Master on Numerical Methods in Engineering

INTERNSHIP

Algorithms for computing eigenvalues in sparse matrices

Author : Seyed mohammadreza Attar Seyedi

External supervisors : Guillaume Houzeaux and Paula Cordoba

February 2018

Contents

1 Introduction

1.1 Motivation

1.2 Objectives
2 Pervious concepts needed

2.1 Sparsematrix

2.2 Densematrix L oo

2.3 Eigenvalues L o

2.4 Condition number L.

3 Methodology for computing eigenvalues
31 QR method
3.2 Powermethod.

4 Numerical results

4.1 Random matrices
4.1.1 QR method
4.1.2 Power method

4.2 Comparison of sparse and dense matrices with QR method
4.2.1 Sparsematrices
4.2.2 Dense matrices 0.

5 Conclusions

1 Introduction

1.1 Motivation

Eigenvalues and eigenvectors play an important part in linear algebra
applications of science and engineering. The type of matrices that we find
in these fields, usually are large and sparse as they come from previously
discretized PDE’s with finite element, finite volume or finite difference
techniques. This makes it difficult to find the eigenvalues of a matrix in
the traditional way, this is solving the roots of its characteristic polynomial.
In cases usually the eigenvalues of the different matrices are found using
iterative methods. Depending on the type of application it is studied, the
whole spectrum will be needed or just the biggest/smallest eigenvalue.

1.2 Objectives

The main objective is to find and develop a method to compute the
eigenvalues in an efficient way. This has been done in the following way :

e Looking for bibliography and choosing an algorithm to compute the
eigenvalues.

e Developing and writing the code for computing the eigenvalues for
different sizes in sparse and dense matrices.

e Looking at CPU time and computing the condition number in each case.

e Finding the relationship between condition number and size of the
matrix.

2 Pervious concepts needed

Before starting with my objectives, I needed to know well these concepts.

2.1 Sparse matrix

A sparse matrix is a matrix in which most of the elements are zero. Sparse
matrices occur naturally in the solution of many real life problems. At more
theoretically level sparse matrices arise in graph theory, linear programming,
finite elements and the solution of ordinary and partial differential equations.
Sparse matrices can solve linear system of equations or linear optimization
problems that have thousands of variables, but whose coefficient are mostly
ZEros.

2.2 Dense matrix

A dense matrix is a matrix in which most of the elements are nonzero.
Dense matrices store every entry in the matrix. They contain high percentage
of occupied value in matrices.

2.3 Eigenvalues

The eigenvalue problem for a (n x n) matrix A relies on the determination
of the nontrivial solutions u to :

Au = \u

The eigenproblem is equivalent to find the roots of the characteristic
equation :
det(A—X)=0

There are several different techniques for solving the eigenproblem. The
problem of computing the full spectrum is considered, in particular for the
case of sparse matrices as they typically arise from Finite Element discretized

PDEs.

2.4 Condition number

The condition number plays an important role in numerical linear algebra.
The condition number measures the sensitivity of the solution of a problem
to perturbations in the data, it provides an approximate upper bound on
the error in a computed solution. It depends on the norm used and can also
be used to predict the convergence of iterative methods.

The convergence of an iterative process and the existence of linear system of
equations depends on the form of the matrix A. The condition number is
defined by :

k(A) = [|A]l||AHY]

To k make computation affordable is given in terms of singular value of
the matrix.

Omazx V Amaz
k(4) = Tmin o

3 Methodology for computing eigenvalues

There are some iterative methods to find the eigenvalues like the power
method, QR method, Jacobi method, Bisection method.
I will focus in the QR method and compare it with the power method, as
they are appropriate ones for the type of matrices that are used mostly used
in BSC, as most of the matrices are non-symmetric.

3.1 QR method

The QR method is a good method for computing eigenvalues in sparse
and dense matrices. For calculating all eigenvalues we use QR method. In
this method the cost per step in general is o(n?). Basically the QR method
consists in using the QR decomposition to normalize and orthogonalize in
every step.

First, the QR factorization has to be done, this is an expensive computation
and it needs to be done in every time step, this is :

Every n x m matrix A has a matrix decomposition
A=QR
R is a n X m upper triangular matrix.

Q is a n X n orthogonal matrix.

The square matrix A can be decomposed as the product of an orthogonal ma-
trix Q and an upper triangular matrix R.Now the order of the multiplication
product of Q and R will be reversed product and R eliminated, RQ) = @ * AQ.
Since @ * AQ is a similarity transformation of A, RQ has the same eigenvalues
as A. More importantly, we will later see that by repeating this process. The
matrix RQ will become closer and closer to upper triangular, such that the
eigenvalues can be read off term the diagonal. That is QR method generate
a sequence of the matrices Ay, initialed with Ay = A and its given by :

Ap = RpQy
Where Qi and Ry represents a QR factorization of Aj_1

Ap_1 = QrRy,

Algorithm 1 :
Basic QR algorithm is given by :

Input : A matrix A € C,xn,

Output: Matrices U and T such that A = UTU*
Set Ag := A and Uy = I for k=1,...do

Compute QR factorization : Ag_1 := QR

Set Ay := RipQp

Set Uy, := Up_1Q%

end

Return T'= A and U = U™

3.2 Power method

The power method is also known as single-vector iteration method as
it is based on a simple recursion starting from an arbitrary nonzero vector.
The power method computes the largest eigenvalue and it is corresponding
eigenvector of symmetric and non-symmetric matrices.

In this method in every iteration we need to do one matrix x vector multi-
plications, which can be done in o(n?), where n is the length of the vector.
Calculating the normalization constant is a summation of n elements (o(n))
and normalizing the vector with this constant is done by n multiplications,
thus we find that in every iteration we need to do o(n?) operation.

The matrix is repeatedly applied to an arbitrary starting vector and renor-
malizes at each step.

Algorithm 2 :
The eigenvector corresponding \; is the dominant vector
A1, A2y ey Ap
A1l > [Nl i=1,2,..,n
z1 = Axg
zy = Azy = A(Azg) = A2xzg

B Azx.x

A

xT.T

x is an eigenvector of matrix A and Az = \x

Az.x drx Mzx) \

4 Numerical results

The numerical results will be focused in the QR method, which is the
one that I have implemented in MATLAB, and it will be compared in the
test cases with the power method. Basically the results are based on :

e Trying to calculate eigenvalues for random matrices in the QR method
to see if it is fine.

e Comparing the largest eigenvalue in the test cases with the power
method.

e Computing the eigenvalues for large matrices (sparse and dense) with
the QR methods.

The results will be shown for :

e The number of iterations needed to compute the eigenvalues.

e Condition number.

e CPU time.

4.1 Random matrices
4.1.1 QR method

CPU time shows in Figure 1 and the number of iterations for random
matrices shows in Figure 2.
In the QR method we can realize from figures that number of iterations
and CPU time grow, when the size of the matrix start to increase. The
eigenvalues and condition number grow with growth of the size of matrix
like power method

Eigenvalues | 10.837142 | 7.151864 | 4.88934 | 2.121630

Tterations 24
CPU time 0.14620
Condition number | 5.1079

Table 1: [4 x 4] matrix

Eigenvalues | 10.911626 | 7.483538 ‘ 9.933118 ‘ 0.399592 | 4.804090 | 3.468036

Iterations 51
CPU time 0.15625
Condition number | 27.3069

Table 2: [6 x 6] matrix

Iterations

101

CPU time

0.21451

Condition number

53.759

Eigenvalues

16.578694
-1.667196

10.415816
1.149621

4.672964

6.163960

-0.904298

-0.409561

Table 3: [8 x 8] matrix

Figure 1: CPU time in the QR method for random matrices

Figure 2: The number of iterations in the QR method for random matrices

4.1.2 Power method

The largest eigenvalue and corresponding eigenvector is shown for the
power method. Also the condition number, the number of iterations and
CPU time needed is shown.
Figure 3 shows CPU time and Figure 4 shows the number of iterations in
power method for random test matrices.

| Eigenvectors [0.18371 | -0.663219 | 0.722126 | 0.070126

Largest eigenvalue | 10.837142
Iterations 25
CPU time 0.14673

Condition number 5.1079

Table 4: [4 x 4] matrix

Eigenvectors | 0.167742 | -0.704622 \ 0.642538 \ 0.007577 | 0.242324 | -0.061123

Largest eigenvalue | 10.911634
Iterations 76
CPU time 0.15620

Condition number | 27.3069

Table 5: [6 x 6] matrix

Eigenvectors

0.450650
0.152812

0.299429
0.429770

0.537054

0.414099

0.148789

0.130994

Largest eigenvalue | 16.578695
Iterations 110
CPU time 0.25241

Condition number 53.759

Table 6: [8 x 8] matrix

In the power method, we can understand that the eigenvalues, the number
of iterations, condition number and CPU time grow with the growth of the

size of the matrix.

100 —

o0

80—

Figure 4: The number of iterations in the power method for random matrices

10

4.2 Comparison of sparse and dense matrices with QR method
4.2.1 Sparse matrices

The eigenvalues obtained by using the QR method for sparse matrix :

Sparse matrix [100 x 100] | Sparse matrix [1000 x 1000]
Eigenvalues

49.8046 + 0.000¢ 4.9975+0.000i
—2.7206 4 1.1224¢ -0.0793+0.04681
2.0850 + 1.87831 -0.0793-0.0468i1
2.0850 — 1.87831 -0.0650+0.0649i

2.7484 + 0.000: 0.0667+0.06311

Condition number
5.4845¢ + 3 \ 1.5612¢ + 5

Table 7: Eigenvalues for [100 x 100] and [1000 x 1000] sparse matrix

The condition number for sparse matrices shows in Table 8.
The condition number in the sparse matrix is larger than the condition
number in the dense matrix.

Condition number
[100 x 100] 2.4213e+3
[200 x 200] 7.5129e+3
[700 x 700] 8.6751e+4

[1000 x 1000] | 1.3444e+5

Table 8: Sparse matrices [A]

Figure 5 shows the condition number starts from [100x100] to [1000x 1000]
respect to the size of the matrix.
Figure 6(a) shows the condition number starts from [100x 100] to [3000 x 3000]
respect to the size of the matrix for sparse matrices.
Figure 6(b) shows the CPU time starts from [100 x 100] to [3000 x 3000]
respect to the size of the matrix for sparse matrices.

11

Figure 5: Sparse matrices [A] from [100 x 100] to [1000 x 1000]

(Size - Condition number)

Size Condition number | CPU time
[100 x 100] 5.4845e+3 0.003288
[200 x 200] 1.2258e+4 0.009270
[700 x 700] 2.3349e+5 0.110624

[1000 x 1000] 3.5612e+5 0.311733
[2000 x 2000] 1.0731e+6 2.025370
[3000 x 3000] 3.0024e+6 5.236781

Table 9: Sparse matrices [C]

12

(a) Sparse matrices [C] from [100 x 100] to [3000 x 3000]
(Size-Condition number)

(b) Sparse matrices [C] from [100 x 100] to [3000 x 3000]
(Size - CPU time)

Figure 6: Sparse matrices [C]

13

4.2.2 Dense matrices

The condition number shows in Table 10 for dense matrices.

Condition number
[100 x 100] 1.0274e+3
[200 x 200] 3.5412e+3
[700 x 700] 3.3736e+4

[1000 x 1000] | 4.6772e+4

Table 10: Dense matrices [B]

The CPU time in the dense matrix is bigger than sparse matrices in the QR
method.

The condition number in dense matrices grows rapidly after [1000 x 1000].
Calculating the sparse and dense matrix bigger than [7000 x 7000] takes a
long time.

Figure 7 shows the condition number starts from [100 x 100] to [1000 x 1000]
respect to the size of the matrix for dense matrices.

Figure 8(a) shows the condition number starts from [100x 100] to [3000 x 3000]
respect to the size of the matrix for dense matrices.
Figure 8(b) shows the CPU time starts from [100 x 100] to [3000 x 3000]
respect to the size of the matrix for dense matrices.

14

Figure 7: Dense matrices [B] from [100 x 100] to [1000 x 1000]

(Size - Condition number)

Size Condition number | CPU time
[100 x 100] 1.8605e+3 0.001820
[200 x 200] 4.9607e+3 0.272188
[700 x 700] 7.7545e+4 0.327170

[1000 x 1000] 9.4752e+4 0.871795
[2000 x 2000] 3.7057e+5 5.730334
[3000 x 3000] 9.3000e+5 9.676681

Table 11: Dense matrices [D]

15

(a) Dense matrices [D] from [100 x 100] to [3000 x 3000]
(Size - Condition number)

(b) Dense matrices [D] from [100 x 100] to [3000 x 3000]
(Size - CPU time)

Figure 8: Dense matrices [D]

16

(a) Size - Condition number

I
2500 3000

(b) Size - CPU time

Figure 9: The red line corresponds to the dense matrices and the blue line
to the sparse matrices

17

5 Conclusions

Iterative methods are used to compute eigenvalues and eigenvectors in
large sparse and dense matrices. There are some iterative methods like the
Power method, QR method, Jacobi algorithm and Bisection method.

The QR method can be used for all types of matrices and also it computes
all the eigenvalues of the matrix, which it can be useful in some applications
that the information of the whole spectrum is needed.

From what I have seen in the results, I can say that :

e The largest eigenvalues computed with the QR method for the initial
test cases, matches with the one of the power method.

e The number of iterations, CPU time increase by growing of the size of
the matrix, on the other hand the number of iterations and CPU time
increase when we need to compute large sparse or dense matrices.

e There are strong relationships between the condition number and size
of the matrix. The condition number grow with growth of the size of
the matrix.

e The value of condition number in sparse matrices is bigger than dense
matrices, but CPU time for dense matrices is larger than sparse matri-
ces.

18

	Introduction
	Motivation
	Objectives

	Pervious concepts needed
	Sparse matrix
	Dense matrix
	Eigenvalues
	Condition number

	Methodology for computing eigenvalues
	QR method
	Power method

	Numerical results
	Random matrices
	QR method
	Power method

	Comparison of sparse and dense matrices with QR method
	Sparse matrices
	Dense matrices

	Conclusions

