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1 Introduction: 

This is a brief report explaining the study and results of tasks which were carried out at 
the Barcelona Supercomputing Center during the span of internship. The internship 
consisted of literature review and investigation of dissipative as well as non-dissipative 
explicit time integration schemes in order to carry out impact simulations using a High 
Performance Computing (HPC) framework. 

The simulations were performed on MareNostrum IV supercomputer at Barcelona 
Supercomputing Center using an HPC Finite Element code called “Alya”. Alya is a multi-
physics simulation code designed to solve coupled problems on supercomputers 
comfortably. For the purpose, we would be focusing more on the Solid Mechanics module 
of the HPC code. The module of Alya used to solve Solid Mechanics problems is called 
“Alya Solidz”. Alya uses different solution schemes to solve complex problems. As a matter 
of fact, in this study the explicit time integration schemes are the center of importance. 
The Central Difference (CD) scheme which is a non-dissipative explicit scheme and the 
Tchamwa-Wielgosz (TW) which is a dissipative explicit time integration scheme, both 
have been investigated with some examples from literature.  
 

2 Review of Explicit Time Integration Solution Schemes: 
With the references [1], [3], [5] a literature review of different explicit time integration 
solution schemes has been performed. Explicit time integration schemes are very robust 
and straight-forward because of their ease in implementation, but to this advantage we 
also have to deal with a restriction of these schemes. Explicit methods have a conditional 
stability, which if not satisfied then the solution becomes unstable. The condition is that 
the time-step selected for the implementation should be less than or equal to the critical 
time step to ensure the stability of the problem. Explicit schemes go in the favour of saving 
the computational costs of problems provided that the time-step size is not very small.  
The use of Finite Element Method for space discretization & Finite Difference Method for 
time discretization gives rise to spurious numerical oscillations. This is because the Finite 
Element Method lacks the frequencies required to describe wave propagation process 
properly. This causes the dissipative numerical integration scheme such as TW method, 
to take part in damping the oscillations. 

2.1 Central Difference (CD) Scheme: 

The explicit solution scheme such as the Central Difference scheme is used in various 
software solvers such as Abaqus etc. The Central Difference scheme is the most basic non-
dissipative time integration scheme and is used widely because of its ease in 
implementation.  The equations of motion is given by the fundamental formula,  

𝑀 ∙ 𝑎 = 𝑓 

where M is the mass matrix, a is the acceleration vector and f is the total force vector. 
f is given by,  

𝑓 = 𝑓𝑒𝑥𝑡 − 𝑓𝑖𝑛𝑡 

The internal and external nodal forces are functions of the nodal displacements and the 
time. The internal nodal forces depend on nodal displacements because of nodal stresses 
which in turn depend on strains that are calculated from displacements and their 
derivatives. Whereas, the external nodal forces are prescribed generally as functions of 
time, but in some cases they may also be functions of nodal displacements depending on 
structural configurations. 

(1) 

(2) 
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For the Central Difference scheme following are the main equations used for acceleration 
(a), displacement (d), velocity (v), time (t).  

𝑎𝑛 = 𝑀−1𝑓𝑛  

 

vn+1/2 =  vn−1/2 + ∆tn𝑎𝑛 

dn+1 = dn +  ∆tn+1/2 ∙ vn+1/2 

Initially, the displacement, velocity, stresses, material state parameters at time zero are 
initialized to 0. Acceleration at time step ‘n’ can be found out by evaluating the RHS of 
(Equ. 3). The RHS can be easily found as the nodal forces at time step ‘n’ can be deduced 
form nodal displacements at time step ‘n’ which are known. Then the velocity can be 
updated by this acceleration value using (Equ. 4). Note that the velocity is calculated at 
mid time steps due to central difference scheme. And then finally the displacement at time 
step ‘n+1’ can be found by using (Equ. 5).  
The time updates used are, 

tn+1 = tn +  ∆tn+1/2        𝑎𝑛𝑑       tn+
1
2 =

1

2
 (tn +  tn+1)  

The flowchart to implement the steps of this scheme as taken from [1] is as shown below, 

 
Fig. 1: Flowchart for explicit CD scheme. [1] 

 

2.2 Tchamwa-Wielgosz (TW) Scheme: 

The literature review of this scheme has been done from [3]. The explicit time integration 
scheme Tchamwa-Wielgosz (TW), is a dissipative method designed to capture oscillations 
to a greater extent as compared to the CD scheme. It involves a damping parameter which 
can be altered to increase or decrease the damping capacity of the scheme. The internal 
force in TW scheme is lower than the internal force in CD method, which leads to damping 
of this scheme. The TW scheme with damping parameter equal to 1 will behave exactly 
the same as CD scheme as it has no numerical dissipation. Variation of different damping 
parameters depends on different cases and the reader is referred to [3] for more details.  
 

(5) 

(3) 

(4) 

(6) 
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The basic equations for the TW scheme as taken from [3] are, 
 

f n+1 = an+1 + 2ξω ∙ vn+1 +  ω2 ∙ dn+1 

vn+1 = vn + ∆t ∙ an 

dn+1 = dn + ∆t ∙ vn + φ∆t2 ∙ an 

 
Though the TW scheme being first order accurate it damps the overshoots quiet 
comfortably and quickly. The damping in TW scheme also depends on the size of the time-
step. The critical time-step for this method is globally lower, hence this may be a bit 
expensive method. One important thing about this method is, higher the frequencies are, 
more dissipative this TW scheme is. The TW scheme smoothes higher frequencies more.  
 

2.3 Critical Time Step: 

The critical time-step which is also called as the stable time-step, is an important 
parameter in explicit time integration. This is a conditional stability which by default 
comes with explicit schemes. If the time-step of a simulation exceeds the critical value, 
then the solution grows unboundedly. The stable time-step is given by,  

∆t = α ∆t𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙        𝑎𝑛𝑑       ∆t𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≤ min
𝑙𝑒

𝑐𝑒
  

where 𝑙𝑒 is the characteristic length of element e, 𝑐𝑒is the current speed of wave in 
element e, α is a reduction factor that accounts for the destabilizing effects of 
nonlinearities (0.8 ≤ α ≤ 0.98). The mesh time step is obtained from element time steps. 
For each element, an element time step is calculated and the minimum element time step 
of all is chosen as the mesh time step. 
 
Now, having studied some points about these explicit time integration schemes, let us see 
how they behave when they are used to solve problems. First, the schemes would be 
validated for a simple cantilever beam test and on obtaining successful results in that, a 
complex engineering problem would be analysed with those schemes to check the 
performance. 
 

3 Cantilever Beam Test: 

The CD and TW solution schemes described earlier would be used to analyze the effect of 
load on a cantilever beam. An explicit dynamic analysis of the cantilever beam is made to 
watch its out-of-plane bending. As regular as it seems, the boundary conditions applied 
to the cantilever beam are, fully supported at one end, and concentrated one step load is 
applied at the free end. The dimensions of the beam are 6000 x 200 x 100 mm. A mesh of 
6 elements is played initially. 
 
As far as the results are concerned, both the solution schemes are compared for different 
parameters and the behavior is observed. Also, the results have been compared to a 
reference solution taken from [7]. Different results such as comparison of the 
displacement-time curves for the solution schemes are seen, comparison between 
different mesh refinements for a particular solution scheme have been done, comparative 
difference in implementation of schemes with sequential computation and parallel 
computation of processors has been observed, comparison of different time-steps 
required for the problem etc. all these things have been analyzed in the beam test. 

(7) 

(8) 

(9) 

(10) 
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3.1 Results: 

In this section, the cantilever beam case has been analyzed in different ways for the 
comparison of both the solution schemes. 

 
Fig. 2: Comparison of Different Time-step sizes 

 
Fig. 2 shows the plot of different time-step sizes used in computation by the CD scheme. 
The default critical time-step size is 1.4e-5 s which is taken from the reference solution 
paper [7]. The critical time-step size can also be verified by running the simulation by 
using just 1 time-step. The value which it gives is 1.46904e-5 s. The other time-step sizes 
plotted in the graph are, one whose value is below the critical limit (1.4e-6 s) and the 
other which is above the critical limit (1.4e-4 s). It is very important to note that, in 
explicit time integration the step size should always remain less than or equal to the 
critical time-step size. As observed from the plot, since the time-step size of 1.4e-4 s is 
greater than the critical limit of the problem, the result is totally unstable represented by 
the vertical line on Y-axis. The rest 2 time-step sizes yield good results. 
 

 
Fig. 3: Comparison of CD and TW solution schemes with reference solution 
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Fig. 3 shows the displacement-time comparison between the reference solution, CD 
scheme ad TW scheme. It is observed that both the schemes are in range with the 
reference solution which concludes that the results obtained are stable. 
It is observed that with the default parameters, both the CD and TW schemes achieve total 
simulation time of 0.5 s in 35715 time steps. The number of processors used for running 
the simulation were 4. 

 
Fig. 4: Plot for different Damping parameter values for the TW scheme 

 
Fig. 4 shows a plot for different values of the damping parameter used in the TW 
scheme. The damping parameter is symbolized by PHITW. 

 
Fig. 5: Comparison of different mesh levels (refinements) for CD scheme 

 
Fig. 5 represents the displacement-time curve for different mesh refinement levels for 
the CD scheme. The different mesh levels have also been compared with the reference 
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solution indicated by ‘Pagani2014’ in the plot. In the graph, the L0 mesh level is computed 
with the time-step size of 1.4e-5 s, while the L1 and L2 mesh levels have been computed 
with size of 1.4e-6 s. It is very important to note that, as we decrease the element size, i.e 
refine the mesh, the time-step size also should be reduced or else we get unstable 
solutions. The behavior can be seen in the curve. 
 
Fig. 6 to Fig. 8 represent the GiD visualizations for different mesh levels (refinements). 
 

                     
Fig. 6: Visualization for Level 0 mesh 

 

   
Fig. 7: Visualization for Level 1 mesh                                  Fig. 8: Visualization for Level 2 mesh 

 
 
 

 
Fig. 9: Comparison for CD scheme using different number of cpu’s 

 
To compare if the results are same with sequential computing (i.e using 1 cpu for 
computation) and parallel computing (i.e using 4 cpu’s), the graphs have been plotted in 
Fig. 9 for the CD scheme. And as expected, the curves exhibit exactly the same behavior 
thus proving that the scheme works totally well even if we change the number of 
processors used. 
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The load applied on the cantilever beam causes its deflection at the free end which is 
shown in Fig. 10. The results have been visualized in GiD. The maximum displacement 
can be observed at the right-most end where the load is applied. 

   

Fig. 10: Deformed cantilever beam 

 
Looking at the results and dynamics shown, we can predict that the solution schemes 
work well for the implemented case. 
 

4 Low Velocity Impact Test: 

Now, the CD & TW solution schemes have been tested for a more complex engineering 
problem in order to verify its robustness. In this section, a low velocity drop-weight 
impact test has been performed. This simulation considers the impact of an impactor on 
a structure which is taken as plate. The impactor which is taken as a rigid body is dropped 
from certain height above the plate, and its impact on the plate is observed. Now, the 
height from which the impactor should be dropped is given by a simple basic calculation 
involving the potential energy because of the height given by,   

h =
E

mg
 

where E is the energy required to perform the impact test, m is the mass of the impactor, 
g is the gravitational acceleration taken as 9.81 m/s2. We consider the gravity loads in this 
simulation test as the weight of impactor is also considered in the parameters. The 
impactor is specified with an initial velocity before the impact given by,  

v = √
2E

m
 

With the explicit solution schemes used, the Dynamic transient analysis is performed for 
this impact simulation test. The impact test is performed for an Energy of 10J since it is a 
low velocity impact test with the impact time of 5 ms and keeping a gap of 0.1 mm 
between plate and the impactor. The radius of rigid body impactor is 8 mm while its mass 
is taken as 2 kg. The material used for plate is T800/M21 laminated composite. Also, intra-
laminar damage model is used for prediction of fiber/matrix failure and cohesive 
elements for delamination prediction. 

(11) 

(12) 
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The maximum force by which the impactor hits the plate is somewhere around 5200 kN 
which can be seen in the force-time curve (Fig. 17) shown in the succeeding sections. 

 

Fig. 11: Impact test set-up showing plate and impactor 

 

Fig. 12: Impactor Geometry 

4.1 Results - Visualizations: 

Fig. 13 represents the output files as visualized in GiD for the impactor and the plate. 
These have been plotted for the TW scheme. As observed, the impact has been done at 
the center of the plate where maximum displacement has been observed. 

   
Fig. 13: Contour fill of plate for displacement after the impact 
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The deformations have been visualized with a deformation factor approximately near to 
100 in GiD in Fig. 15. 
 

                

                               

Fig. 14: Undeformed plate before the impact  

               

                               

Fig. 15: Deformed plate after impact 

 

4.2 Results – Graphs: 

In this section, we compare different plots involving important parameters for the CD and 
TW solution schemes. For this case, a total of 626 cpu’s have been used for the analysis in 
MareNostrum 4 using Alya FE code. The damping factor for the TW scheme has been set 
to 1.033. 

  
    Fig. 16: CD & TW comparison on Energy-Time plot      Fig. 17: CD & TW Comparison on Force-Time plot 
 
Fig.16 shows the plot of energy vs time for both the solution schemes. From the plot it 
can be observed that both the schemes show almost the same behavior in dissipation of 
energy. Theoretically, the energy by which impact has been performed (which is 10 J) 
should be returned back after the impact. This means that if the curve starts from zero, it 
should end back at zero. But, as observed from the plot, it can be noticed that not all 
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energy used for the impact is returned back. This is because of the basic reason that, some 
of the energy is dissipated in this impact simulation due to damage. Hence, in the graph 
we can see that there is some difference in the energy level at start and the energy level 
at end of the impact. This difference is the dissipated energy which is around 1 J. 
 
Fig. 17 shows the comparison of behavior of both the solution schemes for force 
evolution during the impact with the specimen results obtained from experimentation. It 
is noted that both the schemes exhibit similar behavior for the force evolution over given 
time. The maximum possible force reached in the impact is approximately around 5200 
kN which can be identified from peak of curve in the graph. The curve increases as the 
impact takes place. And then we can observe a fall in the curve which is a representation 
of the impactor returning back to its original position after the contact has happened. 
 

  
   Fig. 18: CD & TW comparison on Force-Disp. plot      Fig. 19: CD & TW Comparison on Velocity-Time plot 
 
Fig. 18 shows the force vs displacement behavior of the CD and TW schemes. It can be 
observed that as the force increases the displacement also increases which seems logical. 
 
Fig. 19 represents the evolution of velocity with time for both the solution schemes. As 
easy to observe, it can be seen that both the schemes make no difference in showing the 
velocity behavior of the impactor. As mentioned earlier, the impactor is specified with an 
initial velocity in order for the impact to take place. The initial velocity specified is 3.162 
m/s. Hence, the curve starts from initial prescription and not zero, and as the impact 
comes to an end the velocity also reduces to constant. 
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5 Conclusions: 

1. In this report, a review of some explicit time integration solution schemes such as 
Central Difference scheme and Tchamwa-Wielgosz scheme was done and these 
solution schemes were tested for different examples.  

2. From the results obtained, it can be verified that the dynamics were well organized and 
the solution schemes yielded good results for simple case of cantilever beam as well as 
the complex problem of drop-weight impactor test.  

3. It is very important to note that, in the explicit time integration, critical time-step size 
of the computation plays a very important role. In order to be sure that the analysis 
should work well with the explicit schemes, it is always necessary that the time-step 
size given to the solver should never be more than the critical time-step size required 
for the solution. If it exceeds the critical limit, then the kinematics are not well 
predicted and the solution becomes unstable.  

4. But, one more thing should be taken care of is, the time-step size should not be very 
small, because the smaller the time-step size is, the more the cost of computation 
would be. Hence, it is very necessary to find out a suitable time-step size which is also 
closer to and smaller than or equal to the critical time-step size of the solution. This is 
in regard to have good results at a suitable computational cost.  

5. Numerical dissipation is a tool to be used with precaution as it can lead to a loss of 
accuracy when dissipation increases. As dissipation increases, number of time steps 
increases, thus computational time increases and therefore the method becomes more 
expensive.  
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