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1.Introduction

To study flow through porous media a model was introduced by Larese, Rossi And Oiiate[ 1]. It is a modified
form of Navier Stokes equations with the principle aim of simulating the seepage flow inside rockfill like porous
material and the free surface flow in the clear fluid region. This problem is solved using a semi-explicit stabilized
fractional step algorithm where velocity can be calculated using a 4th order Runge-Kutta scheme. The
numerical formulation is developed in a Eulerian framework using a level set technique to track the evolution

of the free surface. An edge-based data structure is employed.

The main aim of the model is to study flow in rockfill constituting a wall of the dam. According to traditional
studies of flow in rockfill at a micro level, the flux between the rocks is assimilated to flow in pipes. This analogy
is used for the derivation of the resistance law which is further used for the calculation of the hydraulic gradient
at a macro scale due to seepage. The well-known Darcy's law is not applicable to the analysed problem. Here a
non-linear resistance law should be adopted for accurate evaluation of the resistance forces made by the porous
structure inclusive of the local turbulent flow in the pores. In the following section, the traditional mathematical

models to evaluate the hydraulic gradient in rockfill are reviewed and discussed.
The main task in the current work is divided into four parts:

1. First- studying the model for flow through porous media.

2. The second part consists of studying the Kratos framework, installation, compilation of Kratos and
execution of programs in Kratos.

3. The third part consists of setting the benchmark example to test the model, with the previous
framework.

4. Fourth part includes migration to the updated model and validating it with test results



2.Mathematical Model Formulation

2.1 Seepage into Rockfill

The flow in porous media is traditionally studied using the empirical relation obtained by Darcy in 1856.

= £
L =7 )

where ‘W’ is the water dynamic viscosity and ‘k’ is the permeability of the porous media. Velocity u in Eq. (1) is
by definition the Darcy velocity, i.e. the fluid velocity averaged over the total control volume Qyouume), whereas
the fluid velocity u is averaged over the empty part of  (called Qg ). Their relation is stated by the Dupuit—

Forchheimer equation.
u = nu @)
where n is the porosity that, by definition is
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See Fig. 1 for a graphical view of the fluid and the Darcy definition of velocity. In the most general case n is a

function of space and time:

n=n(xXt) (4)

where X is the material coordinate vector, In the present work, according to experimental analysis the variation

of porosity in time can be neglected, considering only its variation in space, i.e.

n=n(X) 5)

The relation between velocity and pressure drop was observed to be nonlinear and it was experimentally
demonstrated that over the certain average dimension of the particles, the Darcy equation is not any more valid.
Many authors have deeply studied this aspect with essentially two objectives: to discover the range of validity of

Darcy's law (Eq. (1))

Fluid velocity u Darcy velocity u
Figure 1 Graphical description of fluid velocity and Darcy velocity Image is taken from (1)

2.2 Analogy Between Flow in Rockfill and Pipes Flow

It is generally accepted to consider the flow in the pores of rock particles essentially similar to flow in a pipe

network but with a more complicated configuration. Based on this assumption all the empirical formulae to



evaluate the pressure drop due to friction in pipes have been used and adapted to get similar empirical
relationships in the case of porous material. In the present work, a quadratic resistance law has been
implemented. The user can define the & and 8 parameters depending on the type of material studied and on

the flow conditions. This aspect will be discussed later in the sections devoted to the validation examples
2.3 Mathematical Model: The Modified Form of the Navier-Stokes Equations
1 Momentum Conservation Equation

The balance of linear momentum is
ou+u - vVu+nvp—-2V - vwWu—-bn+D=0 (6)

ou
Where, 0t U = ot .D . D is the matrix form of the resistance law and it represents the dissipative effects in

the fluid flow due to the presence of the solid matrix. where b is the component of the body force and D
represents the component of the hydraulic gradient due to seepage, e.g. the resistance law. The matrix form of

the non-linear Darcy law is

D=au+fu - u. (7)
where « and [ are constant coefficients.

2 The Weak Form of the Problem

The boundary and initial condition of the problem are:

u(x, 0) = uo(x) in Q;
ux,t) =g(x, t) on 0Qp, te (0, T); (8)
n = o(x, t) = t(x, t) on 0Qn , te (0, T);

Qp and Qy are the Dirichlet and Neumann boundary respectively. Note that n indicates the outer unit normal
vector whereas n is the porosity. The weak form of the equation is derived next using a Galerkin formulation.
A mixed finite element method is obtained, for which the approximation of both the velocity components and

the pressure (and their respective weighting functions) is introduced. Multiplying by the weighting function

and integrating by parts

Jdu
wadQ+fwﬁ 'VudQ+fanpd.Q—Zf.QVw:studQ
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Stabilized Formulation

In this work low-order, simplicial elements will be used with the same linear interpolation for the velocity and
pressure values. Hence, as usual for this type of finite element approximation, a stabilization technique is needed
for both the convective term and the incompressibility constraint. In the present work, the Orthogonal sub-grid

scale (OSS) method is used for stabilization.

Solution Strategy and Time Discretization Scheme

The modified form of the Navier—Stokes equations is solved using a fractional step (FS) algorithm. Pressure-
splitting approaches of the fractional-step type are very convenient due to their high computational efficiency
for flows at high Re. The fundamental idea is to split the momentum equation in two, decoupling the degrees of
freedom of the problem. This allows solving the momentum equation keeping the pressure fixed and later to
correct the pressure to guarantee the satisfaction of the mass balance constraint. For time integration fourth

order Runge Kutta Method is used.
2.4 Edge-based approach.

The advantage of such technique for this specific case is that the pre-computation of operators allows a faster
computation of the residual when compared with standard integration rules. The starting point in our work is

the systematic use of the partition-of-unity property of the finite element shape functions, which provides the

i

relations

and therefore

szvl:o = vm:—szvj
i
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The ‘edge-based’ approach is obtained by applying such relations for the computation of the discrete operators

of interest.
2.5 Free Surface Tracking: The Level Set Method

the level set technique the free surface is represented by a signed distance function, the level set function (¢(x,
t)) that takes the value 0 on the free surface, takes negative values in the fluid domain and positive values outside
the fluid domain The fluid domain €2(t) is evolving during the process and can move in the global domain of
analysis (20 according to the solution of the Navier—Stokes problem presented in the previous sections. The

level set function, for a given time instant ¢, is defined as the level set function, for a given time instant ¢ is defined

o(x) =d(x) ifx e Q, te (0, T);
d(x) =d(x) =0 if X € 0Q, te(0, T); (10)
o(x) =—d(x) if x€e Q, te (0, T);

where d(x) = min|x — x| being x; is any point on the free surface boundary of2. The problem is thus transferred

to the solution of the following transport problem



op+u - Vop=0 in Q°, te (0, T),
b =09 on 0Qin, te(0,T), (11)
d(x, 0) = do(X) in Qo
where 0Qin :={x € Q0 |u = n <0} isthe inflow part of 0Qm.

2.6 Kratos Framework

Kratos is designed as a framework for building multi-disciplinary finite element programs. Generality in design
and implementation is the first requirement. Flexibility and extensibility are other key points in this design,
enabling developers to implement very different formulations and algorithms involving in the solution of multi-

disciplinary problems. The detailed framework of Kratos is explained in the P. Dadvand et al.[2] and [4]
The steps performed for the simulation of the examples in GID are:

Stepl. The geometry is drawn, boundary conditions and parameters are assigned, which depend on the analyzed

problem.

Step2. The mesh is generated. The elements used in this work are linear triangular (3 nodes) for 2D models
while for the 3D models are linear tetrahedral (4 nodes). GID allows to define fine meshes by zones, therefore
the size of the mesh is changed depending on the problem. It should be noted that a refined mesh produces high
computational cost and therefore it is advisable to optimize the mesh depending on the needs of the calculation.

For this work, the mesh is refined in areas where the flow of water pass.

Step3. The problem type is executed. GID generates a series of files. The most relevant files used for the
calculation are:

.mdpa: presents the information about the nodes, elements and boundary conditions generated in the model.
Problem_settings .py: presents the principal parameters to be used.

script.py: defines the calculation to be performed in the Python language. In the calculation stage, the
Python file is run, which calls Kratos, passing the necessary information from the files generated in the

pre-process by GID.

Step4. Results are displayed in GID in the phase of post-process

* Geometric Construction
* Conditions Definition
* Mesh Generation

Pre Process
{GID)

*  Scripts Execution

Calculation
(Kratos)

*  Visualization and
treatment of the
results

Post Process
(GID)

Figure 2 Visualization of results in GID



3. NUMERICAL EXAMPLES

The Examples are set to check the performance of the model in various technical terms. First, we run all the examples
in old application -Incompressible Fluid application. Then a new application was updated and developed as per
requirement of the current model framework by Antonia Larese which enhanced the performance of the code and

proved that it took lesser time in certain simulations.
1.Still-Water

Series of examples are presented to show the good performance of the proposed method. The good capability
of reproducing a hydrostatic pressure distribution in case of a still water simulation, without oscillations or loss
of volume, is shown in the first example. Verification of the correct pressure calculation in the case of a tank
half filled with water. The example is stationary, but in order to ensure that no spurious velocities appear, the
simulation time is 10 s and the results are taken from the last step of the analysis. Incompressible water has the
following characteristics: kinematic viscosity= 10° m*/s, density =1000 kg/m?>, gravity is 9.81 m/s in the vertical

direction.

From the results, we can claim that there is no deviation in both the results (Incompressible fluid application
and Free surface application) and the tank is half filled so we have to change the python script manually in this
example. We must design geometry according to the coordinate system. The level set function is zero at the
boundary, negative in the fluid domain and positive outside the domain. The simple linear function is to be
made to operate the nodes. The below table describes the pressure distribution in the tank which we can see in

the post process file

rho g h p
1000 9.81 1 9810
1000 9.81 2 19620
1000 9.81 3 29430
1000 9.81 4 39240
1000 9.81 5 49050
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Figure 3 Mesh formation of still water tank

Conlour Filof PRESSURE.

Figure 4 Postprocess results of still water example fig. on left from the Incompressible fluid application and fig. on right
results from the free surface application of pressure inside the tank
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2. Vertical Column

The second example is a vertical rectangular column constituting an inlet in the bottom side and an
outlet on the top face. The inlet is 1 m? and its height is 5 m the flow of velocity is from downwards to

upwards, so the total time required to fill the column totally is 5 sec.

The tricky part is the expressing the flow of velocity and the direction of body forces. In this case, the
flow of body forces and the velocity should be expressed properly otherwise we will not be able to

attain the desired results.

The distance function for the bottom surface of geometry is set to -1 and the top is set to be at a constant

pressure which forms the exit of the geometry.

The total simulation is made to run for 10 sec with the timestep of 1. The results achieved by both the
applications are same in case of column filling as well as pressure, so we can say that there is no
variation in the output. The problem presents the same difficulties of maintenance of a flat free surface

both in the transitory and in the stationary regime.

< / &

Figure 5 Initial Postprocessl results of water feeling of vertical column example fig. on left from the Incompressible fluid
application and fig. on right results from the free surface application

WA 4

Figure 6 Final Postprocess results of water feeling of vertical column example fig. on left from the Incompressible fluid
application and fig. on right results from the free surface application



3.Vertical Column with a lateral opening
Water filling

The above geometry is slightly changed and an opening of 0.2*0.2 is provided laterally, instead of
bottom opening. So, to get fill up column vertically, the time is kept constant to 10 sec but the velocity
is varied to 2.8 m/s in X direction which is the opening provided. But, the body forces are still acting
in Y direction so first, the water comes in the X direction, the slip condition does not allow it to go
further so it rises in Y direction which we can see below in the following results, hence it proves that

directions in modeling are correct.

Now the estimated time to get filled the column is 10 seconds. The last image shows that the column

is perfectly filled so we can say that volume conservation modeling is correct.

WA 4

Figure 7 Initial Postprocess results of | water feeling of vertical col. with lateral opening example fig. on left from the
Incompressible fluid application and fig. on right results from the free surface application

AN 4

Figure 8 Final Postprocess results of initial water feeling of vertical col. with lateral opening example fig. on left from the
Incompressible fluid application and fig. on right results from the free surface application

Ig‘”“



4.Dam with Porous wall

The wall of the dam is considered as porous material and the porosity considered as 0.5 and the diameter of the

porous material consider as 0.035 m. The results

are completely the same in both the cases we can see below

results. The geometry is shown as figure. The fixed velocity, slip condition and the fixed pressure conditions are

provided in the problem type. We have to say to

the code to consider the presence of a porous medium. It is

not sufficient to do it just setting porosity and diameter. We have to go to the problem parameter menu and set

compute porous resistance law to 1 or 2 we have considered porous resistance law 2 here with linear Darcy co-

efficient and Non-linear Darcy coefficient, as explained in the model above. The results achieved by the model

are validated with the actual test results.

Both the results are almost same, but we can say that in case of incompressible fluid application different

pressure ranges are seen than Free Surface application and in post process output minutely varied.

=

Figure 9 Geometry and mesh of Dam example
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Figure 10 Initial Postprocess results of pressure inside
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dam wall fig. on left from the Incompressible fluid application and

fig. on right results from the free surface application
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Figure 11 Final Postprocess results of dam example fig. on left from the Incompressible fluid application and fig. on right
results from the free surface application
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Figure 12 Comparison between the numerical and experimental pressure
4.Conclusion

In the present work, a model for the simulation of the seepage evolution in porous materials and free surface
flow has been studied. A unified formulation of the Navier—Stokes equations has been derived to considering
flow through the porous material. The formulation is stabilized using Orthogonal Sub Grid Scale stabilization
method and solved using 4rth order Runge Kutta method. The model is developed to represent seepage
problems that surpass Darcy law, including rockfill or other materials with extremely high permeability. For
this purpose, a Forchheimer resistance law has been added as a dissipation term in the linear momentum
equations. The prime aspect of the model is that the governing equations reduce to the classical Navier— Stokes
equations in the clear fluid region after studying and understanding the level set method thoroughly along with
the framework of the Kratos and GID interface. The Incompressible fluid application which forms an old
application is also studied, some examples are set on it to evaluate the application and same examples are run

into the newly updated application which is the free surface application.

After simulating the model in both- incompressible fluid application and free surface application we can

conclude that free surface application has generated more accurate and time optimized model.

Both the results are approximately equal, but we can say that the generated results of incompressible fluid

application vary minutely with respect to Free Surface application.
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