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My working environment

Barcelona Supercomputing Center (BSC) is among the largest centers for specialization in high
performance computing. As a master student in the field of computational mechanics interested
to gain knowledge about the most up-to-date methods and tools for better computational
advancements in the current world of research and technology, this center attracted my attention
from the day I was given the chance to visit the whole supercomputing department and be
explained about the job done there.

As a student involved in computational projects, I can appreciate the fast and optimal method
used at BSC to perform research along with the powerful computers available, which fired my
enthusiasm to seek a project there. Hopefully, I got the opportunity to attend one of the lectures
held at UPC given by Mariano Vazquez who is one of the best researchers at BSC. I became
motivated in his field of research, cardiovascular system simulations, and had the the chance
to participate in one of his group projects. I was honored to work under supervision of Jazmin
Aguado Sierra who is also one of the best researchers working in the field of biomechanics.

Working with her on the topic of this internship was one of my best experiences in doing
research. I highly appreciate her collaboration, her knowledge and her guidance whenever
we faced an issue. I believe my working environment at BSC provided a context in which I
could improve my knowledge and achieve the most satisfactory outcomes from my job. As
another critical factor of my working environment, I can mention the eagerness of the general
atmosphere to investigate, learn and move on the cutting edge of the science. This helped me
become even more motivated about the fascinating aspects of knowledge waiting above the
university level of education to be discovered. In addition, this gave me the opportunity to not
only learn interesting up-to-date scientific materials but also put my knowledge, which I gained
from university, into practice.

This, without any doubt, shed light into the dark corners of my knowledge and helped me to
assimilate them deeply and integrate them all and make a consolidated knowledge basis which
will definitely help me in my future career. All in all, I consider my working experience at BSC
as a breakthrough for myself in my field of research.
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Abstract

The fields of medicine and physiology have gone through an enormous increase in the uti-
lization of computer simulations to enhance and understand the basic biology and pathology
which are under investigation in laboratories. The purpose to integrate the biological aspect of
the model with mathematical formulations is to deepen the understanding about normal and
diseased states to translate basic biology knowledge into clinical applications. In this work,
an in-vitro model of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM)
is implemented with reference to a computational model in literature and analyzed for future
inclusion into a finite element code developed at the Barcelona Supercomputing Center called
Alya. From the mathematical point of view, the hiPSC-CM model consists of 18 ordinary dif-
ferential equations which hold for two different cell types namely atrial-like and ventricular-like
phenotype through variating some parameters and equations of the whole model. To achieve
the numerical solution of this system of equations, the choice of explicit Runge-Kutta fourth
order is offered remarking the fact that electrophysiological ion channel models are generally
considered as stiff systems given their fast dynamics. The models are successfully implemented
within MATLAB and FORTRAN to raise the possibility to reproduce cardiac safety laboratory
tests using mathematical models. The main aim of this work is to expand the use of mathe-
matical modeling for advancement of the diagnostic and treatment of the cardiac arrhythmia.

1 Introduction

Recent studies have been focused on deriving the pluripotent stem cells from human tissues,
which is considered as a breakthrough upon health providers. The application of pluripotent
stem cells is appreciated in basic biology, drug development, and transplantation, [1-3].

Many studies have been carried out to develop reliable models to simulate the electrophysi-
ology of pluripotent stem cells and investigate the in-vitro and in-vivo functionality of them.
Most of the developments in this regard are achieved by experimental investigations along with
numerical tools to obtain the desired model characterization, [4-6].

The use of mathematical and computational tools to study the human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CM) provides the context to obtain a deeper under-
standing of cardiomyocytes (CM) function. The significance of this study is appreciated in the
perspective of restoring the functionality and repairing infarcted cardiac areas as well as its
promising role in the in-vitro drug models.

In order to improve the comprehension of hiPSC cardiomyocytes, an outstanding mathemati-
cal model accessible in the literature is taken into consideration, [7]. The mathematical model
has been developed based on the experimental data published in [6] discriminating among two
different records of action potentials namely ventricular-like and atrial-like hiPSC-CMs.

The experimental data in [6] suggests the gating properties of seven ionic currents including
sodium (INa), L-type calcium (ICaL), hyperpolarization-activated pacemaker (If ), transient
outward potassium (Ito), inward rectifier potassium (IK1), and the rapidly and slowly activat-
ing components of delayed rectifier potassium (IKr and IKs, respectively) current. This provides
the possibility of deriving the mathematical formulation for the membrane potential and the
aformentioned ionic currents to study the hiPSC-CM from a mathematical viewpoint.

As mentioned before, the analysis of pluripotent stem cells provides the possibility to analyze
the responsiveness of hiPSC-CM to various drugs. This advancement is highly crucial in the
sense that, as it is an in-vitro model, it clarifies a patient’s drug responsiveness before the drug
is directly injected to the body; therefore, it is considered as a new platform in the field of
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pre-clinical cardiotoxicity and pro-arrhythmia screening of drugs in development, [8].

The aim of this essay is to implement the computational model of hiPSC-CM by means of
numerical methods. The model is being prepared to be implemented into a FEM code, Alya
[9], to be able to reproduce monolayer experimental data published in [8].
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2 Material and method

In order to define the equations describing the model, a schematic diagram of the model depict-
ing cell compartments and major functional components is shown in Figure1, which accounts
for both ventricular-like and atrial-like models. The ion currents, namely IK1, Ito, IKr, IKs,
ICaL, INaK , INa, INaCa, IpCa, If , IbNa, IbCa, and the membrane potential obey the so-called
Hodgkin-Huxley formulation suggesting that the concepts of electronics can be taken advan-
tage of in order to characterize the relations and formulation of the cardiac physiological models
[10]. These models can be treated mathematically as electrical circuits describing the relation
between currents and voltage of the model as following:

C
dV

dt
= −Iion = −(IK1 + Ito + IKr + IKs + ICaL + INaK + INa + INaCa + IpCa + If + IbNa + IbCa)

where C is cell capacitance and V the membrane voltage.

The formulation of currents were derived by Paci et al.[7], using the experimental data recorded
by Ma et al.[6]. The ion currents and consequently the membrane potential, which are of inter-
est in this study, are functions of the membrane potential, V , the reversal potentials, ENa, EK ,
EKs, ECa, Ef , and the gate parameters related to the currents of intracellular and extracellular
ionic concentrations, namely Na+, Ca2+ and K+. All model equations and parameter values
are provided in the Appendix.

Figure 1: Schematic diagram of the model.

In order to implement the model, all the equations should be defined precisely in the desired
coding language. Since the current model is a biological model and the results obtained from
the study are going to be used in the future investigations on human issues, this step should
be given careful consideration due to the complexity of the equations.
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The model generally consists of 18 ordinary differential equations which are coupled. This sys-
tem of equations should be solved using numerical methods such as the Euler method, central
difference or Runge-Kutta method. Considering the fact that electrophysiological cardiac mod-
els are stiff initial value problems (IVP), there are different methods which can be appreciated
to solve the system. In this study, the explicit method of Runge-Kutta fourth order (RK4) has
been chosen since it provides good precision and the convergence of the error to the analytical
solution of the system is generally considered to be satisfactory.

Explicit Runge-Kutta fourth order method is considered as a four-stage method. This method
is among the most popular ones as it is explicit and the solution of each time step can be
computed successively from the previous time step. In addition, this method as it is simple,
it provides great precision and decreases the computational costs for complex problems with
huge equations as in the current case. The formulation of this iterative method is found in the
following:

Yi+1 = Yi + 1
6
(K1 + 2K2 + 2K3 +K4)

where 
K1 = f(Xi, Y i)

K2 = f(Xi + h
2
, Yi + h

2
K1)

K3 = f(Xi + h
2
, Yi + h

2
K2)

K4 = f(Xi + h, Yi + hK3)

and fi describes the formulation of each ordinary differential equation.

A stiff IVP refers to a system in which the time step size should be chosen based on the stability
criteria depending on the method used to solve the problem. In such systems, the step size
chosen provides much more accuracy than what is actually essential. This is because of the
reason that in stiff problems stability takes on more importance than accuracy, [11].

In order to find the stability region for a specific problem, different studies are done and methods
are proposed based on the desired iterative method. For the current complex system of ordinary
differential equations being solved using the method of RK4, finding the stability region requires
high mathematical analysis which is out of the bounds of this study. However, the possibility
still exists for more simple cases as suggested by [12]. Consequently, in the present study, an
interval of time steps is defined and this one-dimensional space is searched randomly to find
the approximate interval in which the stable solution lies.

After finding the stability region and the interval of the time step by which the solution is
assumed to be stable, the accuracy of the solution should be investigated. One of the popular
methods in this regard is to compare the solution obtained from different time steps with a
reference solution on which the problem can rely. This issue becomes complicated when there
is no exact solution to the system. In this case, results can be compared to the solution from
a high-order, variable step implicit solver such as the solvers provided by MATLAB.

The current electrophysiological model is solved using explicit RK4 with different time steps all
of which lie in the stability region and the results are then compared to the solution obtained
by [7] which used the MATLAB command, ode15s, to solve this system of equations. This
comparison is made through defining a relative root mean squared (RRMS) error for the value of
the membrane potential for ventricular-like phenotype. Defining this kind of error is considered
very popular and widely acceptable in literature for cardiac simulations [13]. The formula of
RRMS error is provided as the following:
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RRMS =

√∑n
i=1(V−VRef )2∑n

i=1 V
2
Ref

In addition to calculating the RRMS error, a global error is defined by of the maximum difference
of the reference solution and the solution obtained by explicit RK4 method as the following:

Eglobal = max(abs(VRef − V ))

The error is calculated for 20 values of time step size in the interval defined as [0.6·10−5, 2·10−5]
seconds where the solution to the problem is assumed to be stable. Taking the membrane
potential of ventricular-like cell type into account, the graph showing the values of two types
of errors previously defined is shown in Figure2.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time step size (sec) 10-5

0.06888

0.0689

0.06892

0.06894

0.06896

0.06898

0.069

0.06902

0.06904

0.06906

R
el

at
iv

e 
ro

ot
 m

ea
n 

sq
ua

re
 e

rr
or

RMS Error
Error Bounds

(a) Relative root mean square error

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time step size (sec) 10-5

0.05585

0.0559

0.05595

0.056

0.05605

0.0561

0.05615

0.0562

G
lo

ba
l e

rr
or

Global Error
Error Bounds

(b) Global error

Figure 2: Value of the errors between the reference solution and the solution of explicit RK4

As it can be observed, in both figures depicting the RRMS error, Figure2a, and the global error,
Figure2b, the range between which the error varies can be considered negligible. In order to
get a better insight, an error bound is defined based on the local maximum and minimums of
the curves. The width of this error bound for both types of errors is shown in Table1.

Table 1: Error bounds of membrane potential for ventricular-like phenotype

Error type RRMS Global

Width of error bound 8.3437e-05 1.6554e-04

The global and the RRMS errors are of order 4 and 5, respectively, as suggested by the
table, which means that the given time step size interval is acceptable. In addition, observing
the values of based on the provided figures, the errors suggest 5 to 6% which is a reasonable
value based on the experimental error within the biology laboratories and the data provided
by literature for cardiac simulations.

After implementation of the numerical algorithm and studying the errors, the simulation is per-
formed in 5 seconds with a step size of 10−5 both in MATLAB and FORTRAN. The ventricular-
like action potential is compared to the reference solution and shown in Figure3. As it can be
seen, the results are in great agreement with the reference solution which means the value of
step size chosen for this particular method is reliable for future investigations of ion currents
and potentials for both phenotypes.
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Figure 3: Schematic diagram of the model.

The code has been also implemented in FORTRAN in order to be in accordance with the
coding language used in the simulation code for high performance computational mechanics,
Alya. Coding in MATLAB has been done in order to verify the correctness of the equations
and results obtained from FORTRAN.

Results depicting the behavior of different parameters of interest are provided in the next sec-
tion.
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3 Results and discussion

Figure4 shows the action potential for ventricular-like and atrial-like models. As recent investi-
gations declare, the ventricular-like action potential is more similar to human cardiomyocytes.
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Figure 4: Membrane Potential

This type of action potential basically consists of 5 main phases, phases 0-4, namely known
as rapid upstroke, early repolarization, plateau, late repolarization, and diastole, respectively
[14]. The cycle starts by a sharp increase in a very short time in the potential, Phase 0, the
potential then reaches its peak at around 0.03 (mV) in the steady state, Phase 1. The third
phase, Phase 2, refers to where the potential starts to decrease at a smooth slope. The forth
phase, Phase 3, starts at the point where the potential is experiencing sharp decrease compared
to the previous phase. The cycle finally ends with an increase in the potential referring to the
fifth phase, Phase 4. The phases in a complete cycle for the ventricular-like action potential
are depicted in Figure5 for better understanding.
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Figure 5: Phases in a cardiac cycle
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Comparing the two types of action potential, it can be seen that the potential jumps from
Phase 1 to Phase 2 in a very short time in atrial-like phenotype, Figure4b, which is potentially
the point of difference between atrial-like AP and human CM.

The concentration of two effective ions can be observed in Figure6 and Figure7 for both cell
types.
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Figure 6: Intracellular Na+ concentration
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Figure 7: Intracellular Ca2+ concentration

Observing the graphs, it is noticeable that the model as it is implemented requires a long time
to achieve steady state. As depicted in Figure6, the results have not reached the steady state;
therefore, letting the model run for a lot more than 5 seconds is required. Afterwards, when
reaching the steady state, the ODE values can be employed as initial conditions so that there
is no need to run the model to steady state every time.

The ion currents which are of great interest in cardiac simulations and investigations are plotted
as shown in Figure8 to Figure14.
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Figure 8: Sodium current
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Figure 9: L-type Calcium current
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Figure 10: Hyperpolarization-activated pacemaker current
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Figure 11: Potassium current
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Figure 12: Transient outward potassium current
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Figure 13: Na+/Ca2+ exchanger current
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Figure 14: Na+/K+ pump current

Pluripotent stem cell cardiomyocytes have prominent Na+ currents with activation and
inactivation gating characteristics known as INa, Figure8.

In ventricular-like hiPSC-CMs, the presence of hyperpolarization-activated If promotes phase
4 depolarization and thus contribute to automaticity, Figure10.

Three K+ currents (Ito, IKr, and IKs) have been recorded in hiPSC-CMs with maximum den-
sities and activation properties, Figure11. IKr contributes to repolarization of the cardiac AP,
and block of IKr prolongs the ventricular AP.[14]

As it can be seen in all the ionic currents, the peaks of graphs happen at the same time as the
voltage peak. This is due to the fact that all the ionic currents highly depend on the action
potential in terms of mathematical equations along with the electrophysiological behavior.
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4 Conclusion

Computational modeling is becoming increasingly important in the areas of biology and phys-
iology. The correct implementation of the mathematical models published in the literature is
the key point for further application of such models within large scale predictive simulations.
In the current work, the goal of implementing an electrophysiological hiPSC-CM model from
a printed copy of an 18-ordinary equation model from the paper published by Paci et al. [7]
is achieved. The model is tested and analyzed using MATLAB. Afterwards, it is re-written in
Fortran language for it to be included within the Alya software.

Taking into account the numerical aspect of the study, the explicit fourth order method of
Runge-Kutta is chosen to solve the set of equations. The method is proved to be adequate for
application of the model to further predictive simulations. In order to investigate the accuracy
of solution suggested by the aforementioned method, two kinds of errors are introduced both
of which are of low order from a numerical perspective according to the analysis of the time
step. The results depict a small, negligible error for the employed time step of up to 2 · 10−5

seconds.

Considering the biological aspect of the study, the ventricular-like action potential appears to
be more similar to that of human cardiomyocytes based on the data provided in literature. The
solution of the mathematical equations exactly simulate the five phases of a complete cardiac
cycle. The various ion currents affecting the analysis of hiPSC-CM are taken into consideration
since they play a crucial role in the future analysis of simulations related to the diagnostic and
treatment of cardiac arrhythmia.
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5 Future Perspective

The application of this hiPSC-CM model for bioengineering studies will include the validation
of the mathematical model against a wide range of experimental measurements to optimize its
parameterization for pre-clinical applications. The subsequent step will be to employ computer
simulations to capture the effect of drugs within a large dataset of patient-specific monolayers
to assess drug action and efficacy. HiPSC-CM have been employed in an attempt to restore
muscular function after myocardial infarction. Finite element models can be employed to study
this kind of applications.
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Appendix

The appendix provides the computational models of ventricular-like and atrial-like human in-
duced pluripotent stem cell derived cardiomyocytes.

Extracellular and intracellular ionic concentrations

Nao = 151 (mM)
Ko = 5.4 (mM)
Cao = 1.8 (mM)
Ki = 150 (mM)

Cell size and dimensions

Cm =

{
98.7109e−12 (F ), V entricular − like

78.6671e−12 (F ), Atrial − like

Vc =

{
8800 (um3), V entricular − like

7012 (um3), Atrial − like

Vsr =

{
583.73 (um3), V entricular − like

465.20 (um3), Atrial − like

Maximum conductances and currents

gNa =

{
3.6712302e3 (S/F ), V entricular − like

6.646185e3 (S/F ), Atrial − like

gCaL = 8.635702e−5 (m3/(F × s))

gto =

{
29.9038 (S/F ), V entricular − like

59.8077 (S/F ), Atrial − like

gKr = 29.8667 (S/F )

gKs = 2.041 (S/F )

gK1 =

{
28.1492 (S/F ), V entricular − like

19.1925 (S/F ), Atrial − like

gf = 30.10312 (S/F )

PNaK =

{
1.841424 (A/F ), V entricular − like

1.4731392 (A/F ), Atrial − like

KNaCa =

{
4900 (A/F ), V entricular − like

2450 (A/F ), Atrial − like

arel = 16.464 (mM/s)

brel = 0.25 (mM)
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crel = 8.232 (mM/s)

Vmaxup =

{
0.56064 : (mM/s), V entricular − like

0.22 (mM/s), Atrial − like

Vleak = 4.4444e−4 (1/s)

gpCa = 0.4125 (A/F )

gbNa = 0.9 (S/F )

gbCa = 0.69264 (S/F )

Other constants

Bufc = 0.25 (mM)

Bufsr = 10 (mM)

KBufc = 0.001 (mM)

KBufsr = 0.3 (mM)

Kup = 0.00025 (mM)

KpCa = 0.0005 (mM)

F = 96485.3415 (C/M)

R = 8.314472 (J/(M ×K))

T = 310 (K)

L0 = 0.025 (dimensionless)

Pkna = 0.03 (dimensionless)

Ksat = 0.1 (dimensionless)

KmCa = 1.38 (mM)

KmNai = 87.5 (mM)

α = 2.8571432 (dimensionless)

γ = 0.35 (dimensionless)

KmNa = 40 (mM)

Kmk = 1 (mM)

Initial conditions

h0 = 0.75 (dimensionless)

j0 = 0.75 (dimensionless)
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m0 = 0 (dimensionless)

d0 = 0 (dimensionless)

fCa0 = 1 (dimensionless)

f1,0 = 1 (dimensionless)

f2,0 = 1 (dimensionless)

r0 = 0 (dimensionless)

q0 = 1 (dimensionless)

Xr10 = 0 (dimensionless)

Xr20 = 1 (dimensionless)

Xs0 = 0 (dimensionless)

Xf0 = 0.1 (dimensionless)

g0 = 1 (dimensionless)

V0 = −0.07 (V )

Cai0 = 0.0002 (mM)

Casr0 = 0.3 (mM)

Nai0 =

{
10 (mM), V entricular − like

14.1 (mM), Atrial − like

Membrane Potential

dV

dtime
= −Iion = −(IK1 + Ito + IKr + IKs + ICaL + INaK + INa + INaCa + IpCa + If + IbNa + IbCa)

Na+ current, INa

INa = gNa ·m3 · h · j · (V − ENa)

INa, h gate

hinf =
1√

1 + e
V ×1000+72.1

5.7

αh =

{
0.057 · e−V ×1000+80

6.8 , if V < −0.04

0, otherwise

βh =


2.7 · e0.079×V×1000 + 3.1 × 105 · e0.3485×V×1000, if V < −0.04

0.77

0.13 · (1 + e
1000×V +10.66

−11.1 )
, otherwise
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τh =


1.5

(αh + βh) × 1000
, if V < −0.04

2.542e−3, otherwise

dh

dtime
=
hinf − h

τh

INa, j gate

jinf = hinf

αj =
(V × 1000 + 37.78) · (−25428 · e0.2444×V×1000 − 6.948 · 10−6 · e−0.04391×V×1000)

1 + e0.311·(V×1000+79.23)
, if V < −0.04

0, otherwise

βj =


0.02424 · e−0.01052×V×1000

1 + e−0.1378·(V×1000+40.14)
, if V < −0.04

0.6 · e0.057·V×1000

1 + e−0.1·(V×1000+32)
, otherwise

τj =
7

(αj + βj) × 1000

dj

dtime
=
jinf − j

τj

INa, m gate

minf =
1(

1 + e
−34.1−V ×1000

5.9

) 1
3

αm =
1

1 + e
−60−V ×1000

5

βm =
0.1

1 + e
V ×1000+35

5

+
0.1

1 + e
V ×1000−50

200

τm =
αm · βm

1000

dm

dtime
=
minf −m

τm

L–Type Ca2+ current, ICaL

ICaL =
gCaL · 4 · V · F 2 · (Cai · e

2·V ·F
R·T − 0.341 · Cao) · d · f1 · f2 · fCa

R · T · (e
2·V ·F
R·T − 1)

ICaL, d gate
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dinf =


1

1 + e−
V ×1000+9.1

7

, V entricular − like

1

1 + e−
V ×1000+5.986

7

, Atrial − like

αd = 0.25 +
1.4

1 + e
−35−V ×1000

13

βd =
1.4

1 + e
5+V ×1000

5

γd =
1

1 + e
50−V ×1000

20

τd =
αd · βd + γd

1000

dd

dtime
=
dinf − d

τd

ICaL, fCa gate

αfCa
=

1

1 +
(

Cai
0.0006

)8
βfCa

=
0.1

1 + e
Cai−0.0009

0.0001

γfCa
=

0.3

1 + e
Cai−0.00075

0.0008

fCainf
=
αfCa

+ βfCa
+ γfCa

1.3156

τfCa
= 0.002 (second)

constfCa
=

0, if fCainf
> fCa and V > −0.06

1, otherwise

dfCa
dtime

= constfCa
·
fCainf

− fCa

τfCa

ICaL, f1 gate

f1inf =


1

1 + e
V ×1000+26

3

, V entricular − like

1

1 + e
V ×1000+25.226

3

, Atrial − like

τf1 =(
1102.58 · e

−
[
(V ×1000+27)2

15

]2
+ 200

1+e
13−V ×1000

10
+ 180

1+e
30+V ×1000

10
+ 20

)
1+1433(Cai−50e−6)

1000
, if df1

dtime
> 0

0.001, otherwise
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df1
dtime

=
f1inf − f1

τf1

ICaL, f2 gate

f2inf =


0.67

1 + e
V ×1000+35

4

+ 0.33, V entricular − like

0.67

1 + e
V ×1000+31.226

4

+ 0.33, Atrial − like

τf1 =(
600 · (e−

(V ×1000+25)2

170 ) +
31

1 + e
25−V ×1000

10

+
16

1 + e
30+V ×1000

10

)0.001, V entricular − like

0.002, Atrial − like

df2
dtime

=
f2inf − f2

τf2

Transient outward current, Ito

Ito = gto · r · q · (V − EK)

Ito, r gate

rinf =
1

1 + e
22.3−V ×1000

18.75

τr =

(
14.405516

1.037 e0.09 (V×1000+30.61) + 0.369 e−0.12 (V×1000+23.84)
+ 2.75352

)
× 10−3

dr

dtime
=
rinf − r

τr

Ito, q gate

qinf =
1

1 + e
53+V ×1000

13

τq =

(
39.102

0.57 e−0.08 (V×1000+44) + 0.065 e0.1 (V×1000+45.93)
+ 6.06

)
× 10−3

dq

dtime
=
qinf − q

τq

Rapid delayed rectifier K+ current, IKr

IKr = gKr ·
√

Ko

5.4
·Xr1 ·Xr2 · (V − EK)

IKr, Xr1 gate

V1/2 = 1000 ·

(
−RT
FQ

· ln

(
(1 + Cao

2.6
)4

L0 · (1 + Cao
0.58

)4

)
− 0.019

)
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xr1inf =
1

1 + e
V1/2−V ×1000

4.9

αxr1 =
450

1 + e
−45−V ×1000

10

βxr1 =
6

1 + e
30+V ×1000

11.5

τxr1 = αxr1 · βxr1 · 10−3

dXr1
dtime

=
xr1inf −Xr1

τxr1

IKr, Xr2 gate

xr2inf =
1

1 + e
V ×1000+88

50

αxr2 =
3

1 + e
−V ×1000−60

20

βxr2 =
1.12

1 + e
V ×1000−60

20

τxr2 = αxr2 · βxr2 · 10−3

dXr2
dtime

=
xr2inf −Xr2

τxr2

Slow delayed rectifier K+ current, IKs

IKs = gKs ·Xs2 ·

1 +
0.6

1 +
(

3.8·10−5

Cai

)1.4
 · (V − EKs)

IKs, Xs gate

Xsinf =
1

1 + e
−V ×1000−20

16

αxs =
1100√

1 + e
−V ×1000−10

6

βxs =
1

1 + e
V ×1000−60

20

τxs = αxs · βxs · 10−3

dXs

dtime
=
Xsinf −Xs

τxs

Inward rectifier K+ current, IK1
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αK1 =
3.91

1 + e0.5942 (1000×(V−EK)−200)

βK1 =
−1.509 e0.0002 (1000×(V−EK)+100) + e0.5886 (1000×(V−EK)−10))

1 + e0.4547×1000×(V−EK)

xK1inf =
αK1

αK1 + βK1

IK1 = gK1 · xK1inf ·
√
Ko

5.4
· (V − EK)

Hyperpolarization activated funny current, If

If = gf ·Xf · (V − Ef )

If , Xf gate

xfinf =
1

1 + e
V ×1000+77.85

5

τxf =
1900 e−3

1 + e
V ×1000+15

10

dXf

dtime
=
xfinf −Xf

τxf

Na+ / K+ pump current, INaK

INaK =

PNaK ·Ko·Nai
Ko+Kmk

Nai +KmNa

1 + 0.1245 e−0.1·V F
RT + 0.353 e−

V F
RT

Na+ / Ca2+ exchanger current, INaCa

INaCa =
KNaCa ·

(
eγ·

V ·F
R·T ·Na3i · Cao − e(γ−1)·V ·F

R·T ·Na3i · Cao · α
)

((KmNai)
3 +Na3o) · (KmCa + Cao)

(
1 +Ksat · e(γ−1)·V ·F

R·T

)
Ca2+ dynamics

Irel =

(
arel · CaSR2

brel
2 + CaSR

2 + crel

)
· d · g

0.0411, V entricular − like

0.0556, Atrial − like

Iup =
Vmaxup

1 + Kup
2

Cai
2

Ileak = Vleak · (CaSR − Cai)
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ginf =


1

1 +
(

Cai
0.00035

)6 , if Cai ≤ 0.00035

1

1 +
(

Cai
0.00035

)16 , otherwise

constii =

0, if ginf > g and V > −0.06

1, otherwise

τg = 0.002

dg

dtime
= constii · ginf − g

τg

dg

dtime
= constii · ginf − g

τg

Caibufc =
1

1 +
bufc·Kbufc

(Cai+Kbufc)
2

Casrbufsr =
1

1 +
bufsr·Kbufsr

(CaSR+Kbufsr)
2

dCai
dtime

= Caibufc ·
(
Ileak − Iup + Irel −

ICaL + IbCa + IpCa − 2 · INaCa
2 · Vc · F · e−18

· Cm
)

dCaSR
dtime

=
Casrbufsr · Vc

Vsr
· (Iup − (Irel + Ileak))

Ca2+ pump current, IpCa

IpCa =
gpCa · Cai
Cai +KpCa

Reversal potentials

ENa =
R · T
F

· ln
Nao
Nai

EK =
R · T
F

· ln
Ko

Ki

EKs =
R · T
F

· ln
Ko + Pkna ·Nao
Ki + Pkna ·Nai

ECa =
0.5 ·R · T

F
· ln

Cao
Cai

Ef = −0.017

Sodium dynamics
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dNai
dtime

= −Cm · INa + IbNa + 3 × INaK + 3 × INaCa
F · Vc · e−18

Background currents

IbNa = gbNa · (V − ENa)

IbCa = gbCa · (V − ECa)
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