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1 Introduction

The internship was aimed to compare different approximation techniques for
a classical problem in computational mechanics. We Considered the linear
elasticity problem under the assumption of small deformations and small
displacements.

Under the assumption of small deformations and small displacements the
strain tensor is approximated as:

ε(u) = e(u) :=
1

2
(∇u+∇uT ) (1)

The relationship between stress tensor and and strain tensor is known as:

σ = Ae(u) = 2µe(u) + λtr(e(u))Id (2)

where the Lame contstants µ, λ are defined as:

λ :=
Eν

(1 + ν)(1− 2ν)
, µ :=

E

2(1 + ν)

Also we remark that the elasticity tensor exist and is invertible as long
as ν < 1

2
or equivalently λ < ∞. Within this framework we introduce the

compliance tensor A−1 by it’s application to stress tensor we can compute
the strain tensor:

e(u) = A−1σ =
1

2µ
σ − λ

2µ(dλ+ 2µ)
tr(σ)Id (3)
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Let Ω ⊂ Rd, d=2,3 be an open connected domain representing the body
under analysis. The governing equations for the problem of linear elasticity
set in an open connected domain Ω. Let the total boundary of the domain
be defined ∂Ω = ΓN ∪ ΓD i.e boundary is split into Neumann and Dirichlet
boundary.

−∇ · σ = f in Ω

σ = A · e(u) in Ω (4)

σn = g on ΓN

u = 0 on ΓD

2 Pure Displacement Variational formulation

(Primal Formulation)

In pure displacement formulation we express the stress tensor σ in terms
of displacement u using (2) and we seek the displacement field within the
Sobolev space and we define the space as:

V := H−1
0,ΓD(Ω;Rd) = (v ∈ H−1(Ω;Rd : v) = 0 on ΓD

a(u, δu) = F (δu) ∀δu ∈ V

where the bilinear form is defined:

a(u, δu) :=

∫
Ω

Ae(u) : e(δu)dx , F (δu) :=

∫
Ω

f · δudx+

∫
ΓN

g · δuds

The above mentioned is the variational formulation of the displacement
formulation.

3 Mixed Variational Formulations

A major drawback of the pure displacement variational formulation is the
indirect evaluation of the stress tensor which is not computed as part of the
solution of the linear elasticity problem but may only be derived from (2)
via a post-processing of the displacement field u. This issue was resolved by
mixed variational formulations in which the target solution is the pair (σ,u)
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representing respectively the stress and displacement fields. This family of
approaches was first proposed by Reissner and these methods are summarize
as Hellinger-Reissner methods. The stress tensor is sought in a subspace of
H(div,Ω;Sd), in particular stress belong to the space of square-integrable
tensors whose row-wise divergence is square-integrable strongly enforces the
conservation of momentum. Moreover, the symmetry of the stress tensor is
a simplified way of expressing the conservation of angular momentum for the
system under analysis. It is well-known that imposing exactly a conservation
law is not trivial. Hence, strongly enforcing a second conservation law by
requiring the stress tensor to be symmetric is likely to be difficult. Let Md

be the space of dd matrices and Kd be the space of dd skew-symmetric
matrices. We define the spaces V:=L2 (Ω;Rd), Q:=L2(Ω;Kd),Σ := [τ ∈
H(div,Ω;Md) : τn = gonΓN ] and Σ0 := [τ ∈ H(div,Ω;Md) : τn = 0onΓN ]
morpver we introduce the space W:=VxQ and we seek the solution such that
(σ, δσ) ∈ ΣxW

a(σ, δσ) + b(δσ, (u, ν)) = 0 ∀δσ ∈ Σ0

b(σ, (δu, δν)) = F (δu) ∀(δu, δν) ∈ W (5)

The bilinear and linear forms have the following expressions:

a(σ, δσ) :=

∫
Ω

A−1σ : δσdx , b(σ, (δu, δη)) :=

∫
Ω

(∇·σ)·δudx+
1

2µ

∫
Ω

σ : δηdx

F (δu) := −
∫

Ω

f · δudx (6)

4 Results

Freefem was used in order to solve the linear elasticity equation during the
Internship. FreeFem++ is a partial differential equation solver. It has its
own language. freefem scripts can solve multiphysics non linear systems in
2D and 3D. FreeFem++ is written in C++ and the FreeFem++ language is
a C++ idiom.
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Initial Mesh

Figure 1: Geometry and meshed Domain

The domain was chosen as that to be of a tapered beam and the whole
domain was meshed with freefem using triangular elements see Figure 1. The
geometry consist of 3 boundaries, Dirichlet, Neumann and Free. The left side
of beam is Dirichlet, left side of beam is fixed since we are considering the
case of a cantilever beam. Right side of the beam is Neumann and top and
bottom is Free boundary.

Freefem scripts were written and results were analyzed for different test
cases that are shown in the below.

It can be observed that in case 3 since the Poisson’s ratio increases and
exceeds the limit −1 < /nu < 1

2
thus the elastic tensor is no longer invertible

and we obtain an exploded and obsolete result see Figure 4. The case 2 is of
when there is load applied to the right side of the beam. Case 1 is for when
there is no load applied on the beam, i.e. free cantilever beam under action
of no load.

4



Displacement field

(a) Displacement vectors

IsoValue
-0.000452342
0.000226381
0.000678862
0.00113134
0.00158383
0.00203631
0.00248879
0.00294127
0.00339375
0.00384623
0.00429871
0.0047512
0.00520368
0.00565616
0.00610864
0.00656112
0.0070136
0.00746608
0.00791857
0.00904977

Elastic energy

(b) Elastic Energy

Figure 2: Case 1: No load on Beam

(a) Displacement vectors (b) Elastic Energy

Figure 3: Case 2: Load applied on right side of beam

(a) Displacement vectors (b) Elastic Energy

Figure 4: Case 3: For ν > 1
2
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