
Industrial Training Report

Daniel Díez

June 2, 2017

Implementation of a Two Fluid Navier Stokes element into the general

FEM code KratosMultiphysics

Introduction

The present report will explain to a certain degree of detail the tasks that I carried out during my industrial
training in CIMNE for my Master's Degree in Numerical Methods For Engineering. They are the following:

1. Formulation of a Navier Stokes element capable of dealing with two �uid phases with di�erent properties
using an enrichment for the pressure.

2. Elaboration of a functional for the proposed formulation ready to be implemented in Kratos Multiphysics.

3. Implementation of the element along with the required �les into Kratos Multiphysics.

1 Formulation of a two �uid Navier Stokes element.

The Navier Stokes equations for an incompressible �uid in a domain Ω are:

ρ∂tu + ρa · ∇u +∇p−∇ · C∇su = ρf in Ω× (0, T)

ρ(∇ · u) = 0 in Ω× (0, T) (1)

Where ρ is the density of the �uid, which will be considered constant, u is the unknown velocity, a is the
convection velocity, p is the pressure, C is the constitutive matrix and f represent the body forces.

The problem must be completed with suitable initial and boundary conditions. We will split the boundary of
the domain ∂Ω into the Dirichlet boundary ΓD and the Neumann boundary ΓN , hence ∂Ω = ΓD ∪ ΓN .

u(x, 0) = u0(x) in Ω, t = 0

u(x, t) = uD(x, t) on ΓD × (0, T) (2)

n · σ(x, t) = t(x, t) on ΓN × (0, T)

Where u0 corresponds to the initial velocity �eld, uD represents the imposed velocity on the Dirichlet boundary,
n is the outer normal vector, t is the imposed traction on the Neumann boundary and σ is the Cauchy stress tensor.

We test against the functions w and q and integrate over the domain. The pressure and the viscous term will
be integrated by parts obtaining the weak form of the problem. We will aso add an extra equation testing the
continuity equation against the enriched shape function q∗:

(w, ρ∂tu + ρa · ∇u)− (∇·wp) + (∇w : C∇su) = (w, ρf) + (w, t)ΓN
∀w ∈ V

(q, ρ∇ · u) = 0 ∀q ∈ Q
(q∗, ρ∇ · u) = 0 ∀q∗ ∈ Q∗ (3)

Where V ∈(H1)d, Q ∈ L2 and Q∗ ∈ L2 represent the following functional spaces:

1

H1(Ω)d :=

{
v : Ω→ Rd |

∫
Ω

|v|2 <∞,
∫

Ω

|∇v|2 <∞
}

(4)

L2(Ω) :=

{
v : Ω→ R |

∫
Ω

v2 <∞
}

(5)

In order to be able to use linear interpolations for both the velocity and the pressure we need to add stabilization
terms to the Galerkin method. We will basically follow the same lines proposed in [?]. Let's consider a subscale
decomposition as follows:

u = uh + us (6)

p = ph + ps (7)

The terms uh and ph represent the part of the solution which belongs to the �nite element space uh ∈Vh while
us and ps belong to the small scale space such that V = Vh ⊕ Vs and Q = Qh ⊕Qs.

As we mentioned in the introduction we will use a enriched pressure �eld as follows:

ptoth =

nnodes∑
i

Nipi +

nnodes∑
j

N∗
j p

∗
j (8)

Where N corresponds here to the usual �nite elements shape functions while N∗ are the enrichment functions.
We will have analogously a new set of unknowns p∗ for our pressure �eld. We can conclude that ptoth ∈ Qh ∪Q∗

h

The enrichment shape functions N∗ will be constructed in the following way for an element cut by the interface
Γ. The element is splitted by the level set function into two parts, one positive and one negative. The nodes that
lay on the positive side have the following formulation:

N∗
i = Ni in Ωi−

e

N∗
i = 0 in Ωi+

e (9)

While the nodes that lay on the negative side will follow this formulation:

N∗
i = 0 in Ωi−

e

N∗
i = Ni in Ωi+

e (10)

Notice that de�ning the enriched shape function in such a way has an important property: they are all equal to
zero on the nodes. This will be an important advantage as we will see later.

For the stabilization we use a quasi-static small scales model where ∂tus = 0 and:

us ≈ τ1rm(uh, p
tot
h) (11)

ps ≈ τ2rc(uh) (12)

Obtaining the following weak form with the added stabilization terms.

(wh, ρ∂tuh + ρa · ∇uh)− (∇·whph)− (∇ ·wh, p
∗
h) + (∇wh : C∇suh)

−
∑
Ωe

∫
Ωe

ρ(a · ∇wh)τ1 · rm(uh, p
tot
h)−

∑
Ωe

∫
Ωe

ρ(∇ ·wh)τ2rc(uh) = (wh, ρf) + (w, t)ΓN
(13)

(qh, ρ∇ · uh) =
∑
Ωe

∫
Ωe

ρ∇qhτ1·rm(uh, p
tot
h) (14)

2

(q∗h, ρ∇ · uh) =
∑
Ωe

∫
Ωe

ρ∇q∗hτ1 · rm(uh, p
tot
h) (15)

Notice that as we will use linear elements, the viscous term will vanish in rm as it involves second spatial
derivatives.

The terms τ1 and τ2 are the stabilization parameters which will be taken as:

τ1 =I

(
cdρ

δt
+
c1µ

h2
+
c2ρ|a|
h

)−1

τ2 = µ+
c2|a|h
c1

(16)

Where h is the characteristic length of the element and c1 and c2 are two constants that we have to de�ne for
each problem. For linear elements it is oftenly used c1 = 4 and c2 = 2. Similarly, cd is the dynamic tau coe�cient
which can be also set in di�erent ways. We use cd = µ, where µ is the dynamic viscosity of the �uid (µ = 0.001 for
water).

2 Elaboration of a functional for the proposed formulation ready to be

implemented in Kratos Multiphysics.

The functional for the Navier Stokes problem with Subgrid Scales Stabilization can be constructed in the following
way:

f(uh, ph, p
∗
h,wh, qh, q

∗
h) = fg(uh, ph, p

∗
h,wh, qh, q

∗
h) + fstab(uh, ph, p

∗
h,wh, qh, q

∗
h) (17)

fg(uh, ph, p
∗,wh, qh, q

∗
h) = (wh, f)− ρ(wh, ∂tuh + a · ∇uh)− (∇wh : C∇suh)−

+ (∇ ·whph) + (∇ ·whp
∗
h)− (qh, ρ(∇ · uh))− (q∗h, ρ(∇ · uh)) (18)

fstab(uh, ph, p
∗,wh, qh, q

∗
h) =

∫
Ωe

ρ(a · ∇wh)τ1rm +

∫
Ωe

ρ(∇ ·wh)τ2rc−

+

∫
Ωe

ρ∇qhτ1rm +

∫
Ωe

ρ∇q∗hτ1rm (19)

This functional will be used for each element to obtain its sitfness matrix (lhs) and the loads vector (rhs). These
terms will be later assembled to build the global system.

The solution of the problem is such that the residuals of the momentum and mass equations are equal to zero.
Adding the stabilization terms we can de�ne the following residuals:

Ri
m = rim(uh, p

tot
h) + ri,stabm (uh, p

tot
h) (20)

Rc = rc(uh, p
tot
h) + rstabc (uh, p

tot
h) (21)

R∗
c = rc(uh, p

tot
h) + rstabc∗ (uh, p

tot
h) (22)

These stabilization terms are:

ri,stabm (uh, p
tot
h) = ∂wi

(ρ(a · ∇wh)τ1 · rm(uh, p
tot
h) + ρ(∇ ·wh)τ2rc(uh)) (23)

rstabc (uh, p
tot
h) = ∂q(ρ∇qhτ1·rm(uh, p

tot
h)) (24)

3

rstabc∗ (uh, p
tot
h) = ∂q∗(ρ∇q∗hτ1·rm(uh, p

tot
h)) (25)

Take in acccount that the terms that we added to the residuals that correspond to the stabilization depend also
on the residuals of the Navier Stokes equations, so if the residuals rm and rc are equal to zero, these new residuals
Rm, Rc and Rc∗ will be equal to zero as well ensuring consistency.

We want to impose that the residuals of the problem with the added stabilization terms are equal to zero.
Rm = 0, Rc = 0 and Rc∗ = 0. We can see now that we can impose that from our functional by solving:

∂f(u)

∂vi
= Ri(u) = 0 (26)

where vi are the test functions of our problem: wh, qh and q∗h and u represents the unknowns of the problem:
uh, ph and p∗h. Using Newton-Raphson to solve equation 26 we get:

∂Ri(u)

∂uj
4uj = Ri(u) (27)

or equivalently:

∂2f

∂vi∂uj
4uj =

∂f

∂vi
(28)

This allows us to identify the element contributions as:

lhs =
∂2f

∂vi∂uj
=
∂Ri

∂uj
(29)

rhs =
∂f

∂vi
= Ri (30)

The system is therefore: 
∂Rm

∂uh

∂Rm

∂ph

∂Rm

∂p∗
h

∂Rc

∂uh

∂Rc

∂ph

∂Rc

∂p∗
h

∂Rc∗
∂uh

∂Rc∗
∂ph

∂Rc∗
∂p∗

h


 uh
ph
ph∗

 =

Rm

Rc

Rc∗

 (31)

Written in a more compact way: (
K V
H Kee

)(
uh, ph
p∗h

)
=

(
b+ fv
fe

)
(32)

Where:

K =

(
∂Rm

∂uh

∂Rm

∂ph
∂Rc

∂uh

∂Rc

∂ph

)
V =

(
∂Rm

∂p∗
h

∂Rc

∂p∗
h

)
(33)

H =
(

∂Rc∗
∂uh

∂Rc∗
∂ph

)
Kee =

(
∂Rc∗
∂p∗

h

)

b+ fv =

(
Rm

Rc

)
(34)

fe =
(
Rc∗

)
Notice that the matrix K and b are the usual sti�ness matrix and the load vector respectively that we would

obtain if we did not use an enrichment for the pressure. As we mentioned before, the enrichment shape functions
are equal to zero on the nodes and as consequence the value of the pressure in the nodes is only de�ned in terms
of ph and not p∗h. There is no need then to calculate or store now these values p∗h as the nodal values ph still have
physical meaning. Therefore, we can simply condensate the degrees of freedom corresponding to ph

∗ obtaining:

4

(K − V K−1
ee H)(uh, ph) = b+ fv − V K−1

ee fe (35)

After evaluating these expressions in every Gauss point we would have the element LHS and RHS ready to be
assembled into the global system.

Functional Implementation

We have to take in account that the implementation must be valid for both cut and non cut elements. That is
why we calculate �rst K and b and then the enrichment matrices which will be only added in case the element is
cut.

Galerkin Functional

rv_galerkin =wT
h ρf−wT

h ρacch − ρconvective_term w + grad_sym_wTσ+

+ div_wTph − ρqhdiv_v

Stabilization Functional

vel_residual = ρf − ρacch − ρconvective_termT − grad_p (36)

rv_stab = τ1ρgrad_qTvel_residual

rv_stab+ = τ1ρvel_residualTgrad_w vconv

rv_stab− = τ2ρdiv_w div_v

Enrichment Functional

vel_residual enr = vel_residual− grad_penr (37)

rv_enriched = −qenrhρdiv_v + div_w penr + τ1ρgrad_qenrT vel_residual_enr

rv_enriched+ = τ1ρgrad_qenrT vel_residual_enr

rv_enriched− = τ1ρgrad_penrT grad_w vconv

rv_enriched− = τ1ρgrad_qTgrad_penr

3 Implementation of a solver into KratosMultiphysics specially created

to be used along with the previously mentioned two �uid Navier

Stokes element.

Finally, once the formulation was ready and the element was created, it was implemented into Kratos. The
framework is divided in di�erent modular applications designed to be used to solve di�erent problems present in
engineering. The proposed element in this work was implemented inside the FluidDynamicsApplication as a deriva-
tion of the already existing element for Navier Stokes.

In order to be able to use this element some other �les were required:

• triangle_enrichment_utilities: The elements that are cut by the interface have to follow a special procedure to
calculate their contributions. They are splitted into sub-elements with their corresponding enrichment shape
functions. There was alredy implemented an utility for this purpose in 3D. Following the same principles an
utility was created to do the same for the 2D case.

• two_�uid_navier_stokes_solver: In order to be able to use our element, it was necessary to create a new
solver derived from the monolithic_navier_stokes solver that could deal with multiphase �ows. Inside the
solver, there were calls to the alreading existing level set convection process and redistance process so as to
be able to move the interface according to the calculated velocities from the �uid calculation.

5

• volume_conservation_process: Finally another process was created in order to slightly move the interface at
each time step ensuring that there was no lose of mass after doing the convection and redistance.

6

