + |u− uπ|1,h + δh

)
(1.5)

where δh satisfies
(f, v)− 〈fh, vh〉 ≤ δh|vh|1 (1.6)
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Proof: Let θ = uh − uI

α∗|θ|21 = α∗a(θ, θ) ≤ ah(θ, θ) =
∑
K

aKh (θ, θ)

=
∑
K

aKh (uj, θ)− aKh (uI , θ)

= 〈fh, θ〉 −
∑
K

aKh (uI , θ)

=⇒ 〈fh, θ〉 −
∑
K

aKh (uI , θ)− aKh (uπ, θ) + aKh (uπ, θ)

= 〈fh, θ〉 −
∑
K

aKh (uI − uπ, θ) + aK(uπ, θ)

= 〈fh, θ〉 −
∑
K

aKh (uI − uπ, θ) + aK(uπ, θ)− aK(u, θ) + aK(u, θ)

= 〈fh, θ〉 − (f, θ)−
∑
K

aKh (uI − uπ, θ) + aK(uπ − u, θ)

≤ δh|θ|1 −
∑
K

c
(
|uI − uπ|1,K + |uπ − u|1,K

)
|θ|1,K

α∗|θ|21 ≤
(
δh + α∗|uI − uπ|1,h + α∗|uπ − u|1,h

)
|θ|1

|θ|1 ≤ c
(
|uI − uπ + u− u|1,h + |uπ − u|1,h + δh

)
|θ|1 ≤ c

(
|uI − u|1 + |uπ − u|1,h + δh

)
|u− uh|1 ≤ c

(
|uI − u|1 + |uπ − u|1,h + δh

)
1.1.3 The Virtual element space

Let a simple polygon K with n edges , Barycenter ~xK and diameter hK . Let us define for k ≥ 1

Bk(∂K) = {v ∈ C0(∂K) : v|e ∈ Pk(e),∀e ∈ ∂K} (1.7)

Now, the finite dimensional space VK,k is defined as

VK,k = {v ∈ H1(K); v ∈ Bk(∂K),∆v ∈ Pk−2(K)} (1.8)

For k = 1
v|e ∈ P1(e)∀e ∈ ∂K

dim(VK,k=1) = number of vertices of the element K.
For k = 2

v|e ∈ P2(e)∀e ∈ ∂K
∆v ∈ P0

i.e ∆v = c in K
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(a) k = 1 (b) k = 2 (c) k = 3

dim(VK,k=2) = number of vertices of the element K + number of midpoints on edges of element K
+ one volume moment of element K.

For general k

v|e ∈ Pk(e)∀e ∈ ∂K
∆v ∈ Pk−2

dim(VK,k) = Nv + (k − 1)Nv +
k(k − 1)

2

where Nv is the number of vertices of the element K.
The degrees of freedom of VK,k are given by

• The value of vh at the vertices of K

• On each edge e, the value of vh at the k−1 internal points of the (k+1) -point Gauss-Lobatto
quadrature rule on e

• The moments up to order k − 2 of vh in K

1

|K|

∫
K

vhmα, α = 1 . . . nk−2

where nk−2 = dim(Pk−2(K)) and the scaled monomials mα are defined as

mα :=

(
~x− ~xk
hk

)α
where |α| = α1 + α2.

Under the assumption that the domain Ω is partitioned into non-overlapping polygons, there exists
a γ such that for all hk, there exists a ball of radius ≥ γhk which can be inscribed in the polygon.
For any interpolant uI ∈ VK,k and uπ ∈ Pk the following error estimates can be proved as shown
in [5].

‖u− uπ‖K + hk|u− uπ|1,K ≤ chsk|u|s,k some 1 ≤ s ≤ k + 1 (1.9)

‖u− uI‖K + hk|u− uI |1,K ≤ chsk|u|s,k some 1 ≤ s ≤ k + 1 (1.10)
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The global virtual element space Vh can be constructed as

Vh = {v ∈ V |v ∈ Bk(∂K) and ∆v|K ∈ Pk−2(K)∀K ∈ τh} (1.11)

dim(Vh) = NV +NE(k − 1) +NP
k(k − 1)

2
(1.12)

where NV is the number of vertices, NE is the number of edges and NP is the number of elements
in the domain Ω. The global degrees of freedom are the values of vh at the vertices, the values at
the midpoint of the edges and the volume moments for each element in the domain.

1.1.4 Construction of the Approximate Bilinear form

Consider the bilinear form

aK(p, v) =

∫
K

∇p.∇vdK = −
∫
K

∆pvdK +

∫
∂K

∂p

∂n
vds p ∈ Pk(K), v ∈ VK,k (1.13)

∆p ∈ Pk−2(K)

∂p

∂n
∈ Pk−1(e)

which can be computed from the degrees of freedom and from the gauss lobotto quadrature points
on the edge respectively. Hence, the integral can be computed.
To compute the stiffness matrix, we must define a suitable projector Π∇ : Vh → Pk.
Let us define a projector Π∇K,k : VK,k → Pk(K) as a solution of

aK(Π∇K,kvh, p) = aK(v, p ∀p ∈ Pk(K)) (1.14)

P0(Π∇K,kvh) = P0(vh) (1.15)

where

P0(ϕ) =
1

Nv

Nv∑
i=1

ϕ(Vi) for k = 1

P0(ϕ) =

∫
K
ϕdK

|K|
for k ≥ 2

We can easily observe that Π∇K,kpk = pk when pk ∈ Pk(K). We know that, aK(u, v) = (∇u,∇v)K .
Then

u = Π∇K,ku+ (I −Π∇K,k)u

∇u = ∇Π∇K,ku+∇(I −Π∇K,k)u

(∇u,∇v)K = (∇Π∇K,ku,∇Π∇K,kv) + (∇(I −Π∇K,k)u,∇Π∇K,kv)

+ (∇Π∇K,ku,∇(I −Π∇K,k)v) + (∇(I −Π∇K,k)u,∇(I −Π∇K,k)v)
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The second and third term in the above equation is equal to 0 from the defination of the Π∇K,k
operator. Hence,

(∇u,∇v)K = (∇Π∇K,ku,∇Π∇K,kv) + (∇(I −Π∇K,k)u,∇(I −Π∇K,k)v) (1.16)

The first term of the above equation is called the consistency term and the second term is called
the stability term.

aKh = [consistency term] + [stability term]

The consitency term can be computed exacty while the stability term has to be approximated with
a suitable symmetric positive definite bilinear form SK(u, v) such that the k-consitency and the
stability assumptions of akh(u, v) is satisfied.
k - consistency :

aKh (p, v) = aK(p, v) ∀p ∈ Pk(K) (1.17)

Proof:

aKh (p, v) = ak(Π∇K,kp,Π
∇
K,kv) + SK(p, v)

SK(p, v) = 0 since Π∇K,kp = p

aKh (p, v) = aK(p,Π∇K,kv)

= aK(p, v) By the defination of Π∇K,k

Stability :
α∗a

K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh) (1.18)

Proof: Let then SK(u, v) be any positive definite symmetric bilinear form to be chosen to verify

c0a
K(v, v) ≤ SK(v, v) ≤ c1aK(v, v) ∀v ∈ VK,k with Π∇K,kv = 0 (1.19)

aKh (u, v) = aK(Π∇K,ku,Π
∇
K,kv) + SK(u−Π∇K,ku, v −Π∇K,kv) ∀u, v ∈ VK,k

aK(u, v) = aK(Π∇K,ku,Π
∇
K,kv) + aK(u−Π∇K,ku, v −Π∇K,kv) ∀u, v ∈ VK,k

aKh (v, v) ≤ aK(Π∇K,kv,Π
∇
K,kv) + c1a

K(u−Π∇K,kv, v −Π∇K,kv)

≤ max{1, c1}(aK(Π∇K,kv,Π
∇
K,kv) + aK(u−Π∇K,kv, v −Π∇K,kv))

= α∗ak(v, v)

Similarly,

aKh (v, v) ≥ min{1, c0}(aK(Π∇K,kv,Π
∇
K,kv) + aK(u−Π∇K,kv, v −Π∇K,kv))

= α∗a
K(v, v)

In order to compute the local stiffness matrix, we need to compute the stability and the con-
sitency term numerically. The key aspect in this process is to estimate the projector Π∇ given by
the orthogonality condition,(

∇pk,∇
(
Π∇vh − vh

))
0,K

= 0 ∀pk ∈ Pk(K) (1.20)
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It can be seen that the above condition defines Π∇vh only upto a constant. Hence another projector
P0 is applied onto Π∇vh. P0 : Vk(K)→ P0(K)

P0(Π∇vh − vh) = 0 (1.21)

Since mα is a basis for Pk(K), substituting mα in (1.20) we get(
∇mα,∇

(
Π∇vh − vh

))
0,K

= 0 α = 1 . . . nk (1.22)

Since Π∇vh belongs to Pk, it can be written as

Π∇vh =

nk∑
β=1

sβmβ (1.23)

Substituting (1.23) in (1.20) we get,

nk∑
β=1

sβ(∇mα,∇mβ)0,E = (∇mα,∇vh)0,E , α = 1 . . . nk (1.24)

To eliminate the indeterminacy of the above equation
nk∑
β=1

sβP0mβ = P0vh (1.25)

Together the equations (1.24) and (1.25) can be written in a compact form as

G s = b (1.26)

For each basis function ϕi, we define sαi as the coefficients of Π∇ϕi in the basis of mα

Π∇ϕi =

nk∑
α=1

sαi mα, i = 1 . . . Ndof (1.27)

The above equation in the compact form can be written as

s(i) = G−1b(i) (1.28)

In the matrix representation Π∇∗ of the operator Π∇ is given by (Π∇∗ )αi = sαi , that is ,

Π∇∗ = G−1B (1.29)

Let

Π∇ϕi =

Ndof∑
j=1

πjiϕj i = 1 . . . Ndof (1.30)

πji = dofj(Π
∇ϕi) (1.31)

πji =

nk∑
α=1

sαi dofj(mα) (1.32)

Diα := dofi(mα) (1.33)

πji =

nk∑
α=1

(G−1B)αiDjα = (DG−1B)ji (1.34)

=⇒ Π∇ = DG−1B = DΠ∇∗ (1.35)
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The Virtual element method local stiffness matric Kh
K for a polygon K can be written as

(KK)ij = (∇Π∇K,kϕi,∇Π∇K,kϕj) + (∇(I −Π∇K,k)ϕi,∇(I −Π∇K,k)ϕj) (1.36)

(∇(I −Π∇K,k)ϕi,∇(I −Π∇K,k)ϕj)0,K ≈
Ndof∑
r=1

dofr((I −Π∇)ϕi)dofr((I −Π∇)ϕj) (1.37)

The matrix expression for the VEM local stiffness matix is given by

Kh
K = (Π∇∗ )T G̃(Π∇∗ ) + (I −Π∇)T (I −Π∇) (1.38)

1.1.5 Construction of the Load term

The load term is approximated by an L2 projector. Let,

〈fh, vh〉 =
∑
K

∫
K

fhvhdK (1.39)

Let fh = PKk−2f where (PKk−2f, pk−2) = (f, pk−2) ∀pk−2 ∈ Pk−2 (1.40)

=⇒ 〈fh, vh〉 =
∑
K

∫
K

PKk−2fvh =
∑
K

∫
K

PKk−2fP
K
k−2vh

=
∑
K

∫
K

fPKk−2vh

〈fh, vh〉 − (f, vh) =
∑
K

∫
K

fhvh −
∫
K

fvh

=
∑
K

∑
K

PKk−2fvh −
∫
K

fvh +

∫
K

PKk−2fP
K
0 vh −

∫
K

PKk−2fP
K
0 vh

=
∑
K

∫
K

(PKk−2f − f)(vh − PK0 vh)

≤
∑
K

‖PKk−2f − f‖0,K‖PK0 vh − vh‖0,K

≤
∑
K

chkK − 1|f |k−1,KchK |vh|1,K

≤ chkK |f |k−1,K |vh|1,K

≤ chk
(∑

K

|f |k−1,K

)
|vh|1

≤ δ|vh|1

9



1.2 Two Dimensional Parabolic Problem

Consider the model problem of a parabolic heat equation in two dimensions given by

ut −∆u = f in Ω for t ∈ (0, T )

u = 0 on Γ = ∂Ω for ∈ (0, T )

u(0) = u0 in Ω

where Ω is a polygonal domain in R2, f ∈ L2(Ω× (0, T )) represents a source term and u0 ∈ L2(Ω)
is the initial data. u represents the unknown variable of interest and ut denotes its time derivative.

The weak formulation of the problem is given by

find u ∈ L2(0, T,H1
0 (Ω)) with ut ∈ L2(0, T,H−1(Ω)), such that

(ut(t), v) + a(u(t, v)) = 〈f(t), v〉 ∀v ∈ H1
0 (Ω), t in (0, T )

The solution to the parabolic problem is given by

u(t) =

Ndof∑
i=1

αi(t)ϕi (1.41)

Substituting (1.41) into the weak form we get

[M ]{dα
dt
}+ [K]{α} = {F} (1.42)

where

[K]ij = (∇ϕi,∇ϕj) = (∇Π∇K,kϕi,∇Π∇K,kϕj) + (∇(I −Π∇K,k)ϕi,∇(I −Π∇K,k)ϕj)

[M ]ij = (ϕi, ϕj) = (Π0
K,kϕi,Π

0
K,kϕj) + ((I −Π0

K,k)ϕi, (I −Π0
K,k)ϕj)

A backward euler scheme is used to discretize the temporal term, we get

[M ]{α
n+1 − αn

∆t
}+ [K]{αn+1} = ∆t{Fn+1} (1.43)

[M ]{αn+1} − [M ]{αn}+ ∆t[K]{αn+1} = ∆t{Fn+1}

([M ] + ∆t[K]){αn+1} = [M ]{αn}+ ∆t{Fn+1}

{αn+1} = ([M ] + ∆t[K])−1([M ]{αn}+ ∆t{Fn+1}) (1.44)

The analysis of the parabolic problem, virtual element space construction follows similarly to the
elliptic problem discussed earlier in this chapter.
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1.2.1 Construction of the Mass Matrix

As seen in the construction of the load term, the L2 projector is defined as

(pk,Π
0vh − vh)0,K = 0 p ∈ Pk(K) and vh ∈ Vk(K) (1.45)

Proceeding as before, we define the matrix

Hαβ := (mα,mβ)0,K α, β = 1 . . . nk (1.46)

Π0vh =

nk∑
α=1

tαmα (1.47)

Then, mimicking what we did for the operator Π∇, we define the nk vectors t and c with components
respectively

cα := (mα, vh)0,K (1.48)

Hence, we have

Ht = c

t = H−1c

Since (1.48) is not computable for the monomials mα of degree k and k − 1, we replace it by

cα := (mα,Π
∇vh)0,K (1.49)

Now we have

[MK ]ij =

∫
K

ϕiϕj =

∫
K

Π0ϕiΠ
0ϕj +

∫
K

(I −Π0)ϕi(I −Π0)ϕj (1.50)

As before, the first term ensures consistency and must be computed exactly, while the second one
guarantees stability and can be spproximated as,

∫
K

(I −Π0)ϕi(I −Π0)ϕj ≈ |K|
Ndof∑
r=1

dofr((I −Π0)ϕi)dofr((I −Π0)ϕj) (1.51)

The final formula for the local VEM matrix is given by

Mh
K = CTH−1C + |K|(I −Π0)T (I −Π0) (1.52)

11



Chapter 2

Numerical Experiments

2.1 2D Elliptic Problem - Poisson Equation

We consider the Poisson equation with homogeneous boundary condition

−∆u = f in Ω (2.1)

u = 0 on Γ (2.2)

We take a unit square Ω = (0, 1) × (0, 1) and f(x, y) = 2π2 sin(πx) sin(πy). The exact solution of
this equation is given by u(x, y) = sin(πx) sin(πy). The solution of the Poisson equation is shown
in Figure 2.2. The voronoi meshes are generated using PolyMesher[2]. The non-convex and the
triangular meshes were a part of the code “The Virtual Element Method in 50 lines of MATLAB”
by Oliver Sutton [7].
As we see that the solution is obtained on much general meshes. Optimal error estimates in the
H1 and L2 norm are proved for the Poisson equation in [5], that is

‖u− uh‖ ≤ Chk+1|u|k+1 (2.3)

‖u− uh‖1 ≤ Chk|u|k+1 (2.4)

To this end, we mesh the domain using squares and conduct numerical experiments for k = 2,
although much general meshes can work as well. The results are tabulated below.

h ‖u− uh‖L∞ p
0.10000 0.0083340 -
0.05000 0.0027232 1.6137
0.02500 0.0007053 1.9484
0.01250 0.0002030 1.7966

Table 2.1: Table illustrating the order of convergence(≈ 2) of VEM with k = 1 on smoothed voronoi
meshes for poisson equation.
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(a) Non-convex mesh

(b) Voronoi mesh

2



(a) Regular triangular mesh

Figure 2.2: Approximate solution of the Poisson equation on different meshes for k = 1

h ‖u− uh‖L∞ p
0.10000 0.0029135 -
0.06667 0.0005799 3.9809
0.05000 0.0001866 3.9405
0.04000 0.0000763 4.0053

Table 2.2: Table illustrating the order of convergence(≈ 4) of VEM with k = 2 for poisson equation.

Expected optimal order of 2 of the L infinity norm of the error was obtained by order of
convergence analysis of the first order virtual element method of successfully refined smoothed
voronoi polygonal meshes. Super convergent order of 4 was obtained of the L infinity norm of the
error for the second order virtual element method of successfully refined square meshes.

2.2 2D Parabolic Problem - transient heat conduction

In this subsection, we quickly summarize the results of Virtual Element Method for Parabolic type
PDE.

ut −∆u = f(x, y, t) in Ω× (0, T ]

u(x, 0) = u0(x) in Ω

u = 0 on Γ

A detailed analysis of the method including optimal error estimates have been proved in [3]. Here,
we mesh the unit square domain with square elements. The source function f(x, y, t) is chosen so
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that the exact solution is given by u(x, y, t) = e−t sin(πx) sin(πy). A backward Euler method was
employed to discretize the temporal direction. The results are summarized in table 2.3.

h ‖u− uh‖L∞ p
0.25 0.039097 -
0.125 0.005303 2.8822
0.0625 0.0006655 2.9943

Table 2.3: Order of convergence analysis for VEM with k = 2 for transient heat conduction equation.
∆t ≈ h3 and T = 1s

2.3 2D Non-linear 4th order problem

The Rosenau equation is an example of a nonlinear partial differential equation, which governs the
dynamics of dense discrete systems and models wave propagation in nonlinear dispersive media.

We consider the two dimensional Rosenau equation,

ut + ∆2ut = ∇. ~f(u) in (x, y, t) ∈ Ω× (0, T ]

u(x, y, 0) = u0(x, y)

u = 0 on Γ

∆u = 0 on Γ

where Ω ⊂ R2 and ~f(u) = (f1(u), f2(u)) is a sufficiently smooth function from R to R2. Generally

fj(u) =

N∑
i=1

ciu
pi+1

pi + 1
,

ci ∈ R and pi is a positive real number. We first split the problem into two second order equations
as follows.
Setting −∆u = v, and using the boundary conditions, we obtain the problem :

ut −∆vt = ∇. ~f(u) in (x, y, t) ∈ Ω× (0, T ]

−∆u = v

u(x, y, 0) = u0(x, y)

u = 0 on Γ

v = 0 on Γ

Then we apply C0 - piecewise elements for approximating both u and v. The weak formulation of
the problem reads:

Find {u, v} : (0, T ]→ H1
0 (Ω)×H1

0 (Ω) such that

(ut, χ) + a (vt, χ) = (∇. ~f(u), χ), for all χ ∈ H1
0 (Ω), (2.5)

a(u, ϕ) = (v, ϕ), for all ϕ ∈ H1
0 (Ω), (2.6)

u(0) = u0(x). (2.7)
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where (., .) denotes the standard L2-innerproduct and a(u, v) = (∇u,∇v).
We rewrite the convective term as∫

Ω

∇. ~f(u)χdx =

∫
Ω

(~β(u).∇u)χ dx,

where βi(u) = f ′i(u). Defining the local component of the convective term

bK(u, χ; w) =

∫
K

(~β(w).∇u)χ dx.

We define an approximation bKh of the convective part bK as

bKh (u, χ; w) =

∫
K

(
~β(Π0

K,kw).∇(Π∇K,ku)
)

(Π0
K,kχ) dx

It can be shown that bKh is stable and k-consistent to an order which is more than what we require
for optimality.
We consider the following Model Problem

ut + ∆2ut = ∇. ~f(u) + g(x, y, t) in Ω× (0, T ]

u(x, y, 0) = 0

u = 0 on ∂Ω

where ~f(u) = (u2 − u, u2 − u) and g(x, t) is such that the exact solution is given by u(x, y, t) =
t sin(π x) sin(π y).

(Rosenau - u) (Rosenau - v)
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k = 1
N h ‖u− uh‖L∞ ‖v − vh‖L∞ ooc u ooc v
10 0.10000 0.00366033 0.1455987 - -
15 0.06667 0.00193649 0.0745702 1.5702 1.6502
20 0.05000 0.00114848 0.0440943 1.8160 1.8263
25 0.04000 0.00073454 0.0283913 2.0029 1.9729
30 0.03333 0.00050403 0.0197122 2.0656 2.0010

k = 2
N h ‖u− uh‖L∞ ‖v − vh‖L∞ oocu ooc v
10 0.10000 0.09989844 1.9736070 - -
15 0.06667 0.02929570 0.5784882 3.0254 3.0266
20 0.05000 0.01249712 0.2467182 2.9614 2.9621
25 0.04000 0.00637409 0.1258414 3.0171 3.0170
30 0.03333 0.00370326 0.0731038 2.9783 2.9790

Table 2.4: Order of convergence analysis for VEM for Rosenau equation on square meshes.

Order of convergence of u Order of convergence of v

2.4 2D Hybrid Finite element - Virtual element approach

It is clear although the virtual element method has its clear advantages over the traditional finite
element method, it is considerably more expensive to compute the element stiffness matrices in Vir-
tual element method compared to finite element method. A hybrid combination of Finite element
method and Virtual element method was implemented in order to test compatibility when there
exists traditional finite elements and non traditional virtual elements in the same mesh to reduce
computational costs in large scale problems. In simpler terms, problems were solved on meshes with
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(a) Triangle - Square Hybrid

Figure 2.3: Approximate solution of the Poisson equation on Triangle and 4 noded element mesh
using Hybrid approach for k = 1

different kinds of elements. The elemental matrices of simpler traditional finite element type ele-
ments were computed using the finite element method and the elemental matrices of more complex
polygonal elements were calculated by virtual element method. This reduces the computational
costs greatly in large scale problems.

This is possible because of the way the virtual element space has been constructed. Since we
are using conforming version of virtual element method and force elemental continuity over edges
and faces and choosing the test function in such a way that they are polynomials on the edges
allows us to seamlessly use finite element method and virtual element method in elements that
are neighboring each other. The error estimates are also optimal because of individual optimal
estimates for both FEM and VEM in corresponding elements.

In the figures, the elemental matrices of the triangular elements were computed using finite
element formulation and square (4 noded) and rectangular (6 noded) elements were computed
using virtual element formulation. Successful refinement and an order of convergence study for
both the meshes were done and optimal error order was obtained. Note that this improvement
allows us to handle hanging nodes which is impossible with traditional conforming finite element
methods.
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(a) Triangle - Rectangle Hybrid

Figure 2.4: Approximate solution of the Poisson equation on Triangle and 6 noded element mesh
using Hybrid approach for k = 1

(a) Triangle - Square Hybrid

Figure 2.5: Approximate solution of the Poisson equation on different meshes using Hybrid approach
for k = 2
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2.5 2D PolyGauss - Numerical Quadrature on polygons

The most expensive part of computing the elemental matrices using the Virtual element formulation
is the repeated numerical integration on arbitrary polygons. Numerical integration over arbiraty
polygons can be done easily by decomposing the polygon into several triangles about its centroid or
any interior point inside the polygon in case of integration over non-convex polygons. This method
is accurate but inefficient because of the use of too many gauss points on each decomposed triangle
of the polygon. Hence, it is useful to calculate quadrature points for polygons.

A quadrature is a formula of the form∫
Ω

w(x)f(x)dx ≈
n∑
i=1

wif(xi)

where Ω is the designated integration region, f is an integrand defined on Ω and w is the weight
function. w(x) = 1 is used for the quadratures designed here. The points xi are called quadrature
nodes, and wi are the quadrature weights. Typically, quadratures are designed so that the above
equation is exact for all functions in a pre-selected set. Classical choices of the pre-selected set of
functions include polynomials up to a certain degree, trigonometric functions, and basis functions
of a particular function space defined on Ω.

∫
Ω
w(x)Φ1(x)dx∫

Ω
w(x)Φ2(x)dx

...∫
Ω
w(x)Φm(x)dx

 =


Φ1(x1) Φ1(x2) . . . Φ1(xn)
Φ2(x1) Φ2(x2) . . . Φ2(xn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Φm(x1) Φm(x2) . . . Φm(xn)



w1

w2

...
wn


The above system is a nonlinear set of equations where the unknowns are xi and wi. Since the
number of unknowns are more than the number of equations, we have infinitely many solutions.
A random initial guess is assumed with a sufficiently high number of gauss points which ensures
the determinant of the coefficient matrix is nonzero and the nonlinear system of equations is solved
using newton raphson to obtain a set of quadratures and weights that can numerically integrate a
function over Ω exactly. The process is continued by reducing the number of gauss points incre-
mentally until the newton raphson algorithm does not converge to obtain the minimum number of
gauss points and weights that are required to perform the designed numerical integration exactly.
Additional care has to be taken to ensure the positivity of the weights and containment of the
quadrature points inside the domain of integration.

Numerical examples are presented and the obtained quadrature rules are verified and validated
by integrating a function over Ω using the computed quadrature rules and by decomposing the
polygon into triangles and integrating the function over each triangle individually and summing it
and obtained machine level accuracy using the computed quadrature rules compared to the other.
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Computed 4th order accurate quadratures over Pentagon Computed 5th order accurate quadratures over Octagon

QX QY QW QX QY QW

The quadrature rules can be computed efficiently using the above algorithm but cannot be
isogeometrically parameterized on polygons of the same number of sides because the shape functions
on the polygon are not polynomials. The shape functions on arbitrary polygons can be given by
laplace interpolants φi where

φi(p) =
αi(p)∑
j αj(p)

αi(p) =
si(p)

hi(p)
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Laplace interpolants

Because the shape functions are not polynomials but are asymptotic functions, the jacobians of the
transformation is also an asymptotic function which cannot be represented as a linear combination
of the preselected set basis of the quadrature. Hence it is not possible to compute the quadrature
on the master polygon and transform it. Instead for very computationally intensive problems, it
makes sense to compute the quadrature of every polygonal element in the domain beforehand as a
pre-process and use the computed quadrature for every element during every numerical integration.

2.6 3D Elliptic Problem - Poisson equation

We go back to the model poisson problem where this time Ω is a convex polyhedron. We suppose
that we have a decomposition of Ω in a rather general polyhedra. Almost every polyhedron will
be acceptable in the decomposition. The theory discussed in chapter 1 holds for the 3D case. The
3D projectors are computed by individually considering the projectors of individual faces of the
polyhedral. The individual projectors of each face can be computed in 2 ways. The first way is by
assuming a coordinate transformation and computing the 2D projectors of the face by assuming it
as a 2D element and the second way is by computing the face projectors in 3D themselves. Both
methods were explored. The volume and centroid of arbitrary polyhedral elements were computed
numerically by

VE =

∫
E∈Ω

dx

xd =
1

VE

∫
E∈Ω

x dx
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We consider the Poisson equation in 3 dimensions with homogeneous boundary condition

−∆u = f in Ω

u = 0 on Γ

We take a unit cube Ω = (0, 1) × (0, 1) × (0, 1) and f(x, y, z) = 3π2 sin(πx) sin(πy) sin(πz). The
exact solution of this equation is given by u(x, y, z) = sin(πx) sin(πy) sin(πz).

3D VEM Solution - Scatter plot

Mesh with Cube elements
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Mesh with Wedge elements

An order of convergence analysis was performed by successive refinement on cubic mesh and on
the wedge mesh and expected optimal order was obtained.

k = 1
N h ‖u− uh‖L∞ ‖u− uh‖L2 ooc L∞ ooc L2

2 0.86602 0.5876485 0.1038825 - -
4 0.43301 0.2457649 0.0741661 1.2576 0.4861
8 0.21650 0.0756436 0.0257261 1.6999 1.5275
16 0.10825 0.0201026 0.0070390 1.9118 1.8697
32 0.05412 0.0051066 0.0018011 1.9769 1.9664

Table 2.5: Order of convergence analysis for 3D VEM for Poisson equation on cube mesh.

13



Chapter 3

Conclusion

The newly developed Virtual Element method was implemented to solve several problems. The-
oretical results including the consistency of the bilinear forms was discussed. Using this result
optimal error estimates were established. The numerical experiments were carried out primarily in
MATLAB. To generate the Voronoi type meshes in 2D, a software named Polymesher was used.
In addition, custom meshes were written for 2D and 3D cases. A hybrid combination of Finite
element method and Virtual element method was implemented in order to test compatibility when
there exists traditional finite elements and non traditional virtual elements in the same mesh to
reduce computational costs in large scale problems. A toolbox was developed in matlab to generate
efficient and sufficiently high order gauss quadrature rules for numerical integration on arbitrary
polygons with least number of gauss points. A number of problems were solved in 2D including
the fourth order nonlinear Rosenau equation with a mixed approach. A 3D virtual element solver
was implemented for generalized polyhedrons with any number of faces and any number of sides on
any face to solve the poisson problem and an order of convergence analysis was performed. Virtual
Element method although more mathematically and computationally intensive compared to the
Finite element method has its advantages and could be used in tandem with FEM to solve the
problem better.
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