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1.Introduction

Stampack GmbH develops advanced and efficient simulation software for all sheet metal forming
processes. It is suitable for tool designers and method planners to simulate body in white parts, trim
panels, covers and trim strips in vehicle interiors, connecting components and support plates, metal
containers, heat shields and aluminium foils etc.

This wide range of applications in the industry demand highly accurate and also short computation
time. When dealing with complex problems, in order to obtain accurate solutions, a fine mesh with
really small elements is required. Since Stampack uses an explicit method to solve the equations,
time increment (dt) is constrained by the element size because explicit methods are unstable for
time increments greater than a certain critical time.  Then, having small  dt’s makes the simulation
really time consuming.

To overcome this  situation,  different  methods can be used,  for instance,  selective mass  scaling
which artificially increases mass for the smallest elements so as to stabilise the solution for higher
dt, or Dynamic Condensation (DC) which is a Model Order Reduction method that makes use of a
coarser mesh with bigger elements to obtain a solution and then, the solution is projected to the
actual fine mesh. This allows to use the critical time from the coarser mesh to obtain the solution in
refined mesh.

In this work, Dynamic Condensation method will be implemented and its results analysed to study
how this method performs to increase the critical time.
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2. Objectives

The main objective of this work is the implementation of the Dynamic Condensation (DC) method
in Stampack. 

To achieve the goal, two main tasks are required: first, to verify that the auxiliary algorithms needed
to implement Dynamic Condensation (DC) method work properly and all information required by
DC is properly set. And secondly, to test the DC method itself in order to increase the critical time
of a given problem mesh.
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3. Dynamic Condensation

Dynamic Condensation is a Model Order Reduction method [2] which allows to solve a problem
with a higher critical time than the actual critical time of the mesh. Defining the original mesh as
the Fine mesh and a coarser mesh as the Coarse mesh, all nodes can be classified as:

Reduced nodes (or coarse nodes): Defined as all nodes belonging to the Coarse mesh 

Condensed nodes (or fine nodes):  additional nodes from the Fine mesh which are not in the 
          Coarse mesh

With  the  previous  definitions,  Dynamic  Condensation  method  can  be  regarded  as  a  two  step
problem where first a Reduced problem is solved in the coarse nodes and then, the Global solution
is obtained by solving in the condensed nodes. Those two problems are stated as follows [3]:

1. Reduced problem:

First, forces from the condensed nodes are transferred to the coarse nodes by using the shape
functions of the coarse elements:

                     eq.(1)

Then, the solution for the reduced problem comes from solving the following equation:

         eq. (2) 
 

Where Mm is the lumped mass at the reduced nodes computed by considering the coarse  
mesh and Fm is the forces at coarse nodes.

2. Global problem

Average acceleration is computed by transferring the accelerations obtained in the Reduced 
problem from the coarse nodes to condensed nodes as follows:

 eq. (3)
                                           

then, the solution comes from solving: 

                 eq.(4)

where lumped mass Mn at condensed nodes must be set considering the target critical time. 
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4. Implementation

The most  challenging part  on the implementation of Dynamic Condensation method is  not  the
method itself but the indirect tasks required by this method. Those tasks are, for instance, mesh
coarsening, transferring the information from node to node, the identification of the set of reduced
and condensed nodes, etc. 

For general problems, all those tasks must be done by complex algorithms in order to complete
them successfully  and in  an  efficient  way [1].  Since  it  is  beyond the  scope  of  this  study,  the
implementation was limited to simple problems where regular-structured rectangular meshes are
used.

In this section, giving that those auxiliary tasks are critical to ensure that DC method is correctly
implemented,  first of all it will be verified that those indirect tasks work properly and finally, some
details on the implementation of the Dynamic Condensation itself will be mentioned. 

4.1 Auxiliary tasks

The two main task that must be verified before applying DC method considered to be: 

Mesh Coarsening:  From a fine mesh, a Coarse mesh is generated by building its  connectivity
matrix  (Tcoarse)  and  a  list  of  reduced  node’s  ID  and  coarse  element  ID  where  it  belongs
(reducedNodesList).

Information transfer: List  identifying  which reduced node sends to  each coarse node and its
weight.

After  the  implementation  of  those  tasks,  several  tests  have  been  done  to  ensure  its  correct
implementation. Results are shown as follows:

4.1.1 Mesh Coarsening

The following test shows the results obtained after applying the coarsening algorithm for different
original meshes and coarsening factor H (relation between coarse and original element size). 

The following figures show the obtained meshes with the coarsening algorithm:
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Figura 1: Original 24x48 mesh. Figura 2: Coarser 12x24 mesh, 
H=2.

Figura 3: Original 24x48 mesh Figura 4: Coarser 6x12 mesh, 
H=4.
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Figura 5: Original 12x24 mesh. Figura 6: Coarser 6x12 mesh, 
H=2.

Figura 7: Original 12x24 mesh. Figura 8: Coarser 3x6 mesh, H=4.



In figures 1-10, it can be seen that coarsening algorithm works properly for any initial mesh and any
coarsening factor (here H = 2 and H = 4 although other factors have been successfully tested). 

Finally, to check the correct identification of reduced nodes, each node in  reducedNodesList has
been plotted overlapped with the coarse mesh. Each white dot corresponds to a reduced node. 
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Figura 9: Original 2x4 mesh. Figura 10: Coarser 1x2 mesh, 
H=2.
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Figura 11: Original mesh of 24x48 - 
Coarser 12x24 mesh, H=2, with reduced
nodes overlapped (white dots).

Figura 12: Original mesh of 24x48  - 
Coarser 6x12 mesh, H=4, with reduced 
nodes overlapped (white dots).

Figura 13: Original mesh of 
12x24 - Coarser 6x12 mesh, H=2, 
with overlapped condensed nodes 
(white dots).

Figura 14: Original mesh of 
12x24 - Coarser 3x6 mesh, H=4, 
with overlapped condensed nodes 
(white dots).
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Figura 15: Original mesh of 
2x4 - Coarser 1x2 mesh, 
H=2, with overlapped 
condensed nodes (white 
dots).



In figures 11-15, it can be checked that all reduced nodes are correctly identified and added to the
reducedNodesList.

4.1.2. Information transfer

Information transfer algorithm takes as starting point the information obtained at the coarsening
mesh  algorithm.  Having  checked  that  the  first  task  is  properly  implemented,  results  for  the
information transfer algorithm were verified by checking: Weight values and Node to node transfer.

4.1.2.a. Weight values

For H=2, due to the position of reduced nodes, all weights must be w = 0,5 or w = 0.
Writing all weights, it is possible to visually check that this condition is fulfilled.
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Figura 16: Console screenshot showing equation IDs and weights.



For H = 4, all weights must be w = 0,25, w = 0,50, w = 0,75  or w = 0.

Regarding weights too, adding them all, it has been seen that the results is equal to 3* # reduced
nodes, being 3 equal to number of degrees of freedom. This condition must be verified because if it
wasn’t,  that  would  mean  that  information  is  overweight  if  weight  per  node  is   >  1  or  under
considered if  weight per node is < 1.

4.1.2.b. Node to node transfer

For small meshes, list of which reduced nodes sends to each coarse node has been verified manually
by writhing  the  whole  Vinfo list.  For  bigger  meshes,  this  task  is  impossible,  so  two auxiliary
subroutines were used: 

checkInfo: taking as input a coarse node ID, writes to a “.msh” file the connectivity matrix for all
coarse elements this node belongs to and ID+coordinates of all reduced nodes sending information
to that coarse node.

ReducedSendsTo: taking as an input a reduced node ID, writes all coarse node it sends information
and its weight.
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Figura 17: Console screenshot showing equation IDs and weights.



CoarseSendsTo: taking as an input a coarse node ID, writes all reduced nodes its sends information
and its weight or, what is the same, all reduced nodes it receives information from.

With the previous subroutines, it is easier to check for a given node if the information is being send
properly. 

Below are showing results for a random coarse node ID = 525 for a coarsening facto H of 2 and 4:

It  must  be  remarked  that  checkInfo subroutine  uses  information  obtained  from  task  1:  mesh
coarsening since  it  uses  listReducedNodes  while  reducedSendsTo and  coarseSendsTo uses
information from  Vinfo, obtained in task 2:  information transfer. Then, using this tools we can
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Figura 19: H=2 - Results obtained with 
checkInfo for node ID=525.

Figura 20: H=4 - Results obtained with 
checkInfo for node ID=525.

Figura 18: H=2 - Results obtained with 
ReducedSendsTo and CoarseSendsTo 
subroutines for node ID=525.

Figura 21: H=4 - Results obtained with 
CoarseSendsTo subroutine for node ID=525.



easily check if the information is properly sent for a given coarse node and, at the same time, prove
that both tasks are properly implemented.

4.1.3. Other considerations

The correct implementation would have been to create a new set of elements for the coarse mesh,
that would allow to compute coarse mass for the coarse nodes and also to determine the critical time
of the coarse mesh. However,  since the problem to be solved is  really simple,  it  was easier to
introduce  those  values  manually  on  the  code,  having  to  change  coarse  mass  and  critical  time
accordingly to which original mesh and coarsening parameter is being used.

4.2. Dynamic Condensation

Two different  versions  on  Dynamic  Condensation  are  implemented  in  this  study:  the  first  one
presents  a  slightly  modification on the  procedure  proposed by the method and the  second one
following exactly all steps accordingly to the method.

4.2.1. Dynamic Condensation v1

In the Dynamic Condensation method, the acceleration for the coarse nodes is directly the solution
obtained  in  the  Reduced  problem.  Let’s  call  this  acceleration  “aclrcoarse”.  Regarding  the
acceleration on condensed nodes, its accelerations can be understood as “aclrcoarse” transferred
from coarse nodes to fine nodes (average acceleration) plus the acceleration one would compute
normally if no DC method was applied but with a modified lumped mass.

In this version, the solution for the final acceleration “aclr” was obtained as follows:

Step 1: Compute acceleration normally (aclr) as if no DC was considered.
Step 2: Compute coarse acceleration (aclrcoarse) in all coarse nodes accordingly to the method
Step 3: Transfer aclrcoarse from coarse nodes to fine nodes
Step 4: Compute final acceleration according to the following rules:

For coarse nodes:               aclr = aclrcoarse
For condensed nodes:         aclr = factor * aclr + aclrcoarse

It must be noticed that in this version, the lumped mass matrix for reduced nodes Mn is used to
compute the normal acceleration, while in the method this mass must be set big enough according
to the target critical time. This role is played by factor which multiplies aclr, since aclr = Fn / Mn

factor can be understood as a factor which modifies the mass matrix accordingly to the target
critical time.

4.2.2. Dynamic Condensation v2

In this version, a modification was introduced in the method. Here, the steps followed are exactly
the same fro step 1,2 and 3, but step 4 now reads:

Step 4: Compute final acceleration according to the following rules:

For all nodes:         aclr = factor * aclr + (1-factor) * aclrcoarse
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5. Results

The example chosen to check results obtained with Dynamic Condensation is chosen taking into
consideration several things.

First of all, the implementation limitations imposed by the mesh coarsening algorithm forces this
example to have a specific geometry, in this case, a rectangular Blank.

Secondly, the physical problem must be simple enough so as its solution is intuitive and easy to
analyse. By doing this, if the solution provided by Dynamic Condensation method is wrong, it is
much easier to intuitively identify the anomalous behaviour and fix the problem which causes it.

Finally, the example must not include special features such as autoRefinement, remeshing, blank
cuts, etc. since it could interfere with DC implementation and in case there are some error, it would
be harder to debug.

With  the  previous  considerations,  the  example  chosen to  check results  obtained with  Dynamic
Condensation is a simple example (without pad) of a rectangular blank under bending produced by
a punch acting in the z-direction.  Figure 22. shows its geometry and the final configuration for the
tools.
 

The verification of the results is done by means of a reference solution obtained without Dynamic
Condensation  (Figure  23-24).  A  visual  inspection  is  done  to  the  dynamics  and  final  stage
deformation. Additionally, a node from the right corner is chosen to obtain the numerical values for
the displacements at this node.
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Figura 22: Blank, punch and pad’s geometry for 
the pure bending problem and final configuration 
for the tools.



The following tables show the numerical value for displacements on the node in the right corner
obtained without dynamic condensation (Reference solution in Table 1.) and with DC for different
coarsening parameter H and corresponding critical time.
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Figura 23: Reference solution computed 
by the solver in Visual Studio.

x y z |r|
Stampack -0,00309 -1,41962 -17,75684 17,81350

Visual Studio -0,00243 -1,40568 -17,74860 17,80417

Tabla 1: Reference solution obtained with Stampack and Visual Studio Solver.

factor x y z |r|
0,6 -0,00363 -1,06787 -15,70636 15,74262
0,3 -0,00495 -1,06530 -15,60920 15,64551
0,25 -0,00716 -1,06342 -15,62206 15,65822
0,2 -0,00602 -1,06982 -15,66716 15,70365
0,1 -0,00233 -1,10913 -15,70800 15,74711
0 -0,10006 -1,17605 -17,43010 17,47002

Tabla 2: Displacements and total displacement for different factors when H = 2, 
dt factor = 1,8 and method version v = 1. 

Figura 24: Reference solution computed by 
Stampack.



When the coarsening factor H = 2, i.e. coarse elements are twice bigger than the original ones, and
the critical time has been almost doubled, it can be seen that DC v2 performed well once a certain
value for the factor which weights coarse and fine accelerations is achieved. However, the v1 failed
to obtain a good numerical solution for the displacements on the corner node with the exception of a
factor = 0, which corresponds to only the solution on the coarse mesh linearly extrapolated to the
fine nodes.

Regarding a coarsening parameter H = 4 to target a four times bigger critical time, no good solution
was found for any of the versions implemented and for any value of the factor. The reason for this
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factor x y z |r|
0,7 divergence
0,6 divergence
0,55 divergence
0,54 divergence
0,53 0,03615 -1,36832 -17,34583 17,39976
0,52 0,00833 -1,38976 -17,35148 17,40705
0,5 -0,00311 -1,37634 -17,08668 17,14202
0,3 -0,00248 -1,32353 -16,85565 16,90754
0,2 -0,00499 -1,22257 -16,63520 16,68007
0,1 -0,00320 -1,19000 -16,26270 16,30618
0,05 0,00058 -1,18223 -16,18548 16,22860

0 -0,09930 -1,17677 -17,42838 17,46834

Tabla 3: Displacements and total displacement for different factors when H = 2, 
dt factor = 1,8 and method version v = 2.

factor x y z |r|
0,2 div
0,15 div
0,1 -0,01226 -0,98003 -13,67838 13,71345
0,08 -0,01286 -0,89930 -13,67915 13,70868

0,0625 -0,01134 -0,91040 -13,69292 13,72316
0,01 -0,02634 -0,94746 -13,62023 13,65317

0 -0,03974 -0,70406 -16,72078 16,73564

Tabla 4: Displacements and total displacement for different factors when H = 4, 
dt factor = 3,8 and method version v = 1. 

factor x y z |r|
0,4 problems detected
0,2 divergence
0,15 divergence
0,12 0,00536 -1,00933 -14,65558 14,69030
0,1 -0,00012 -0,99610 -15,10326 15,13607
0,05 -0,01653 -0,91862 -14,40756 14,43682

Tabla 5: Displacements and total displacement for different factors when H = 4, 
dt factor = 3,8 and method version v = 2.



to  happen  is  because  when  mass  is  added,  over  damping  effects  change  the  dynamics  of  the
problem, therefore, the solution obtained is visually good, but with different dynamics.
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6. Damping

Results from the previous section showed that the more mass is added, the greater is damping. For
this reason, in this section damping factors are modified so as to counter the effects produced by the
fact that mass is being added.

The following results shows the final stage displacement for coarsening parameters H=2 and H=4,
which means that mass was augmented by a factor H2, therefore, damping factor was reduced by a
factor H2 too. Solution is compared with reference solution and also with not modified damping
parameter.
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Figura 25: Reference solution without DC and using a 24x48 
mesh. Deformed shape and colour representation for the total 
displacement.

Figura 26: Solution using DC method with H=2.
dt = 1,8·dt with default damping parameter.

Figura 27: Solution using DC method with H=2.
dt = 1,8·dt with changed damping parameter 
factor H^2.



Comparing  the  reference  solution  without  DC and  the  solution  with  DC and  default  damping
parameter, it is clear how mass affects the dynamics of the system. When mass is added, damping
plays a greater role, and the deformation is smaller. This effect is greater, the more mass is added, as
it can bee seen comparing Figure.26 and Figure.28 where final shape is clearly less deformed when
H=4.

Finally,  comparing the solution obtained by modifying the damping parameter,  shows how this
added mass effect is countered by changing the damping parameter a factor equal to the augmented
mass factor.

As it can be seen, when damping is changed, the dynamics of the problem changes and a better
solution is found. However, it must be said that the final deformed shape is slightly different from
the reference solution, since the curvature of the blank is a little bit different. 
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Figura 28: Solution using DC method with H=4,
dt = 3,8·dt with default damping parameter.

Figura 29: Solution using DC method with H=4.
dt = 3,8·dt  with changed damping parameter  
factor H^2.

x y z |r|
Stampack -0,00309 -1,41962 -17,75684 17,81350

Visual Studio -0,00243 -1,40568 -17,74860 17,80417

Tabla 6: Reference solution obtained with Stampack and Visual Studio solver.

factor 1/factor damping x y z |r|
0,25 4 5 -0,00716 -1,06342 -15,62206 15,65822
0,25 4 20 -0,00917 -1,15680 -16,98077 17,02013

Tabla 7: Displacements and total displacement for  factor equal to H^2 when H = 2, dt 
factor = 1,8, method version v = 1 and different damping factors (default and H^2). 

factor 1/factor damping x y z |r|
0,0625 16 5 -0,01134 -0,91040 -13,69292 13,72316
0,0625 16 80 0,00068 -0,95043 -17,13386 17,16020

Tabla 8: Displacements and total displacement for for factor equal to H^2 when H = 4, dt 
factor = 3,8, method version v = 1 and different damping factors (default and H^2).



7. Conclusions and future work

This  work  has  proved,  by  means  of  several  tests,  that  all  algorithms  needed  to  complete  the
auxiliary tasks required by the Dynamic Condensation method have been properly implemented and
worked perfectly for the ‘ad hoc’ example used in this  study. In this sense,  all  the information
required to implement the DC method has been successfully set up.

Regarding the implementation of the DC method itself,  it has been seen that the instability and
oscillations produced when dt  is  higher than the critical  time had been overcome with the DC
implementation.  However,  the  dynamics  of  the  system  changed  considerably  the  higher  the
coarsening parameter H was. 

It has also been seen that changing the damping factor to reduce its effects makes the system’s
dynamics  behave similar  to the reference solution although the final deformed shape presented
slightly different curvatures.

As a future work:
• A general coarsening algorithm must be implemented for any problem
• More research  must  be  done to  determine  the  optimum augmented  mass  and damping

coefficient, since no rule has been found so as to choose those values.
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