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1 Introduction
Characterizing the mechanical properties of living tissues has for long been of major

importance for clinical medicine. A clear reason for that is the transition of the these
properties as the tissue becomes cancerous, facilitating diagnoses through palpation and
other means [1]. On the other hand, for surgical medicine, the widening in the material
property spectrum makes the planning and action of the surgery more arduous. The
unpredictability of the tissue response as it’s manipulated raises the chance of mistakes
in procedures that could already be difficult due to complicated access, for example.

Most recently, with the ongoing development of 3D-printing, surgical training with 3-
D printed replicas are becoming a reality. Thus, the fair characterization of the material
properties is again crucial to provide the surgeons a comparable experience [2].

Under this context, the present work aims on providing an algorithm to extract the
material properties of the tissue to be manipulated using simple indentation tests made
on the target and the geometry as inputs. From the force response of the indentation
test, the algorithm applies the so called “Inverse Finite Element Method” to provide the
required parameters for the 3D-printing of the training models.

1.1 Tumor Properties
The general clinical description of tumors is that it’s usually stiffer than the normal

tissue from which it arose [1]. One of the reasons this might happen is the abnormal
communication of a cancer cell to it’s environment. The extracellular matrix (ECM),
a network on the vicinity of the cell composed by collagen, enzymes and glycoproteins
among other macromolecules, sustains the cell both structurally and biochemically [3].
In the presence of cancer, the signaling in and out of the cell is affected, resulting in the
stiffening of the ECM. On the other hand, a stiffer environment affects the motility and
proliferation of the cells, completing a feedback loop that elevates the spreading danger
of a tumor and, thus, a stiffening of the tissue [1].

The stiffening of the ECM comes partially from the imbalance of the production and
degradation of its proteins, which leads to deposition of collagen. However, although
the tissue as a whole stiffens with the presence of cancer, malignant cells are generally
softer.

1.2 Healthy and cancerous tissue properties
Biological tissues are complicated to describe, given that, not only they’re extremely

diverse, but also their mechanical properties depend on time (strain rate, age of tissue),
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moisture and often change after death [4].
Fung (1981)[5] provides a comprehensive theory on bioviscoelastic solids and a relevant

compilation on mechanical properties and the nonlinear relationship between stress and
strain for several different (healthy) tissues. One example is the heart muscle, from
which the tensile test is presented on Figure 1.1a.

(a) Tensile test response of the papillary mus-
cle of a rabbit’s heart. Circular dots refer
to “high speed” tests as for the triangles re-
fer to loading and unloading at small con-
stant rates

(b) Loading and unloading on ureter muscle
under the “passive” and “active” states

Figure 1.1: Peculiar tissue responses [5]

As we can see, the tissue is rate dependent, presents a nonlinear elastic behaviour
and follows different paths under loading and unloading. Some tissues as the striated
muscles also present the “passive” and “active” variables. The contractile fibers can
alter significantly the response to mechanical action such as illustrated on Figure 1.1b.
Bones, on the other hand, behave similarly to many engineering materials. It has an
linear elastic behaviour as seen on Figure 1.2 (17.5 to 18.9 GPa Elastic Modulus on
humans) and is relatively brittle, specially in its dry form (fails at 0.4% strain, while
wet bone fails at 1.2).

Krouskop et. al (2013)[4] presents data on healthy and cancer tissues of breast and
prostate. Several samples were submitted to compression tests and showed the strong
nonlinearity of the elastic response of living tissues, specially for cancerous ones. The
elastic modulus is low at low strain but grows rapidly for higher strain levels, as Figure
1.3 shows. At a compressed stage, cancerous tissues were found to be to be up to ten
times stiffer than the surrounding tissues such as fat.
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Figure 1.2: Stress-strain curve for human femoral bone [5]

Figure 1.3: Dependence on Pre-Compression for different tissues (DCa = Ductal Carci-
noma, IDCa = Invasive and Infiltrating ductal carcinoma). [4]

2 Inverse Finite Element Method
As shown on section 1.2, living tissues present themselves in a wide variety of me-

chanical properties. Evidently, simplifications are required to model such materials.
According to Liu et. al [6], it’s valid to assume the hypothesis of incompressibility

(Poisson ν ≈ 0.5) and homogeneity when characterizing solid organs. Soft tissues (such
as fat, skin, kidney, liver and other organs) are also modelled as hyperelastic via strain
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energy functions such as the Arruda-Boyce.
With the given assumptions, the tissue (or combination of tissues) can be modeled

aiming to replicate the results from experimental data obtained from the real tissue.
The inverse Finite Element Method is an algorithm that attempts exactly that. That is,
instead of solving for forces or displacements given material properties, the properties
themselves are determined by iteratively minimizing the difference between simulation
and experiment.

2.1 Arruda-Boyce Hyperelastic Model
Following the procedure on [6, 7, 8], the chosen hyperelastic strain energy function

was the Arruda-Boyce (AB) model given in Equation 2.1 (already considering incom-
pressibility).

W = µ

5∑
i=1

Ci

τ 2i−2
m

(I i1 − 3i) (2.1)

where I1 =
√

(λ2 + 2
λ
), τchain =

√
1
3
(λ2 + 2

λ
), C1 = 1/2, C2 = 1/20, C3 = 11/1050,

C4 = 19/7000 and C5 = 519/673750. τm is equal to the chain stretch at which the stress
increases dramatically with the deformation and µ is the shear modulus.

As stated, the inverse method aims to find the material parameters to match the
response of the finite element model with the experiment. In the case of the AB model,
the chosen parameter to be iteratively updated is the shear modulus µ (the locking
stretch is assumed to be constant).

2.2 Iteration under Newton-Raphson
The first step of the method is to run the simulation with an arbitrary initial parameter

to compare the response with the experimental data. The comparison is made between
force-displacement plots via squared difference:

ek =
1

n

n∑
i=1

(Fmi
− F k

FEi
)2 (2.2)

where n is the number of experimental points (the FE response is interpolated to provide
data at the same displacement points), Fmi

is the experimental response, FFEi
is the

finite element response and k is the current iteration step.
According to the Newton-Raphson method the new parameter µ can be calculated as

follows:

µk+1 = µk − J−1ek (2.3)
where J would be the jacobian of the function. However, the jacobian takes no analytical
form for the FE method, thus an approximation is inserted in the equation, with α being
set to 1 for uniaxial indentation and 0.5 for rolling indentation.
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µk+1 = µk − α
(µk − µk−1

ek − ek−1

)
ek (2.4)

3 Uniaxial indentation
The test of uniaxial indentation can be used in combination with the inverse FE

method to obtain properties of single tissues. The present chapter is based on the work
of Sangpradit (2013) [9].

3.1 Experiment
The experimental data is drawn from a simple indentation test as presented on Fig-

ure 3.1. The reaction force on the indenter is measured and plotted against the axial
displacement of the spherical wheel. The tested material is a cube of 15x15x15 mm3

made of silicone (RTV 6166, General Electric, µ = 1300), which is said to have similar
mechanical properties as some biological tissues.

(a) (b)

Figure 3.1: The experiment (a) and it’s response (b). Indentation: Spherical wheel with
8 mm in diameter at INSTRON 5565 machine. Measurement: ATI Nano17
force sensor (resolution = 0.003 N, sampling rate = 100 Hz)

3.2 Model
The 3D model of the silicone was assumed to be incompressible and homogeneous.

The selected strain energy function to feed the hyperelastic model was the Arruda Boyce
(AB). The indenter on the other hand was considered to be “discrete rigid” with 8 mm
of diameter.
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The interaction between both parts is set as a surface to surface contact in which the
indenter goes 6 mm deep at the center of the silicone probe. The contact is frictionless.

Naturally, the bottom of the silicone was fixed to the ground. A reference point was
located on the center of the indenter sphere and assigned a vertical displacement of 6
mm downward, to be made in 1 second. At the same reference point, the reaction force
was later analysed.

The indenter was meshed with 568 R3D3 rigid elements, while the cube was meshed
with 1000 elements of 8-node linear brick, reduced integration and hourglass control
C3D8R.

(a) (b)

Figure 3.2: Isometric (a) and cut (b) view of the indentation.

3.3 Results
Once the model was developed, a Matlab/Unix code was written to automatically run

the simulation, initially with a user-defined shear modulus, and perform all the steps
explained on chapter 2. The code performed well and was able to converge the shear
modulus to a value quite close to the real one, as it can be seen on Figure 3.3.

(a) (b)

Figure 3.3: Force-displacement curves for each iteration and experimental data (a) and
shear modulus convergence (b). Initial data was µ0 = 2000 and µ1 = 2200
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4 Rolling Indentation
The rolling indentation test aims to discover the properties of a material embedded

in another one. Ultimately, this could allow tumors to be characterized while still inside
another tissue. The present chapter is based on [6, 7, 9].

4.1 Experiment
The experimental data is drawn similarly from the uniaxial indentation. However,

once the indenter has reached the desired depth in the tissue, it starts rolling sideways
until it has swiped the whole length of the tissue. This allows us to analyse the measure-
ment response in respect to the horizontal displacement of the indenter. The presence
of another tissue, with different properties, express itself by a peak (or valley) in the
reaction force plot. The experimental setup and corresponding measurement is shown
on Figure 4.1

On the presented case, the used materials simulating tissue and tumors are a block
(30x150x50 mm3) of silicone and three small cylinders (10mm of diameter, 20mm of
height). Both of them are modeled via the AB model with µ = 4980 and µ = 73400 for
the silicone and rubber respectively.

(a) (b)

Figure 4.1: Experimental setup (a) and Reaction force measurement (b)
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4.2 Model
The 2D model maintained most of the characteristics of the uniaxial indentation

model. That is, incompressible and homogeneous materials, a discrete rigid indenter of
8 mm, a frictionless contact between the indenter and the silicone and a fixed bottom
of the silicone sample.

The simulation is done in two steps, first the indenter reaches the desired depth
(constrained at every direction except from the downward movement) and then moves
laterally. A lateral velocity (and a correspondent rotational velocity to prevent sliding)
was assigned to the indenter in the second step, allowing it to run the whole lenght in 1
second (different velocities did not alter the result, due to the not introduction of viscous
effects).

The probe was modeled as a reduced version of the one presented on Figure 4.1. A
length of 100mm was modeled contemplating the last two embedded cylinders. The
silicone was, thus, modelled as a rectangle with two holes, whereas the tumors were
represented by circles. The interaction between silicone and tumors was set as a “tie
interaction”, in which the surfaces in contact are tied, meaning the “shared” nodes must
move equally.

The indenter was meshed with 32 R2D2 rigid elements, the silicone was meshed with
5066 elements of four-node bilinear plane stress quadrilateral elements CPS4R and the
tumors were meshed with 181 elements of the same type each.

4.3 Results
The Matlab/Unix code was, then, adapted to the rolling indentation model. The new

algorithm differentiate itself from the uniaxial indentation one basically on the error
function. According to Liu et. al (2014), for the rolling indentation, a better suited
error function states:

ek = |max(F FEk
− F free)− max(FM − F free) (4.1)

where F free is the force response considering no embedded tumors, that is, as if the
probe was made exclusively of silicone (with no holes in it).

This way, the subject of comparison is solely the peak of each curve. This avoids di-
vergence problems caused by some significant differences between model and experiment
given by surface geometry and indentation path irregularities.

Again, the code performed well as was able to reach the desired value in a few itera-
tions. Figure 4.2 depicts the model and shows the reaction force felt by the indenter at
each horizontal position.
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Figure 4.2: Rolling indentation model results. Initial data µ0 = 50000 and µ1 = 30000

The convergence and a better look at the peak caused by the tumor’s presence can be
seen in Figure 4.3

(a) (b)

Figure 4.3: Reaction force at tumor position (a) and Convergence of shear modulus (b)

However, for the rolling indentation, it can only be said that it qualitatively matches
the experiment. The “experimental points” used to test the algorithm were actually
drawn from a simulation of the model using the desired shear modulus. The real ex-
perimental points couldn’t be used due to the difference between the experimental and
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simulated F free reaction forces. As it can be seen on Figure 4.4, the simulated F free

is almost 1N higher than the obtained on the article, forbidding the comparison to be
made between the peaks.

(a) (b)

Figure 4.4: Simulation (a) Article data (b)

5 Conclusion
The inverse Finite Element Method has proven to be a powerful tool in enabling

characterization of materials of difficult access. The good results obtained in simple
models and the agreement already obtained in real organ studies such as from Liu et. al
(2014), prove that this method could be an ally in surgery planning in the future. The
main difficulties, however, lie on the fact that it’s still quite restrictive on tissue kinds.
As we’ve seen, several tissues present characteristics such as anisotropy that cannot be
ignored. Additionally, tumors are also known to change their properties once strained
to a certain level [4] and the sensitivity of methods such as the one presented in chapter
4 is limited. If the tumor is somewhat deep, the method could prove to be useless (more
than 2.5cm below surface). Furthermore, the challenge lies as well in the capability of
a printed material to replicate hyperelastic properties. Thus, further investigation is
needed to provide a reliable method for surgeons to apply on a daily basis.
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