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1. Introduction

A cell traction force is defined as a tangential tension exerted by cells to the extracellular
matrix or the underlying layer. It is crucial to many biological processes like inflammation,
wound healing, angiogenesis and metastasis. It can direct many cellular functions such as
cell migration, extracellular matrix organization and mechanical signal generation. Traction
Force Microscopy (TFM) is an experimental method for determining the tractions on the
surface of a biological cell by obtaining measurements of the surrounding displacement
field. These methods are widely used to quantify cellular forces in mechanobiological
studies. These methods are inverse, in the sense that forces must be determined such that
they comply with a measured displacement field. [1]

At present, Cell Traction Force Microscopy (CTFM) is among the most efficient and reliable
method for determining CTF field of an entire cell spreading on a two-dimensional (2D)
substrate surface. Recent researches improve CTFM methods such that they can
automatically track dynamic CTFs, thereby providing new insights into cell motility in
response to altered biological conditions. In addition, research effort should be devoted to
developing novel experimental and theoretical methods for determining CTFs in three-
dimensional (3D) matrix, which better reflects physiological conditions than 2D substrate
used in current CTFM methods [2].

The tractions can be measured by observing the displacements of beads embedded on a
flexible gel substrate on which the cells are cultured. This is shown in Figurel as colorful
beads. Exact solutions are presented widely to the problem of computing the traction field
from the observed displacement field. The solution rests on recasting the relationship
between displacements and tractions into Fourier space, where the recovery of the traction
field is especially simple [3].
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Figure 1. Cells use a tug—of-war mechanism to integrate local tractions (red) into long-range
gradients of intra- and inter-cellular tension (blue). A small portion of the traction that each cell
generates is transmitted to the cell behind.
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However, these exact (analytical) methods are not so flexible for non-regular domains or
domains containing holes or irregularities. In this study, a new approach is conducted in
order to use approximated finite element methods which is so flexible for any domain or
material property. As we may witness in the last chapter, the FEM results has a good
correlation with exact methods but help us so much in studying 3D free-shape domains.

At IBEC, new technologies are developed to map and perturb the main physical properties
that determine how cells and tissues grow, move, invade and remodel. This physical
information is combined with systematic molecular perturbations and computational
models and the governing principles on the interplay between chemical and physical cues in
living tissues are explored. To study cell and tissue dynamics new technologies are
developed to measure physical forces at the cell-cell and cell-matrix interface. Using these
technologies beside computational analysis of cells we obtain a full experimental
characterization of epithelial dynamics during tissue growth, wound healing and cancer cell
invasion [4].

[1]. Zindel M, Ehret AE, Mazza E (2017) Factors influencing the determination of cell traction forces.
PLoS ONE 12(2): e0172927. https://doi.org/10.1371/journal.pone.0172927

[2]. Cell traction force and measurement methods. Wang JH1, Lin JS. Biomech Model Mechanobiol.
2007 Nov;6(6):361-71. Epub 2007 Jan 3.

[3]. Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol
Cell Physiol 282: C595-C605, 2002. First published October 31, 2001; 10.1152/ajpcell.00270.2001.

[4]. http://ibecbarcelona.eu/integrative
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2. Open Source FEM Codes for Hyperelastic Models

The initial step for this study is to find an appropriate open source FEM software package
containing hyperelastic models. Moreover, since at IBEC laboratory all the procedure of
mechanical modeling of cells should be done in a fully automatic manner, the chosen
software should have the possibility of operating by an external code like MATLAB
automatically. Following, selected FEM softwares are introduced, briefly.

2.1. Vega

Vega is a computationally efficient and stable C/C++ physics library which is designed to
model large deformations of 3D solid deformable objects, including geometric and material
nonlinearities, and can also efficiently simulate linear systems.

For any 3D tetrahedral or cubic mesh, Vega can
compute the elastic energy, the internal elastic
forces and their gradients (tangent stiffness
matrix), in any deformed configuration. Different
parts of the mesh can be assigned arbitrary
material properties. It conducts the time-stepping
under any user-specified forces, using several
provided integrators: implicit backward Euler,

implicit Newmark and explicit central differences
and it is important to note that all models include support for multi-core computing.

About the Material models it includes linear materials, neo-Hookean and Mooney-Rivlin
nonlinear material models. Arbitrary nonlinear material models can be added to Vega. For
isotropic hyperelastic materials, this is as easy as defining an energy function, and its first
and second derivatives.

Most of Vega was written by Jernej Barbic, during his doctoral studies at CMU, postdoctoral
research at MIT, and faculty position at USC. More details can be found on the reference
website:

http://run.usc.edu/vega/index.html

2.2. FEBio

In the field of computational biomechanics, investigators have primarily used commercial
software that is neither geared toward biological applications nor sufficiently flexible to
follow the latest developments in the field. FEBio suite is a nonlinear implicit finite element
framework, designed specifically for analysis in computational solid biomechanics. This
open-source software is written in C++, with particular attention to scalar and parallel
performance on modern computer architectures. It is consisted of three parts:


http://run.usc.edu/vega/index.html
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e PreView: A finite element preprocessing package designed for mesh generation; mesh
editing, specification of materials, boundary conditions and analysis options. User
interaction in PreView occurs via a user-friendly GUI.

e FEBio: As a nonlinear implicit FE solver, offers modeling scenarios, constitutive models
and boundary conditions that are relevant to many research areas in biomechanics. All
features can be used together seamlessly, giving the user a powerful tool for solving 3D
problems in computational biomechanics.

e Postview: A finite element post-processor that is designed to visualize and analyze
results from an FE analysis. It can import the FEBio extendible plot file format (XPLT), as
well as several other data formats (e.g. LSDYNA Keyword, LSDYNA binary database, VTK).
It also offers a way to add additional data to an already loaded model.

It can include prescribed displacements, & . v w =
. D EON P Eag % hods 8R4t Eafo)
nodal forces and pressure forces, fluid T T
MBI e
R

pressure and flux. FEBio provides the ability T

to represent frictionless contact for elastic, |

viscoelastic, rigid, and multiphasic materials,
as well as frictional contact for elastic and
viscoelastic materials. Finally, the user may
specify a body force to model the effects of,
for instance, gravity or base acceleration. e

It was originally developed in the Musculoskeletal Research Laboratories at the University of
Utah. More details can be found on the reference website:

https://febio.org/

2.3.  FEniCS Project

The FEniCS Project is a collection of free, open source, software components with the
common goal to enable automated solution of differential equations providing scientific
computing tools for working with computational meshes, finite element variational
formulations of ODEs and PDEs, and numerical linear algebra. With the high-level Python
and C++ interfaces it is designed as an umbrella project for a collection of interoperable
components. The core components are:

e UFL (Unified Form Language), a domain-specific language embedded in Python for
specifying finite element discretizations of differential equations in terms of finite
element variational forms;

e FIAT (Finite element Automatic Tabulator), a Python module for generation of arbitrary
order finite element basis functions on simplices;

e FFC (FEniCS Form Compiler), a compiler for finite element variational forms taking UFL
code as input and generating UFC output;


https://febio.org/
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e UFC (Unified Form-assembly Code), a C++ interface consisting of low-level functions for
evaluating and assembling finite element variational forms;

e Instant, a Python module for inlining C and C++ code in Python;

e DOLFIN, a C++/Python library providing data structures and algorithms for finite element
meshes, automated finite element assembly, and numerical linear algebra. DOLFIN
functions as the main problem solving environment and user interface. Its functionality
integrates the other FEniCS components and handles communication with external
libraries such as PETSc, Trilinos and Eigen for numerical linear algebra, ParMETIS and
SCOTCH for mesh partitioning, and MPI and OpenMP for distributed computing.

More details can be found on the reference website:

https://fenics.readthedocs.io/en/latest/

https://fenicsproject.org/

2.4. CalculiX

CalculiX is a package designed to solve field problems using finite element method. The pre-
and post-processor is an interactive 3D-tool using the openGL API. The solver is able to do
linear and non-linear calculations for Static, dynamic and thermal loadings.

Because the solver makes use of the abaqus input P =

. . . . e e
format it is possible to use commercial pre- R —
processors as well. In turn the pre-processor is able : A o
to write mesh related data for nastran, abaqus, S
ansys, code-aster and for the free-cfd codes dolfyn, N | ' =

duns, ISAAC and OpenFOAM. A simple step reader is
included. In addition external CAD interfaces like
vda_to_fbd are available. The program is designed
to run on Unix platforms like Linux and lIrix

computers but also on MS-Windows. "

Linear elastic, isotropic hyperelastic, deformation plasticity, large deformation incremental
isotropic plasticity with isotropic and kinematic hardening models are included.

The CalculiX package was developed at MTU Aero Engines in Munich, Germany which
granted the publication. More details can be found on the reference website:

http://www.dhondt.de/

http://www.calculix.de/
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3. FEBio Steps — MATLAB automatic procedure

In this study the FEBio suite is chosen between different open source FEM packages because
of its simplicity in installation, application and also the fact that it can be operated on both
32 and 64 bit computer architectures either on Windows or Linux. On the other hand, this
package can be linked to famous FEM software like ABAQUS and ANSYS for the input files
which one may like to use in next studies.

In this part a brief review is introduced on the interactive atmosphere of the program which
would help the reader to have a sense of what the program is doing in different modules.
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For this purpose the following steps shall be done:

e building the geometry in Pre-View Program

e Assigning material properties

e Meshing

e Assigning fixed zero displacement to bottom layer

e Assigning fixed Dirichlet boundary condition to top layer

e Defining steps

e Saving the Pre-View file and exporting it as the input for FEBio program

e Running the FEBio file and obtaining the result file

e Opening the results in Post-View program and dealing with the different stress and
displacement components for element and nodes.
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Here we describe each related part in MATLAB code which does the whole procedure in a
fully automated manner:

e Input Data.
o Code will ask for the size of 3D sample and the user-desired number of elements in
each direction.

e Extracting top layer's Displacement, Traction & Stress field from reference.
o Code will reduce the size of reference displacement and stress field by an
interpolation scheme in MATLAB [Imresize] to the user-desired number of elements
if it is lower than the reference one.

e Filling Data into 'FEBio_input.feb' file.

o Code will Input various material properties for the New_Hookean model. On the
other hand many other material models like Mooney-Rivlin, isotropic elastic and
orthotropic elastic are also applicable in FEBio for this part beside some specific
material models for muscle, Tendon, Ogden and lots of other variants.

¢ Filling Coordinate & Connectivity Data into "'FEBio_input.feb' file.
o Code will automatically build the appropriate mesh which is readable by FEBio,
using the data given by user.

¢ Filling top layer's Displacement field Data into "'FEBio_input.feb' file.
o These imposed displacements would act as the Dirichlet boundary conditions on
the top layer of medium. The bottom layer of medium is considered as fully fixed.

¢ Run FEBio & Continue to Post-Process.

o In this part the MATLAB code will ask for the permissions of running FEBio after
building its complete input file; then it would open the Post-View program if user
wants to play around with the graphic interface of the post processor program and
see different results from different angles. Finally it would call for the last part of
the code which is summarizing the results.

e Averaging element stresses in joint nodes.

o The stress results in FEBio are reported for each element (Gauss Point). On the
other hand, the reference results are provided on the nodes; so as we are going to
compare the stress results of reference and FEBio together, we would need to
transfer the elemental stresses to nodal ones by doing an averaging mechanism.

e Transferring node Stresses, from deformed coordinate axis to original one.

o As we know in large deformation problems, when we are dealing with Cauchy
stresses they are actually reported on the deformed mesh. But one may be
interested to have the results on the original coordinate axis. For this reason we are
using the ability of MATLAB called [Scatteredinterpolant]. Using this ability, one can
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pass a set of (x,y) points and values, v, to scatteredinterpolant, and it returns a
surface of the form v = F(x, y). This surface always passes through the sample values
at the point locations. So we can evaluate this surface at any query point (xq,yq), to
produce an interpolated value, vq.

e Traction force calculation using stress matrix and surface unit normal vector.

o The final fruit of this study which is so interesting for the biologists are the traction
forces which are transferred between the growing cells and the substrate. For this
purpose we only need to know the unit vector in the normal direction of top layer
elements. This can be easily achieved by a MATLAB ability called [Surfnorm]. Then
by multiplying the 3 by 3 stress matrix of each node to its unit normal vector, we will
have 3 values for the traction force for each node. The relationship between the
traction vector and stress state at a point are as following:

T=o0o.n
Each component of T vector is calculated by:

OxxNy + OxyNy + Oy, = Ty
OyxNy + Oyyny, +0y,n, =T,
OzxNy + OzyNy + 0,n, =T,

Finally the normal and shear stresses on the surface are related to the traction
vector by:

c=T.n=n.o.n
T=T.s=s.0.n

Recall that n is the unit normal vector to the surface, and s is the unit vector parallel
to it.

e Plot Stress Matrices.
o The last part in the MATLAB code is to plot reference and FEBio results side by side
to have an estimation of FEBio’s accuracy compared the reference results.
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4. Results

Here we are comparing final FEBio results by reference study results which is conducted in

IBEC on a sample with a mesh of 116x116 on top with different mesh sizes. The size of
sample is 350x350x80 micro meter and E=3000 Kpa and nu=0.48 is considered for the

material properties.

Different mesh sizes in FEBio are checked due to memory restrains and here only the results

for mesh of 60x60x20 and 100x100x12 element are provided. As we can see a good

correlation is observed between reference and FEBio results for all stress components.
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In Figure 3 some oscillations are observed which are mainly due to the way we average the

stresses from elements into joint nodes, but the peaks and the general trend is completely

matched by the reference results
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Here the FEBio results for a finer mesh are provided and as we see the general calculations
for stresses are almost identical as the reference results.
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¢ Appendix — MATLAB codes

1. Appendix1: PreFEBio_Input.m

clear
clc

%% Input Data

fileID = fopen('FEBio input.feb','w'");
fileNml = 'FEBio input.feb';
fileNm2 = 'FEBio input.xplt';

a =350.0 ; b =a; d=280.0;
MeshSize = 100; 5 20 - 60 - 100 - 116

switch MeshSize

case 20
nx = 20 ; ny = nx ; nz = 10;
case 60
nx = 60 ; ny = nx ; nz = 20;
case 90
nx = 90 ; ny = nx ; nz = 15;
case 116
nx = 116 ; ny = nx ; nz = 10;
end
Node N = (nx+1)* (ny+1l)*(nz+l); % Nr. of All Nodes
Elem N = nx*ny*nz; 3 Nr. of All Elements

%% Extracting top layer's Displacement, Traction & Stress field from ref.

%$Plot Extracted Displacement and Stress fields compared to original ones—---
Plot Extract = 0;
%1 = Displacement x,Vy,z \ 2 = Stress xXX,VVy,zZZ \ 3 = Stress xy,Vyz,Xz

[Disp ref mat,Trac_ref mat,Strs ref mat,Disp ref vec,Trac ref vec,Strs ref
vec]=Extraction(nx,ny,Plot Extract);

%$Plot Febio Stress fields compared to Reference ones——----—---"--"-"-"-"—"—--—————

Plot Stress = 0;
%1 = plot | 0 = Don't Plot

%% Filling Data into '###.feb' file

fprintf (filelID, '<?xml version="1.0" encoding="IS0-8859-1"?>\r\n"');
fprintf (filelD, '<febio spec version="2.0">\r\n');
(

fprintf (filelID, ' <Module type="solid"/>\r\n');

fprintf (filelID, "’ <Control>\r\n'):;

% fprintf (filelID," <time steps>10</time steps>\r\n');
fprintf (filelID,’ <time steps>1</time steps>\r\n');

% fprintf (filelID,' <step size>0.1</step size>\r\n');
fprintf (filelID, ' <step size>1.0</step size>\r\n');
fprintf (£fileID, "’ <max refs>15</max refs>\r\n');

fprintf (£ilelD, ' <max ups>10</max_ups>\r\n');
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fprintf (£ilelD,

( <dtol>0.001</dtol>\r\n'");
fprintf (£filelD,

(

(

<etol>0.01</etol>\r\n');
<rtol>0</rtol>\r\n');
<lstol>0.9</1lstol>\r\n'");
<time stepper>\r\n');

fprintf (£ilelD,
fprintf (£ilelD,
fprintf (£ilelD,

% fprintf(filelID, ' <dtmin>0.01</dtmin>\r\n"'") ;
% fprintf(filelID, ' <dtmax>0.1</dtmax>\r\n') ;

fprintf (£filelD,
fprintf (£ilelD,

<dtmin>1.0</dtmin>\r\n"') ;
( <dtmax>1.0</dtmax>\r\n') ;
fprintf (filelD, <max_retries>5</max retries>\r\n');
fprintf (filelD, <opt iter>10</opt iter>\r\n');
fprintf (filelID,’ </time stepper>\r\n');
fprintf (filelD, <analysis type="static"/>\r\n');
fprintf (filelD, </Control>\r\n');
fprintf (£filelD, <Globals>\r\n'):;
fprintf (£filelD, <Constants>\r\n') ;

(

(

(

(

(

(

fprintf (£filelD, <T>0</T>\r\n');

fprintf (filelD, <R>0</R>\r\n');

fprintf (filelD, <Fc>0</Fc>\r\n'") ;

fprintf (£ilelD, </Constants>\r\n');

fprintf (filelD, </Globals>\r\n');

fprintf (£ilelD, <Material>\r\n');

fprintf (£ilelD, <material id="1" name="Materiall" type="neo-
Hookean">\r\n')
fprintf (£filelD,

-~ - = = = = =

<density>1</density>\r\n');

fprintf (£ilelD, ' <E>3000.0</E>\r\n'");
fprintf (£ilelD, ' <v>0.48</v>\r\n');
fprintf (£ilelID, ' </material>\r\n'");
fprintf (filelID, ' </Material>\r\n'");

%% Filling Coordinate & Connectivity Data into '###.feb' file

fprintf (filelID, ' <Geometry>\r\n');
fprintf (filelID, ' <Nodes>\r\n'") ;

formatSpecl = '$10s%51%2s%10.5£%1s%10.5£%1s%10.5£%10s" ;
for i=1:Node N
fprintf (filelID, formatSpecl, ' <node
id:"'lil'">'IN(ill)l'I'IN(ilz)I'I'IN(iI3)I'</nOde>');
fprintf (fileID, "\r\n'");

end
fprintf (filelID, ' </Nodes>\r\n') ;
formatSpec2 = '%10s%51%2s%61%1s5%61%1s%61%1s%61%15%61%1s%61%1s%61%1s%61%10s"
fprintf (filelID, ' <Elements type="hex8" mat="1" elset="Partl">\r\n');
for i=1:Elem N

fprintf (filelID, formatSpec2, ' <elem

id:"'li"">'lT(ill)"l'IT(iIZ)"I'IT(iI3)"I"T(il4)"I"T(il5)I‘I‘IT(iI6>I
YT, ), N, T, 8), <elem> ) g
fprintf (fileID, '"\r\n'");
end
fprintf (filelID,’ </Elements>\r\n'");
fprintf (filelID,’ </Geometry>\r\n') ;
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%% Filling top layer's Displacement field Data into '###.feb' file

NodeTop N = (nx+1) * (ny+1);
NodeBot ID = (l:nz+l:Node N);
NodeTop ID = (nz+l:nz+l:Node N);

fprintf (filelID, ' <Boundary>\r\n');

formatSpec3 = '$10s%11i%2s' ;
fprintf (£filelID, ' <fix bc="xyz">\r\n'");
for i=1:NodeTop N
fprintf (£filelID, formatSpec3, "' <node
id=""',NodeBot ID(i),'"/>");
fprintf (fileID, '"\r\n'");

end
fprintf (filelID, ' </fix>\r\n'):;
formatSpecd = '$10s%11%2s%8.5£%7s"' ;
fprintf (£ilelD, ' <prescribe bc="x" lc="1">\r\n');
for i=1:NodeTop N
fprintf (filelID, formatSpec4, ' <node

id:"',NodeTop_ID(i),'">',Disp_ref_vec(i,l),'</node>');
fprintf (fileID, '\r\n'");

end
fprintf (£ilelD, ' </prescribe>\r\n');
fprintf (fileID,’ <prescribe bc="y" lc="2">\r\n');
for i=1:NodeTop N
fprintf (filelID, formatSpec4, ' <node

id=""',NodeTop ID(i),'">',Disp ref vec(i,2),'</node>");
fprintf (fileID, '"\r\n'");

end
fprintf (filelID, "’ </prescribe>\r\n');
fprintf (filelID, "’ <prescribe bc="z" 1lc="3">\r\n'");
for i=1:NodeTop N
fprintf (filelID, formatSpec4, ' <node

id=""',NodeTop ID(i),'">',Disp ref vec(i,3),'</node>");
fprintf (fileID, '"\r\n'");

end
fprintf (filelID, ' </prescribe>\r\n') ;
fprintf (filelID, ' </Boundary>\r\n');

%% Filling Data into '###.feb' file

fprintf (filelID, ' <LoadData>\r\n');
fprintf (£ilelD, ' <loadcurve 1d="1" type="smooth">\r\n');
fprintf (filelID, ' <point>0,0</point>\r\n'");
fprintf (fileID, ' <point>1,1</point>\r\n'");
fprintf (filelID, ' </loadcurve>\r\n');
fprintf (£ilelD, ' <loadcurve id="2" type="smooth">\r\n');
fprintf (fileID,’ <point>0, 0</point>\r\n'");
fprintf (filelID,’ <point>1,1</point>\r\n'");
(

fprintf (filelID,’ </loadcurve>\r\n') ;
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fprintf (£ilelD,
fprintf (£ilelD,

( <loadcurve 1d="3" type="smooth">\r\n');
(
fprintf (£ilelD,
(
(

<point>0, 0</point>\r\n');
<point>1,1</point>\r\n');
</loadcurve>\r\n') ;
</LoadData>\r\n');

fprintf (£filelD,
fprintf (£ilelD,

fprintf (£ilelD,
fprintf (£ilelD,

( <Output>\r\n');
(
fprintf (£filelD,
(
(

<plotfile type="febio">\r\n');
<var type="displacement"/>\r\n'");
<var type="stress"/>\r\n');
</plotfile>\r\n');

fprintf (£filelD,
fprintf (filelD,

fprintf (filelD, <logfile>\r\n');
fprintf (£ilelD, <node data data="ux;uy;uz" delim=","
file="output displac.txt"/>\r\n');

fprintf (filelID, "’ <element data data="sx;sy;sz;sxy;syz;sxz" delim=",6"
file="output stress.txt"/>\r\n'");

fprintf (£ilelD, ' </logfile>\r\n'");

fprintf (£ilelD, ' </Output>\r\n');

fprintf (£filelID, '</febio spec>\r\n'");
fclose (filelID);

%% Run Febio & Continue to Post-Process

disp('Do You Want To Run The Febio File?');
flag l=input('Yes:1 | No:0 ");
if flag 1==
system (fileNml) ;
end

disp('Have You Prepared Appropriate "output stress.txt" File?');
flag 2=input('Yes:1 | No:0 ");
if flag 2==
run PostFEBio Output.m
end

disp('Do You Want To Run The PostView File?');
flag 3=input('Yes:1 | No:0 ');
if flag 3==
system (fileNm2) ;
end
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2. Appendix2: PostFEBio_Output.m

PostFebio = importdata('output stress.txt', ',');
NodeTop N = (nx+1)*(ny+1);

NodeTop ID = (nz+l:nz+1l:Node N);

NodeTop Ele = zeros (NodeTop N, 4);

NodeTop Ele N = zeros (NodeTop N, 1);

EleTop N = nx*ny;

EleTop ID = (nz:nz:Elem N);

for i=1:NodeTop N

s=1;
for j=1:EleTop N
for k=5:8
if NodeTop ID(i) == T(EleTop ID(J),Xk)
NodeTop Ele(i,s) = EleTop ID(J);
s =s + 1;
end
end
end
NodeTop Ele N(i) = s-1;
end
Strs_feb vec = zeros (NodeTop N, 6);

for i=1:NodeTop N
for j=1:NodeTop Ele N (i)
Strs feb vec(i,1l)= Strs feb vec(i,1)+

PostFebio.data (NodeTop Ele(i,Jj),2)/ NodeTop Ele N(i);
Strs _feb vec(i,2)= Strs_ feb vec(i,2)+
PostFebio.data (NodeTop Ele(i,j),3)/ NodeTop Ele N(i);
Strs feb vec(i,3)= Strs feb vec(i,3)+
PostFebio.data (NodeTop Ele(i,j),4)/ NodeTop Ele N(i);
Strs _feb vec(i,4)= Strs feb vec(i,4)+
PostFebio. data(NodeTop Ele(i,j),5)/ NodeTop Ele N(i);
Strs_feb vec(i,5)= Strs feb vec (i, 5)+
PostFebio.data (NodeTop Ele(i,]) )/ NodeTop Ele N(i);
Strs_feb vec(i,6)= Strs feb vec (i, 6)+
PostFebio. data(NodeTop Ele(i,j),7)/ NodeTop Ele N(i);

end
end
nnx = nx + 1;
nny = ny + 1;
Strs_feb mat = zeros(nny,nnx,6);
s = 1;

for j=1l:nnx
for i=l:nny

Strs feb mat(i,j,1l) = Strs feb vec(s,1); $ Sxx
Strs _feb mat(i,j,2) = Strs_feb vec(s,2); % Syy
Strs_feb mat(i,j,3) = Strs_feb vec(s,3); % Szz
Strs_feb mat(i,j,4) = Strs feb vec(s,4); % Sxy
Strs _feb mat(i,j,5) = Strs feb vec(s,5); % Syz
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oo

Strs _feb mat(i,j,6) = Strs feb vec(s,6); SxXz
s =s + 1;
end

end

%% Transferring node Stress, from deformed coordinate axis to original one

Fl =
scatteredInterpolant (N(NodeTop ID(:),1)+Disp ref vec(:,1),N(NodeTop ID(:),2
)+Disp ref vec(:,2),Strs feb vec(:,1));

F2 =
scatteredInterpolant (N(NodeTop ID(:),1)+Disp ref vec(:,1),N(NodeTop ID(:),2
)+Disp ref vec(:,2),Strs _feb vec(:,2));

F3 =
scatteredInterpolant (N(NodeTop ID(:),1)+Disp ref vec(:,1),N(NodeTop ID(:),2
)+Disp ref vec(:,2),Strs feb vec(:,3));

F4 =
scatteredInterpolant (N(NodeTop ID(:),1)+Disp ref vec(:,1),N(NodeTop ID(:),2
)+Disp ref vec(:,2),Strs feb vec(:,4));

F5 =
scatteredInterpolant (N(NodeTop ID(:),1)+Disp ref vec(:,1),N(NodeTop ID(:),2
)+Disp ref vec(:,2),Strs feb vec(:,5));

Fo =
scatteredInterpolant (N(NodeTop ID(:),1)+Disp ref vec(:,1),N(NodeTop ID(:),2
)+Disp ref vec(:,2),Strs feb vec(:,6));

Strs_feb vec Int = zeros(NodeTop_N,6);

Strs_feb vec Int(:, = F1( N(NodeTop ID(:),1) , N(NodeTop ID(:),2) );
Strs_feb vec Int(:, ) = F2( N(NodeTop ID(:),1) , N(NodeTop ID(:),2) );
Strs_feb vec Int(: ,3) = F3( N(NodeTop ID(:),1) , N(NodeTop ID(:),2) );
Strs feb vec Int(:,4) = F4( N(NodeTop ID(:),1) , N(NodeTop ID(:),2) );
Strs feb vec Int(:,5) = F5( N(NodeTop ID(:),1) , N(NodeTop ID(:),2) );
Strs feb vec Int(:,6) = F6( N(NodeTop ID(:),1) , N(NodeTop ID(:),2) );
Strs_feb mat Int = zeros(nny,nnx,6);

s = 1;
for j=l:nnx
for i=l:nny

Strs _feb mat Int(i,j,1l) = Strs feb vec Int(s,1);
Strs _feb mat Int(i,j,2) = Strs feb vec Int(s,2);
Strs_feb mat Int(i,j,3) = Strs feb vec Int(s,3);
Strs feb mat Int(i,j,4) = Strs_feb vec Int(s,4);
Strs feb mat Int(i,j,5) = Strs feb vec Int(s,5);
Strs feb mat Int(i,j,6) = Strs feb vec Int(s,6);

s =s + 1;
end
end

%% Traction force calculation using stress matrix and surface normal vector

mat X = zeros (nx+1l,ny+1);
mat Y = zeros (nx+1l,ny+1);
mat 7Z = zeros(nx+l,ny+1);
s=1;

for i=1 : nx+1

for j=1 : ny+l
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j) = N(NodeTop ID(s),1l) + Disp ref vec(s,1);

(i,3
mat Y(i,Jj) = N(NodeTop ID(s),2) + Disp ref vec(s,2);
mat Z(i,j) = N(NodeTop ID(s),3) + Disp ref vec(s,3);
s=s+1;
end

end

surfnorm( mat X' , mat Y' , mat 72' );

[unitnl,unitn2,unitn3]=surfnorm( mat X' , mat Y' , mat z' );

Tx=zeros (nx+1,ny+1);
Ty=zeros (nx+1,ny+1);
Tz=zeros (nx+1,ny+1);

for j=1l:nnx
for i=l:nny

Tx(i,]j)=Strs_feb mat Int(i,Jj,1)*unitnl(i,j)+Strs feb mat Int(i,Jj,4)*unitn2(
i,j)+Strs_feb mat Int(i,Jj,6)*unitn3(i,j);

Ty (i,]j)=Strs_feb mat Int(i,Jj,4)*unitnl(i,j)+Strs feb mat Int(i,Jj,2)*unitn2(
i,j)+Strs_feb mat Int(i,Jj,5)*unitn3(i,]);

Tz (i,]j)=Strs_feb mat Int(i,Jj,6)*unitnl(i,j)+Strs feb mat Int(i,j,5)*unitn2(
i,j)+Strs_feb mat Int(i,Jj,3)*unitn3(i,j);

end
end

%% Plot Stress Matrices

plotTool 2 (Plot Stress,Strs feb mat,Strs feb mat Int);
% plotTool 2 (Plot Strs,Strs ref mat,Strs feb mat Int);
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3. Appendix3: Connectivity.m

function [N,T] = Connectivity(a,b,d,nx,ny,nz)

Nnod = (nx+1)* (ny+1)* (nz+1);

Nele = nx*ny*nz;
N = zeros (Nnod, 3) ;
T = zeros (Nele, 8);

dlx = a/nx ; dly = b/ny ; dlz = d/nz;

(1-1) * dlx;
N(s,2) = (j-1) * dly;
N(s,3) = (k-1) * dlz;
end
end
end
s = 1;
p = 0;
for 1 =1 nx
for j =1 ny
for k = 1 : nz
T(s,1) = p * (nz+l) + (i-1)*(nz+1l) + k;
s =s + 1;
end
p=p+ 1/
end
end
T(:,2) = T(:,1) + (ny+l)*(nz+l);
T(:,3) = T(:,2) + (nz+l);
T(:,4) = T(:,1) + (nz+1);
T(:,5) = T(:,1) + 1;
T(:,6) = T(:,2) + 1;
T(:,7) = T(:,3) + 1;
T(:,8) = T(:,4) + 1;

end
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4. Appendix4: Extraction.m

function
[Disp ref mat,Trac ref mat,Strs ref mat,Disp ref vec,Trac ref vec,Strs ref
vec]=Extraction(nx,ny,Plot Extract)

load tractions and displacements.mat
load stress tensor.mat

NodeTop N (nx+1) * (ny+1) ;

nnx = nx+1;

nny = ny+1;

Disp ref mat(:,:,1) = imresize( DX, [ nny nnx ] );
Disp ref mat(:,:,2) = imresize( DY, [ nny nnx ] );
Disp ref mat(:,:,3) = imresize( DZ, [ nny nnx ] );
Trac_ref mat(:,:,1) = imresize( TX, [ nny nnx ] );
Trac_ref mat(:,:,2) = imresize( TY, [ nny nnx ] );
Trac_ref mat(:,:,3) = imresize( TZ, [ nny nnx ] );
Strs ref mat(:,:,1) = imresize( Sxx, [ nny nnx ] );
Strs ref mat(:,:,2) = imresize( Syy, [ nny nnx ] );
Strs ref mat(:,:,3) = imresize( Szz, [ nny nnx ] );
Strs ref mat(:,:,4) = imresize( Sxy, [ nny nnx ] );
Strs ref mat(:,:,5) = imresize( Syz, [ nny nnx ] );
Strs ref mat(:,:,6) = imresize( Sxz, [ nny nnx ] );

Disp ref vec =

Trac _ref vec
Strs_ref vec

zeros (NodeTop N, 3);
zeros (NodeTop N, 3);
zeros (NodeTop N, 6) ;

s = 1;
for j=1l:nnx
for i=l:nny
Disp ref vec(s,l) = Disp ref mat(i,Jj,1);
Disp ref vec(s,2) = Disp ref mat(i,Jj,2);
Disp ref vec(s,3) = Disp ref mat(i,Jj,3):;
Trac_ref vec(s,l) = Trac ref mat(i,Jj,1);
Trac_ref vec(s,2) = Trac ref mat(i,Jj,2);
Trac_ref vec(s,3) = Trac ref mat(i,Jj,3);
Strs ref vec(s,1l) = Strs ref mat(i,Jj,1);
Strs ref vec(s,2) = Strs_ T ref ~mat(i,j,2);
Strs ref vec(s,3) = Strs_ Cref ~mat(i,3j,3);
Strs _ref vec(s,4) = Strs ref mat(i,Jj,4);
Strs _ref vec(s,5) = Strs ref mat(i,Jj,5);
Strs ref vec(s,6) = Strs_ref mat(i,Jj,06);
s =s + 1;
end
end

plotTool 1(Plot Extract,Disp ref mat,Strs ref mat);

end



