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1 Introduction

This report will cover the activities carried out in the internship at Barcelona Supercomputing Center
(BSC) in the period of 1st of July to 1st of September. The training took place at the Computer
Applications in Science and Engineering (CASE) sector and was mainly focused on parametric so-
lution of Controlled Source Electromagnetic (CSEM) problems using a priori model order reduction
(MOR) technique named as Proper generalized Decomposition (PGD).

The specific focus was given for implementing a Total Field formulation of the electromagnetic
source in a PGD framework with dipole frequency (ω) and source position (Sp) as basis of the
parametric space. In this work the called Edge Finite Element (EFEM) technique is adopted for the
spatial discretization of the governing equations. Thus, the two main tasks were performed during
the internship:

• Preliminary studies on the existent EFEM prototype code for the approximated solution of
CSEM problems.

• Implementation of a Total Field formulation of the electric field in a PGD algorithm.

1.1 Motivation

Reduced order models are very attractive tool from the scientific and engineering point of view,
specially in studies where the approximated solution of a model is required for a wide range of
parameters. In most cases, the direct multi parametric solution of those problems are even unfeasible
given time and computational resources constrains. In such a cases the application of an ROM
algorithm is an option to tackle the problem. In this work the Proper Generalized Decomposition
(PGD) is applied in order to obtain a parametric solution of the Maxwell equations for CSEM
applications.

In this panorama, two formulations of the electric field model are possible: Field Decomposition
(FD) and Total Field (TF). The first formulation, which involves a smooth source term in governing
equation, has the advantage of providing an accurate enough solution in which the mesh does not
need to be adapted to the source. On the other hand, when we move to a PGD framework, from
a computational point of view, this approach requires more memory and computations in order to
pre-compute and assemble the matrices related with the source term, respectively. Thus, a trade-off
exist when a Total Field formulation is used in a PGD approximation to overcome the FD approach
limitations.

In this work, the implementation of the PGD algorithm with the TF formulation will be presented
and this trade-off discussion will be initialized.

2 Preliminary studies on the EFEM code

This section is devoted to present the preliminary study of the spatial discretization technique applied
to 3D Maxwell’s equations. A prototype code on 3D Edge Finite Elements (EFEM) for CSEM
problems was studied and some test cases were run. Two different formulation of the electric field
were employed: Total field (TF) and Field Decomposition (FD). This preliminary study was necessary
in order to get acquainted with all aspects of the problem to be solved, from the modelling to the
EFEM approximation.
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2.1 Model and weak formulation

The prototype EFEM code provides an approximated solution for Maxwell’s equations in curl-curl
formulation, in terms of Field Decomposition formulation (1,2) and Total Field formulation (3,4).

∇×∇× Es + iµωσEs = −iµω(σ − σp)Ep in Ω (1)

Es = 0 on ∂Ω (2)

∇×∇× E + iµωσE = −iµωJsr in Ω (3)

E = 0 on ∂Ω (4)

Where in (1), the solution is seek for the secondary field (Es) in terms of the known primary
field (Ep), with σp being the chosen uniform conductivity of the domain for the primary field. Then,
the total field is recovered by E = Es + Ep.

In (3), the solution is already given in terms of the Total Field (E), with Jsr being the point
dipole source, mathematically described as pulse or Dirac delta.

The weak forms of equations (1) and (3), in the spatial coordinates (x, y, z) ∈ Ω is given respec-
tively by the following:

(∇× δEs,∇× Es)Ω + iµσω(δEs,Es)Ω = −iµ(σ − σp)ω(δEs,Ep)Ω (5)

(∇× δE,∇× E)Ω + iµσω(δE,E)Ω = −iµω(δE,Jsr)Ω (6)

Where δu is the test function of the approximated variable u. And the L2 product of the complex
functions being defined as:

(δu,u)Ω =

∫
Ω

δu · ūdΩ

Where ū s the complex conjugate of u.

2.2 Mesh study for Total Field and Field Decomposition formulations

The mesh size is changed in the .geo file which is ran in the Gmsh software. A mesh study was
carried out using as parameter the variables rg and rs. The first is the number of elements per skin-
depth (sd) distance in the global mesh such that dg = sd/rs, where dg is the global element size.
The second one defines the local element size (ds), at the receivers postion, such that ds = dg/rs.
A total of eight (8) meshes were tested for both Total Field (TF) and Field Decomposition (FD)
formulations, as seen in table 1.

M0 M1 M2 M3 M4 M5 M6 M7
rg 1 1 1 1 1.5 2 1.5 1.5
rs 3 6 12 18 6 6 12 18

No Elements [k] 10.4 11.6 19.1 38.0 36.8 80.0 64.1 128.5
No Nodes [k] 2.3 2.6 3.8 7.0 7.4 15.3 12.0 22.6
No Edges [k] 13.8 15.3 24.1 46.2 46.9 99.6 80.2 153.7

Table 1: Mesh parameters.

A L2 like relative error norm (E =
√∑

i(x
num
i − xrefi )2/

√
(xrefi )2) of the numerical solution

(xnum) with respect to a reference solution (xref ) was evaluated for each mesh and formulation (FD
or TF), results are shown in figure (1).
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Figure 1: Relative error norm: (a) TF; (b) FD.

It can be observed in Figure (1) that as the mesh is refined, in general more accurate results are
obtained for both formulations (TF and FD). It can be observed that a global refinement has a better
effect on the accuracy, however the increment in edge numbers is higher than when considering a local
refinement, as seen on table (1). A simple comparison between meshes M1, M3 and M5 illustrate
this aspect.

For the Total field case, mesh M6 represents a high relative norm error, this is due to a punctual
discrepancy in the solution with respect to the reference data. As it can be observed in figure (2)
which shows the relative errors at each receiver position for the meshes M0, M5, M6 and M7. It also
shows the higher accuracy of the FD formulation with respect to TF, presenting a uniform error over
the receivers range while the TF formulation lacks accuracy near the center for most meshes cases.
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Figure 2: Relative differences at receivers M0, M5, M6 and M7 : (a) TF; (b) FD.

Results for the coarsest (M0) and finer mesh (M7) are shown below. The computed Electric field
(Ex) at the receivers position is depicted in the plots. It can be observed that for the Total Field (TF)
formulation a coarse mesh presents poor accuracy near center position and non-symmetric behavior.
As the local refinement is increased this inaccuracy is reduced with respect to the reference solution.

For the Field Decomposition (FD) formulation a better accuracy near center is achieved with
respect to the TF model.
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Figure 3: Ex at receivers - Mesh M0: (a) Total Field;(b) Field Decomposition
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Figure 4: Ex at receivers - Mesh M7: (a) Total Field;(b) Field Decomposition

3 PGD Formulation and application

This section will present the PGD formulation for the studied CSME problem. A general formulation
that applies for TF and FD approaches is presented. This formulation was already implemented for
the Field Decomposition case, which was provided as a MatLab routine.

Next, particularities of the implementation of the FD and TF with respect to the source term
are discussed. In the last subsection the performance of the implemented Total Field formulation in
a PGD algorithm is evaluated.

3.1 General PGD Formulation

The PGD rationale is applied for parametrization of the eletric field in terms of the dipole source
frequency (ω) and position (Sp). This gives rise to a five dimensional parametric space (x, y, z, ω, Sp)
∈ D. The general weak form of the CSEM problem, from equations (5) and (6), in a five dimensional
domain D can be written as:

(∇× δE,∇× E)D + jµσ(ωδE,E)D = −jµ(ωδE,S)D (7)
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Where (x, y, z) ∈ Ω, (ω, sp) ∈ P . For the total field case S := Jsr. While for the field decompo-
sition case E := Es and S := ∆σEp.

Now, the electric field is written in a separable form, break up into a vectorial (F1) and scalar
function (F2), as E =

∑n
m=1 Fm

1 (x, y)Fm
2 (ω, sp), which can be expressed as:

En = Fn
1F

n
2 + En−1 = Fn

1F
n
2 +

n−1∑
m=1

F1
mFm

2

Now assuming a test function variation such that δE = δF1F2 + F1δF2, we can obtain two weak
forms to be solved in a iterative way for Fn

1 and F n
2 when δF2 = 0 and δF1 = 0 respectively, as

follows. The n superscript is dropped for the sake of readability.

(F2, F2)P · (∇× δF1,∇× F1)Ω + jµσ(ωF2, F2)P · (δF1,F1)Ω = −jµ(ωδF1F2,S)D − Ln−1
1 (8)

(∇× F1,∇× F1)Ω · (δF2, F2)P + jµσ(F1,F1)Ω · (ωδF2, F2)P = −jµ(ωδF2F1,S)D − Ln−1
2 (9)

With the vectors in the r.h.s. Ln−1
1 and Ln−1

2 accounting for the contribution of the known PGD
terms in the expansion and can be written as:

Ln−1
1 =

n−1∑
m=1

(Fm
2 , F

m
2 )P · (∇× δF1,∇× F1

m)Ω + jµσ(ωFm
2 , F

m
2 )P · (δF1,F1

m)Ω

Ln−1
2 =

n−1∑
m=1

(∇× F1
m,∇× F1

m)Ω · (δF2, F
m
2 )P + jµσ(F1

m,F1
m)Ω · (ωδF2, F

m
2 )P

After discretizing F1 and F2 in its respective FEM formulation and evaluating the integrals of
equations (8) and (9) we obtain the following set of algebraic equations to be solved in alternate
direction algorithm for Fn

1 and Fn
2 respectively.

[(F2
TMwF2)Kx + (F2

TMwfF2)Mxσ]Fn
1 = f1 −

∑
n

[(F2
TMwF2)Kx + (F2

TMwfF2)]Fn−1
1 (10)

[(F1
TKxF1)Mw + (F1

TMxσF1)Mwf ]F
n
2 = f2−

∑
n

[(F1
TKxF1)Mw + (F1

TMxσF1)Mwf ]F
n−1
2 (11)

The vectors f1 and f2 in the r.h.s of both equations represents the source term contribution in
the weak forms. Those terms are integrals in the 5D domain, as seen in the r.h.s of equations (8)
and (9), as the source term S is not written in a separable form.

In order to avoid this full dimensional integration, the source term is made separable such that
it can be approximated as:

S(x, y, z, ω, Sp) ≈
np∑
k=1

S1
k(x, y, z)Sk2 (ω, Sp)

With np as the number of terms of the approximation. Considering this approximation, f1 and
f2 becomes:

f1 ≈ −
np∑
k=1

jµ(ωF2, S
k
2 )P · (δF1,S1

k)Ω (12)

f2 ≈ −
np∑
k=1

jµ(F1,S1
k)Ω · (ωδF2, S

k
2 )P (13)
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3.2 Source term contribution - Total Field and Field Decomposition

The separable form of S, mentioned in the previous section, is found by means of the Singular Value
Decomposition (SVD) of the matrix form of the source term, when it is evaluated in all 5D domain
points. Such that it can be written as S = UΣVT . After, S can be approximated by the first
k relevant components of the decomposition in order to reduce physical memory consumption and
computation time.

In this work, from the algorithmic point of view, the SVD is performed in the elemental Se

matrix. For the Field Decomposition (FD) case, the source term (S = ∆σEp) is a smooth function
of x, y, z, ω and Sp. Thus, the integrals in Ω, in equations (12) and(13), are evaluated at all spatial
Gauss points. From the elemental point of view, Se will have the dimensions of 3ng × nωnsp. With
ng, nω and nsp being the number of Gauss points, number of points in ω direction and number of
points in Sp direction respectively.

For the Total Field (TF) case, the source term can be written as S = IdSδ(x−Sp)ê. With I and
dS being the dipole current and the dipole length respectively. The vector ê is the unitary dipole
direction vector. Here the relation between the source and the frequency is taken as constant, equal
to one.

The sampling property of the Dirac delta can be exploited within each element and the integrals
in Ω can be evaluated only in the source location. This leads to a matrix Se with dimensions 3×nωnsp,
as no Gauss points are required, only the source position (x, y, z).

With this in mind, equations (12) and (13) can be written as a elemental assembling with δF1

and F1 being evaluated at the elemental source position Sep, as follows.

f1 ≈ −Ane
e=1 jµIdS(ωF2, 1)P δF1(Sep) · ê (14)

f2 ≈ −Ane
i=1 jµIdSF1(Sep) · ê(ωδF2, 1)P (15)

Where ne is the number of elements in the spatial mesh and Sep is a source position in the
parametric set Sp = (Sp1, Sp2....Spnsp) with location matching the element e. If there is no source
position in the set matching the location of the element e, fe1 and fe2 will be zero. This comes to
the fact that the Dirac delta function is only non-zero with x = Sp, thus the only elements with a
nonzero fe1 and fe2 will be those whose its location matches a source position in the parametric set
Sp = (Sp1, Sp2....Spnsp).

The smaller size of the elemental source matrices Se for the TF formulation ( 3× nωnsp against
3ng × nωnsp) leads to a lower memory requirement in comparison with the FD formulations, once
those matrices are pre-computed. Apart from that, the number of matrices to be pre-computed
in the TF formulation is equal to nsp (101 to 103 usually) as the contribution is zero for elements
not matching any source position. This also implies that inside the while loop of the PGD greedy
algorithm, the assembly can only be made on those source elements, which means nsp assembling,
providing an huge reduction in computation cost per loop.

While for the FD formulation this number is equal to the number of elements in the spatial mesh
(105 to 106 usually). It also noteworthy to mention the high sparsity of the Se matrix for the TF
formulation while for the FD formulation the matrix is almost always full.

In the MatLab routine, the elemental source contribution of the ne elements, for the FD formu-
lation, or the contribution of the nsp elements for the TF formulation are stored in two cell array
entities, named here as M1 and M2.

In table 2 the memory required to keep the elemental source contribution in the RAM for both
Total Field (TF) and Field Decomposition (FD) cases are compared. To illustrate, the spatial mesh
M3 and a 81 parametric nodes mesh is chosen.
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Formulation FD TF
Cell Array M1 M2 M1 M2
Size [Bytes] 6.97× 107 1.19× 109 2.30× 103 1.85× 104

Total Size[Bytes] 1.26× 109 2.08× 104

Table 2: RAM memory cost for the pre computation of elemental source contribution.

From an algorithmic point of view, each component of the cell array M1 is Ue and each component
of the cell array M2 is (VΣT)

e
. Both togeter form the elemental SVD of the source matrix Se written

as Se = Ue(ΣVT )e.
For the FD case, all 3×ng SVD terms were considered. If k terms are considered for each elemental

Se based on a chose tolerance, the values in (2) are reduced. For example, using a tolerance of 1×10−8

the size of M1 and M2 becomes 3.44 × 107 and 5.30 × 108 respectively, which is still much higher
than the sizes obtained for the TF formulation.

3.3 Performance of the PGD with Total Field formulation

The performance of the PGD application with a Total Field formulation (TF) with respect to a Field
Decomposition (FD) counterpart is evaluated is this subsection. For this, the spatial mesh 3 (M3),
described in table (1), is chosen for all tests. The parametric space (ω, Sp) ∈ P is discretized with
a 81 nodes uniform mesh (nω = nsp = 9) for all tests. The range of the parametric variables are
ω∗ = [0.5, 2.0] Hz and Sp = [50, 3450] m.

In Figure 5 it is presented the last term contribution of the PGD expansion, chosen here a an
error indicator, as a function of the number of PGD terms for both FD and TF.
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Figure 5: Last PGD term contribution:(a) Field Decomposition;(b) Total Field.

As observed in Figure 5, the last term contribution of the PGD approximation reduces faster for
the TF formulation in comparison with the FD one as more terms are added to the PGD expansion.
This is explained by the fact that the source term (S) in the TF case has an SVD decomposition
with less singular values (SVD modes) than the SVD decomposition of the source term for the FD
formulation, as also discussed in the previous section. Thus, naturally it will be required more PGD
modes to approximate the solution for the FD formulation, as the r.h.s. of its weak form is a term
composed by more modes, or more relevant information.

It is also noticed that that after 9 PGD terms, both FD and TF present an drop in the error.
This is related to the fact that the source position (Sp) is discretized with 9 nodes (nsp = 9),thus an
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better representation of this term is reached with nine or more modes.
In Figure 6, the L2 norm error estimator is employed to evaluate the error of the PGD approxi-

mation with respect to the EFEM solution for different dipole frequencies (ω). The source position
is kept fixed at x = 1750 m. As we can see for both FD and TF formulations the error decreases
when the frequency increases.
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Figure 6: L2 norm error with respect to frequency ω∗ - 90 PGD modes:(a) Field Decomposition;(b)
Total Field.

In Figure 7, the L2 norm error estimator is employed to evaluate the error of the PGD approx-
imation with respect to the EFEM solution for different source positions Sp. The dipole frequency
is kept constant as ω∗ = 2 Hz. As we can see for both FD and TF formulations the error increases
when the source position is near the boundary of the domain.
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Figure 7: L2 norm error with respect to source position Sp - 90 PGD modes:(a) Field Decomposi-
tion;(b) Total Field.

From both figures 6 and 7, it can be observed the the errors related with the FD formulation
are one order of magnitude higher than the errors for the TF formulation. This is a natural result
of what was explained before, in the sense that 90 PGD modes provides less accuracy for the FD
formulation than for the TF formulation with respect to their respective EFEM solutions. Although,
it is important to mention that even though the L2 error norms for the FD formulation are higher,
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it does not mean that the approximation with respect to a exact reference is less accurate than the
same approximation for a TF formulations. This comes to the fact that the EFEM solution with a
FD formulation is more accurate then a EFEM solution with TF formulation considering the same
spatial mesh, as shown in section 2.2.

Finally, the comparison between EFEM and PGD approximation with the TF formulation are
shown. In Figure 8 (a) it shows both approximations for 3 different dipole frequencies ω∗ =
{0.50 1.25 2.00} Hz and source position fixed at x = 1750 m. Both approximations for 3 dif-
ferent source positions Sp = {900 1750 2600} m and a constant frequency ω∗ = 2 Hz are shown
in Figure 8 (b).
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Figure 8: PGD solution with Total Field formulation compared with the EFEM solution - 90 PGD
modes: (a) Variation in ω∗; (b) Variation in Sp

From both figures it can be observed that the proposed PGD approximation with a Total Field
formulation provides same results as the EFEM approximation with the order of accuracy presented
in figures 6 (b) and 7 (b).

4 Concluding remarks

The PGD approximation using a Total Field formulation for the electric field proved to be a fair
option when dealing with problems presenting a considerable spatial and parametric size. This is
because this approach proved to countermeasure the main drawback of a Field Decomposition based
formulation, which is the high quantity of required memory RAM to dynamically allocate the matrices
that arises from the source term. A simple test case presented in section 3.2, table 2, showed that
the memory cost reduced from 1.26GB to only 20.80kB.

Apart from that, given the peculiarities of the Total Field formulation, a lower number of com-
putation is required when assembling the elemental source term contribution inside the PGD loop.

Besides those advantages, the EFEM approximation using Total Field formulation is too much
sensible with respect to the mesh, thus in some cases the lack of accuracy with respect to the Field
Decomposition formulation is prohibitive, as shown in section 2.2. Said that, a fine enough mesh to
ensure the desired accuracy of the EFEM approximation has always more degrees of freedom for a
TF formulation than for a FD one.
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