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1 Introduction

The identification of subsoil structures and layers beneath the ocean, especially the physical properties and
dimensions is a very important task in geophysics. It has numerous application, for example discovering
oil, natural gas or minerals. The common method is using a seismic source to generates controlled seismic
waves that travel through a medium such as water or layers of rocks. Some of the waves will reflect and
refract and are recored at receivers. The data collected can then be used to investigate shallow subsoil
structure or in search for petroleum and mineral deposits, or to map subsurface faults.

The propagation of the wave induced by a seismic source can be modeled in terms of Helmholtz equation
with point source. Also, the problem depends highly on the parameters (e.g. frequency and velocity, etc.)
to describe specific geometric or material properties of the subsoil. For specified parameters, the problem
can be solved by standard discretization techniques(e.g. FEM). However, in engineering practice, such
computation is required to be carried out repeatedly with different values of parameter for an identification
analysis or an optimization strategy. Such computations are costly and inefficient.

Therefore, a strategy is needed to reduce the computation costs by allowing to solve a number of Helmholtz
equation for different choices of the parameters in an efficient way. The idea is to construct the generalized
(parameterized) Helmholtz equation by including the parameters (such as velocity and frequency) as a
variable in the differential equation. However, the high-dimensional problem composed by including
parameters as extra dimensions involves an exponential growth of degrees of freedom, see [1, 2, 3, 4, 5].
In order to lower the computational complexity, reduce the degrees of the problem, the model that is
based on an approximation to the original model is called Reduced Order Model (ROM). By doing this,
the reduced-order model can then be evaluated in significantly less time with a bit compromising on
accuracy.(Examples of ROM methods are, for example, the Proper Orthogonal Decomposition (POD)
method [6, 7, 8, 9] or the Reduced Basis method [4, 5, 10, 11] )

Among all the ROM methods, the Proper Generalized Decomposition (PGD)[12, 13] method is used in
this report. It has been studied and successfully applied to various problems in computational mechanics,
see [14, 15, 16, 17, 18] There are two phrases for using PGD: the off-line phrase where all the separated
approximations are computed and is costly as always, and an on-line phase where the specific solution at
any desired parameter is readily obtained by means of fast post-process. In this way, the on-line phase does
not require solving any more differential problem and the PGD approximation can be accessed in real-
time. Only standard PGD is apply in the report, [19, 20, 21] addressed different PGD techniques.

In order to reduce the complicity, only 1D domain is tested in the report. Also, as there are several
possibilities to parameterize the problem, here we only focus on the angular frequency and the velocity
of the wave. For practical application, besides one uniform velocity among the domain, multiple values
of velocity can be assigned to different part of the domain.

This report is organized as following.

The next chapter we present briefly introduce the Helmholtz equation and the Proper generalized decom-
position (PGD) method. And on the base of that, the formulation for multiple layers of velocity. The
third chapter presents the numerical application of the PGD method, among which 4 cases is discussed.
The first case is to parametrize only frequency with the spatial domain and analyze three different types
of parametrization for frequency. The second case is similar to the first case but for the velocity. The third
case is to combine both frequency and velocity with the spatial domain, using the optimal parametrization
choice for the two parameters discussed in the previous case. The last case will be testing the behavior
of the method considering two layers of velocity in the spatial domain.
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2 Numerical Methodology

2.1 Generalized Helmholtz Equation
The Helmholtz Equation for a 1D domain that governs the problem takes the form,

∆u+ k2u = f in Ω∞ (2.1)

where ∆ is the Laplacian, k(x) ∈ R is the angular wavenumber, u is the displacement field, and f is
the source term. The angular wavenumber ω is related frequency w and the velocity v and wavelength
λ,

k =
ω

v
, k = 2πλ

The Dirichlet boundary condition is defined on the boundary of the domain (two points on the two sides
of the 1D domain).

u = 0 in ΓD

The solution of Eq.2.1 can be obtained by using standard discretization techniques, for a desired frequency,
velocity and source.

The generalized (parametrized) Helmholtz Equation can be formalized for any frequency ω and velocity
v by accounting the parameters as extra dimensions of the problem based on the strong form in Eq.2.1.
The displacement field can then be written as u(x, ω, v) which is a function of spatial coordinates x ∈ Ω,
angular frequency ω ∈ Iω and velocity v ∈ Iv. To obtain the weak form for the generalized Helmholtz
Equation, multiply weighting function δu on both side and integrate along the spatial, frequency and
velocity domain, ∫

Ω×Iω×Iv
(∆u+ k2u)δu dxdωdv =

∫
Ω×Iω×Iv

fδu dxdωdv (2.2)

Apply integration by parts and the generalized Helmholtz Equation can be obtained as,

− (∇u,∇δu)Ω×Iω×Iv + (k2u, δu)Ω×Iω×Iv = (f, δu)Ω×Iω×Iv (2.3)

for all δu in the proper selected space.

2.2 Proper generalized decomposition (PGD)
The reduced order method introduced here approximates the generalized solution of Eq.2.3 by assuming
that the solution can be written in separable form as,

u(x, ω, v) ≈ un(x, ω, v) =

n∑
m=1

Fm1 (x)Fm2 (ω)Fm3 (v) (2.4)

This approach will have to determine the number of necessary modes n, see [24] and the unknown function
Fm1 , Fm2 and Fm3 for m = 1, ..., n. Each mode m can be obtained by a greedy algorithm, that is

u(x, ω, v) = un−1(x, ω, v) + F1(x)F2(ω)F3(v) (2.5)

where un−1 is assumed to be already known, F1, F2 and F3 are the only functions of the unknown term.
By replacing Eq.2.5 in Eq.2.3, the problem to be solved now becomes,

−(F2(ω)F3(v)∇F1(x),∇δu)Ω×Iω×Iv + (k2F1(x)F2(ω)F3(v), δu)Ω×Iω×Iv =

(f, δu)Ω×Iω×Iv − [−(∇un−1,∇δu)Ω×Iω×Iv + (k2un−1, δu)Ω×Iω×Iv ]
(2.6)

This is a nonlinear problem with the three unknowns F1 F2 and F3. In order to solve the above equation,
assume the weighted function δu can be expresses in separable form as,

δu = δF1(x)F2(ω)F3(v) + F1(x)δF2(ω)F3(v) + F1(x) F2(ω)δF3(v) (2.7)

Eq.2.6 defines the nonlinear equation to be solved for the generalized solution. Using 2.7, the nonlinear
problem (2.6) can be solved with a linearized scheme, see [20, 21] and iterate until a proxy for termination
is reached.
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2.2.1 Standard PGD

The fixed point iteration proceed the following three steps:

1 Assume that F2 and F3 are known(δF2 = 0, δF3 = 0). And Eq.2.7 can then be written as,

δu = δF1F2F3 (2.8)

And the problem to be solved becomes

−(F2F3∇F1,∇δF1F2F3)Ω×Iω×Iv + (k2F1F2F3, δF1F2F3)Ω×Iω×Iv = (f, δF1F2F3)Ω×Iω×Iv

− [−(∇un−1,∇δF1F2F3)Ω×Iω×Iv + (k2un−1, δF1F2F3)Ω×Iω×Iv ]
(2.9)

for all δF1

2 Assume that F1 is known from the previous step (δF1 = 0) and F3 is known (δF3 = 0). And Eq.2.7
can then be written as,

δu = F1δF2F3 (2.10)

And the problem to be solved becomes

−(F2F3∇F1,∇F1δF2F3)Ω×Iω×Iv + (k2F1F2F3, F1δF2F3)Ω×Iω×Iv = (f, F1δF2F3)Ω×Iω×Iv

− [−(∇un−1,∇F1δF2F3)Ω×Iω×Iv + (k2un−1, F1δF2F3)Ω×Iω×Iv ]
(2.11)

for all δF2

3 Assume that F1 and F2 are known from the previous step (δF1 = 0, δF2 = 0) . And Eq.2.7 can
then be written as,

δu = F1F2δF3 (2.12)

And the problem to be solved becomes

−(F2F3∇F1,∇F1F2δF3)Ω×Iω×Iv + (k2F1F2F3, F1F2δF3)Ω×Iω×Iv = (f, F1F2δF3)Ω×Iω×Iv

− [−(∇un−1,∇F1F2δF3)Ω×Iω×Iv + (k2un−1, F1F2δF3)Ω×Iω×Iv ]
(2.13)

for all δF3

This iterative algorithm is required for each step of the greedy procedure. Note that an original 3D
problem is now reduced to the iteration of one 1D problem (Eq.2.9) and two 1D algebraic equations (Eq.
2.11 and 2.13). As the second and third step is an algebraic equations, no derivatives with respect to the
parameters exist in the strong form of the Helmholtz equation (2.1), the computational costs of step two
and three can be ignored. Therefore, the computational cost of the PGD approximation is the product
of the cost of 1D solve, the number of iterations performed and the number of terms required to reach
the desired accuracy.

2.2.2 Convergence criteria

The PGD reduced order method requires a criteria for the termination for PGD approximation terms in
Eq.2.5 and for the fixed point algorithm in Eq.2.9, Eq.2.11 and Eq.2.13, see [25]. In order to terminate
the PGD approximation when enough terms are generated, it is evaluated by comparing the contribution
of the last term against the products of all the previous terms,

‖F1F2F3‖2

‖un−1‖2L2

< ε2 (2.14)

Also, the fixed point algorithm converges when the following relationship is fulfilled,

‖F (ν)
1 F

(ν)
2 F

(ν)
3 − F (ν−1)

1 F
(ν−1)
2 F

(ν−1)
3 ‖2L2

‖F (ν)
1 F

(ν)
2 F

(ν)
3 ‖2L2

< ε2 (2.15)

where ν is the iteration counter. The maximum number of iteration is imposed in case that the algorithms
can not converge.
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2.3 Multiple layers of velocity

Due to the practical needs, more than one velocity will be assigned to the domain. Separate the domain
into p sub-domains Ωp and ascribe each with a velocity. For simplify the expressions, this section will
produce the velocity in terms of the following notation, u(x, 1

v21
, 1
v22
, ..., 1

v2p
) ≡ u(x, v̂1, v̂2, ..., v̂p). The

velocity profile of the problem can then be written as,

v̂(x) =

p∑
i=1

ϕi(x)v̂i (2.16)

where ϕi(x) is the wighted function, and is simply defines as,

ϕi(x) =

{
1, when x ∈ Ωi

0, adhersive

In order to simplify the derivation, consider that the generalized solution depends on spatial coordinates
and the velocities in each sub-domains. Then the PGD expression (2.4) can be expressed as,

u(x, v̂1, ..., v̂p) ≈ un(x, v̂1, ..., v̂p) =

n∑
m=1

Fm1 (x)

p+1∏
i=2

Fmi (v̂i) (2.17)

For demonstration, assume two sub-domains (Ω1 and Ω2), the velocity profile then becomes,

v̂(x) = ϕ1(x)v̂1 + ϕ2(x)v̂2 (2.18)

And the greedy algorithm (2.5) can be written as,

u(x, v1, v2) = un−1(x, v1, v2) + F1(x)F2(v1)F3(v2) (2.19)

The iteration algorithm introduced above then becomes,

1 Assume that F2 and F3 are known (δF2 = 0, δF3 = 0).

δu = δF1F2F3

And the problem to be solved become

−(F2F3∇F1,∇δF1F2F3)Ω×Iv1×Iv2

+ω2
[
(ϕ1F1, δF1)Ω(v̂1F2, F2)Iv1 (F3, F3)Iv2 + (ϕ2F1, δF1)Ω(F2, F2)Iv1 (v̂2F3, F3)Iv2

]
= (f, δF1F2F3)Ω×Iv1×Iv2 −

[
− (∇un−1,∇δF1F2F3)Ω×Iv1×Iv2

+ ω2
(

(ϕ1v̂1 + ϕ2v̂2)un−1, δF1F2F3

)
Ω×Iv1×Iv2

]
(2.20)

for all δF1

2 Assume that F1 is known from the previous step (δF1 = 0) and F3 is known (δF3 = 0).

δu = F1δF2F3

And the problem to be solved become

−(F2F3∇F1,∇F1δF2F3)Ω×Iv1×Iv2

+ω2
[
(ϕ1F1, F1)Ω(v̂1F2, δF2)Iv1 (F3, F3)Iv2 + (ϕ2F1, F1)Ω(F2, δF2)Iv1 (v̂2F3, F3)Iv2

]
= (f, F1δF2F3)Ω×Iv1×Iv2 −

[
− (∇un−1,∇F1δF2F3)Ω×Iv1×Iv2

+ ω2
(

(ϕ1v̂1 + ϕ2v̂2)un−1, F1δF2F3

)
Ω×Iv1×Iv2

]
(2.21)

for all δF2
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3 Assume that F1 and F2 are known from the previous step (δF1 = 0, δF2 = 0).

δu = F1F2δF3

And the problem to be solved become

−(F2F3∇F1,∇F1F2δF3)Ω×Iv1×Iv2

+ω2
[
(ϕ1F1, F1)Ω(v̂1F2, F2)Iv1 (F3, δF3)Iv2 + (ϕ2F1, F1)Ω(F2, F2)Iv1 (v̂2F3, δF3)Iv2

]
= (f, F1F2δF3)Ω×Iv1×Iv2 −

[
− (∇un−1,∇F1F2δF3)Ω×Iv1×Iv2

+ ω2
(

(ϕ1v̂1 + ϕ2v̂2)un−1, F1F2δF3

)
Ω×Iv1×Iv2

]
(2.22)

for all δF3.
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3 Numerical application

The Model is based on the Eq.2.1, and the 1D domain is set specifically as [0, 1] with point source located
at x = 0.5. Without further notice, the range of the parameter dimensions are interpreted by setting the
maximum and minimum wavenumber λ inside the domain, 10 and 1 respectively. As the wavenumber
only indicates the relationship between velocity and frequency, for testing on frequency, velocity is fixed
to be 0.1 which gives the range of frequency to be ω ∈ [0.6283, 6.2832]. Similarly, for testing on velocity,
frequency is set as 10 and the corresponding velocity range is v ∈ [0.1592, 1.5915].

The minimum wave resolution in the spatial domain is 15 nodes. For the parameter domain, the number
of nodes is designed as 5000. Furthermore, the tolerance for the last PGD term (2.14) is 10−16 and for
the fixed point algorithm (2.15) is 10−6, exceptions will be specify in the case.

3.1 Case 1: Variable frequency

For frequency ω, three types of parametric representations are tested, w, k and k2 respectively. In the in-
terests of finding the best parametrization for frequency, Figure 3.1 plots the PGD error of u(x, ω), u(x, k)
and u(x, k2)for all frequencies. It can be observed from Figure 3.1 that for three types of parametriza-
tion, the PGD errors have the similar behavior, for certain frequencies all the parameterizations are not
behaving well, most likely is due to the resonance effect as the domain is defined to be a interior (or
closed) domain. The location of the maximum PGD error for each parametrization is marked by the
green dot in Figure 3.1. Meanwhile, Figure 3.3 plot the displacement field from both FEM and PGD for
the certain frequency where the maximum PGD error occurred for the corresponding parametrization.
From Figure 3.3, it can be detected that the PGD methods have the same phase as the FEM solution,
but can not capture the wave height.

Figure 3.2 plot the PGD error indicator against number of modes, all three parametrization converged in
the end. However, u(x, k2) take significant more number of modes (144 modes) than u(x, ω) (60 modes)
and u(x, k) (49 modes). By comparing both Figure 3.2 and 3.1, the best parametrization for frequency
should be u(x, ω) and u(x, k), among which u(x, ω) have better performance in low frequency (roughly
from 0.6 to 3) while u(x, k) is better in high frequency (from 4 to 6.3).

Figure 3.1: PGD error for all frequencies
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Figure 3.2: PGD error indicator for each modes

(a) Plot 1: The displacement field by PGD and
FEM solution for the parametrization u(x,w) with
the maximum PGD error

(b) Plot 2: the displacement field by PGD and FEM
solution for the parametrization u(x, k2) with the
maximum PGD error

(c) Plot 3: the displacement field by PGD and FEM so-
lution for the parametrization u(x, k) with the maximum
PGD error

Figure 3.3: The displacement field by PGD and FEM solution for the frequency parameterizations

3.2 Case 2: Variable velocity

The parametrizations for velocity are v, 1/v, 1/v2 respectively. The similar analyses for frequency are
carried out here. Figure 3.4 presents the PGD error of velocity parameterizations for all velocities. And
in order to observe better, Figure 3.5 zoomed in the right side of the Figure 3.4.

Similar as Figure 3.1, there are certain values of velocity that all parameterization is not performing well.
However, it is obvious that different parametrization have its own favored region. For low velocity values,
which indicates a high frequency and shorter waves, the parametrization using inverse of the velocity has
smaller error, i.e. u(x, 1/v2). For high velocity values, which indicates a low frequency and long wave
length, the parametrization using u(x, v) has better behavior. Figure 3.6 plot the PGD error indicator

7
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against the number of modes. All parametrization is able to converge in the end, 195 modes for u(x, v),
165 for u(x, 1/v)and 188 for u(x, 1/v2).

Figure 3.7 plotted four figures regarding the parametrization u(x, 1/v2) and u(x, v) respectively each for
minimum and maximum PGD error. The location of the plot is also marked by green dot in Figure 3.4
and 3.5. The same conclusions can be draw from Figure 3.7c and Figure 3.7a that the PGD methods can
capture the phrase of the FEM solution, but not the wave height. Among all 3 parametrization, u(x, 1/v)
is the least favorite, for high velocity u(x, 1/v2) is preferable and for low velocity u(x, v) is better.

Figure 3.4: PGD error for all velocities

Figure 3.5: PGD error for all velocities (zoom-in right side of the Figure 3.4)

Figure 3.6: PGD error indicators for each mode

8
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(a) Plot 1: For u(x, v), the PGD and FEM dis-
placement field for maximum PGD error (error =
1.7887)

(b) Plot 2: For u(x, v), the PGD and FEM dis-
placement field for minimum PGD error (error =
7.7429 × 10−8)

(c) Plot 3: For u(x, 1/v2), the PGD and FEM dis-
placement field for maximum PGD error (error =
17.4064)

(d) Plot 4: For u(x, 1/v2), the PGD and FEM dis-
placement field for minimum PGD error (error =
1.9195 × 10−6)

Figure 3.7: The displacement field by PGD and FEM solution for the velocity parameterizations

3.3 Case 3: Variable frequency and velocity
In this case, combine both velocity and frequency with the spatial domain. The parameter domain of
velocity and frequency will use the ones that is tests above, ω ∈ [0.6283, 6.2832] and v ∈ [0.1592, 1.5915],
which gives a wavenumber k ∈ [0.3948, 39.4784]. Taking as a reference the results obtained in case 1 and
case 2, the generalized solution of is parametrized in terms of u(x, ω, 1

v2 ). From Figure 3.8 and 3.9, it is
clear the the standard PGD failed to obtained the correct solution. Figure 3.8 plot the PGD error with
respect to FEM against both frequency and velocity, the error is around 1 which indicates 100% error.
In Figure 3.9 with 500 modes the method cannot converge.

Figure 3.8: PGD errors for all velocities and frequencies

9
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Figure 3.9: PGD error indicators for each mode

To validate the method, we reduce the range of the wavenumber in order to apply a smaller range of
parameter domain to run the simulation again. Figure 3.10 and 3.11 is the results obtained by using
wavenumber λ ∈ [1, 2], which correspondingly gives the frequency between 0.6283 and 1.2566, and the
velocity between 1.5915 and 0.7958. The error in 3.10 is oscillating from both parameter dimensions
(frequency and velocity) but with a fairly small magnitude (under 10−7) which proves that the PGD
solution is close to the FEM.

The above two examples indicate that to parametrize both frequency and velocity with standard PGD,
the method can obtained the correct results, comparing with FEM, only for small parameter range (or
say wave number), but not for large range. As discussed before, there are certain frequency and velocity
that the PGD method have trouble with (referring to 3.2 and 3.4), and when combing both frequency
and velocity the standard PGD method will have trouble obtaining the reasonable solution for large
range as more of those points is introduced in. In order to solve this problem, one way of solving it
is to parametrize the displacement field in terms of u(x, k),as presented in the following case (Case 4),
where k includes the varying in both velocity and frequency or using improved PGD method, such as
Petrov-Galerkin PGD (PG PGD).[20]

Figure 3.10: PGD errors for all velocities and frequencies

10
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Figure 3.11: PGD error indicators for each mode

3.4 Case 4: Variable wavenumber

As explained in the previous case, in order to prevent the problem by parametrize the generalized solution
in terms of u(x, ω, 1/v2), parametrize the solution as u(x, k) as the varying of frequency and velocity
influence only the angular wavenumber k. The range for the wavenumber between 1 and 10 waves is
given in the previous case, k ∈ [0.3948, 39.4784]. Need to mention, this case does look similar as Case
1 since the parametrization is the same. However, in this case as the velocity is varying as well so the
wavenumber domain Ik differs from Case 1.

The PGD error with respect to the FEM solution (Figure 3.12) is similar as Figure 3.2, as there are
still exists of some wavenumber that the method has problem with. From Figure 3.13 it can observe
that the convergence is swift and with very limited number of modes (22 modes). Figure 3.14 plot the
displacement field for both PGD and FEM method with the maximum and minimum error marked in
Figure 3.12. In Figure 3.14b, PGD is able to obtained the phrase but not the magnitude. Case 4 worked
cause it avoid the variation of two parameters, and present it in terms of only wavenumber k.

Figure 3.12: PGD errors for all angular wavenumber
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Figure 3.13: PGD error indicators for each mode

(a) Plot 1: The PGD and FEM displacement field
for the minimum PGD error

(b) Plot 2: The PGD and FEM displacement field
for maximum PGD error

Figure 3.14: The displacement field by PGD and FEM solution

3.5 Case 5: Variable two layers of velocity

The last case is for obtaining the generalized solution for a spatial domain with two layers of velocity.
The domain is separated into two sub-domain in the middle (x = 0.5). According to the analysis
mentioned in Case 2, the velocity here is parameterized in terms of 1

v2 . And the generalized solution for
the displacement is obtained as u(x, 1

v21
, 1
v22

), where v1 and v2 present the velocity for sub-domain 1 and

sub-domain 2 respectively. Similar as Case 3, the standard PGD cannot coverage for the velocity range
used in Case 2. The maximum range of wavenumber for the method to be able to converge is [1, 1.5], and
the corresponding velocity is v ∈ [1.0610, 1.5915]. Furthermore, the tolerance for the last PGD terms is
10−14, as the method is not about the converge within 500 modes for 10−16.

The PGD error relative to FEM is given in Figure 3.15, the error is plotted as a surface and the magnitude
of the error is around 10−6 except for one point (marked in yellow). Generally speaking, the error is
acceptable in most part of Figure 3.15. There are jumps in error on the two edges marked by red dash
box (when v1 = 1.0610 and v2 = 1.0610), which also exists in Figure 3.4. It proves the algorithm
still have problem for velocity v = 1.0610. The maximum error is around 1, which is the point where
v1 = v2 = 1.0610, when both two velocity domain have the same velocity that the PGD method have
problem with. This can explain that the standard PGD method is not able to solve for large velocity
range, as more troubled velocity will be introduced. Figure 3.16 presents the convergence of the standard
PGD, the method convergent slowing to the tolerance (408 modes).

Furthermore, if using 10−10 as tolerance, the error is still acceptable as the similar L2 norm error as
Figure 3.15 can also be obtained but with significantly less modes (136 modes).

12
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Figure 3.15: PGD errors for all velocities(in both domain 1 and domain 2)

Figure 3.16: PGD error indicators for each mode

Figure 3.17: PGD errors for all velocities(in both domain 1 and domain 2)
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4 Conclusion

The report presents the application of PGD to approximate the generalized solution of the Helmholtz
equation. The generalization includes variability of the parameter frequency and velocity. Moreover, the
velocity can be considered to have different values at different parts of the domain. Five numerical cases
are presented to study different aspectS of the generalized solution.

First two cases analyze the influence on the PGD algorithm with different types of parameterization for
frequency and velocity. For frequency, in terms of the number of modes, parametrize with u(x, ω) and
u(x, k) is much efficient than u(x, k2). In between u(x, ω) and u(x, k) , the former is more suitable for
low frequency and both methods behavior similarly for high frequency, so the better way to parametrize
frequency is using u(x, ω). In terms of velocity, the performance for different parametrization of velocity
depends on the value of velocity (or say, the wavelength). For short waves, the inverse of the velocity
parametrization (u(x, 1/v) and u(x, 1/v2)) have better performance while for long wave u(x, v) gives
more accuracy. However, u(x, 1/v) is not recommended as it requires more modes than the rest two
parametrization.

Case 3 formed the generalized solution u(x, ω, 1/v2) considering both frequency and velocity, parametrized
the way that is suggested from the previous cases. For limited range, the results are satisfactory as the
error between PGD and FEM solution is around 10−7. However, for large range of parameters, the method
failed to converge and the error is not unacceptable. Two solution is offered, one is to parametrize the
displacement field in terms of u(x, k), as the wavenumber k includes the varying in both velocity and
frequency and the other solution is to improve the PGD method, such as Petrov-Galerkin PGD (PG
PGD). Case 4 use the parameterization for u(x, k), the method is capable to converge for large range of
wavenumber smoothly and with minimum number of modes, except for some specific wavenumber that
the algorithm have trouble with.

The formalization for multiple layers of velocities are developed, but in Case 4 only two layers are test,
the generalized solution is given in terms of u(x, 1/v2

1 , 1/v
2
2). Under a controlled range, the method

converged successfully and obtained acceptable solution. However, for larger range of the wavenumber
the algorithm failed to converge. The reason is similar to case 3, as the range increase, the velocities in
Case 2 which the PGD method have problem of solving might overlapped when two velocity dimensions
are considered, and that surpass the limitation of the algorithm.

In brief, standard PGD method is capable of solving the generalized Helmholtz Equation. However, for
both velocity and frequency, there are certain values of parameter that the algorithm cannot obtained
the satisfiable solution. And this problem will escalate when two parameter domain is introduced (for
example case 3 and 5) which cause algorithm failed to converge. To solving the problem, more research
is required to apply a more reasonable boundary condition or improve the standard PGD method.
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