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On the ”Direct Stiffness Method”:
Consider the truss problem defined in the figure. All geometric and material properties: L, α,

E, and A, as well as the applied forces are to be kept as variables. This truss has 8 degrees of
freedom, with 6 of them removable by the fixed-displacement conditions at nodes 2, 3, and 4. This
structure is statically indeterminate as long as α 6= 0.

(a) Show that the master stiffness equations are:

EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
symm c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
0
0
0
0
0
0


in which c= cos α and s= sin α. Explain from physics why the 5th row and column contain

only zeros.
(b) Apply the BCs and show the 2-equation modified stiffness system.
(c) Solve for the displacements ux1 and uy1. Check that the solution makes physical sense for

the limit cases α→ 0 and α→ π/2. Why does the solution ”blow up” if H 6= 0 and α→ 0
(d) Recover the axial forces in the three memebers. Partial answer F (3) = −H/2s+ Pc2/(1 +

2c3). Why do F (1) and F (3) ”blow up” if H 6= 0 and α→ 0?
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To answer point (a), one needs to first start with the reference element and matrix

EA

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


︸ ︷︷ ︸

Matrix K


uxi
uyi
uxj
uyj

 =


fxi
fyi
fxj
fyj



Using the appropriate transformations (Rotation Matrix T), one can use this generic matrix
K, to suit all the bars. It is important to notice that the correct rotation angle is used, that
is (π/2) − α, and (π/2) + α respectively. The following rotation matrices are used for each bar,
according to their label 1, 2, and 3.

T1 =


s −c 0 0
c s 0 0
0 0 s c
0 0 c s



T2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



T3 =


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s


From these rotation matrices, the only one with fixed values is T2, since it is the only known

angle at π/2 rad.
After performing the rotation of the matrices, using K = (TT )KT , the resulting matrices are:

K1 =
EA

L


cs2 −c2s −cs2 c2s
−c2s c3 c2s −c3
−cs2 c2s cs2 −cs2
c2s −c3 −c2s c3



K2 =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



K3 =
EA

L


cs2 c2s −cs2 −c2s
c2s c3 −c2s −c3
−cs2 −c2s cs2 cs2
−c2s −c3 c2s c3


Which results, after assembling the global matrix in:
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EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
symm c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
fx2
fy2
fx3
fy3
fx4
fy4


The matrix is the same that one is supposed to obtain, but notice that the forcing term is

being left undefined as it should be. In the problem statement is was a vector with most of its
entries as zeroes. Moreover, the fifth row and column contain only zeros because they correspond
to the reaction force in the x-direction on node 3. Notice that because of the vertical position bar
(2) has, this node will not produce any reactions. This is true since the original configuration is
being studied. After some deformation, when bar (2) tilted a bit, some reaction can appear in the
x-direction, but thats not being considered here.

(b)After applying the BCs, the following system is obtained:

EA

L

[
2cs2 0

0 1 + 2c3

] [
ux1
uy1

]
=

[
H
−P

]

(c) The solution of the reduced system is:

Ux1 =
L

EA

H

cs2
Uy1 =

L

EA

−P
2c3 + 1

Knowing these displacements, it is possible to retrieve the reaction forces as:

EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
symm c3





L
EA

H
cs2

L
EA

−P
2c3+1

0
0
0
0
0
0


=



H
−P

−H
2 −

Pc2s
2c3+1

Pc3

2c3+1 + Hc
2s

0
P

2c3+1
Pc2s
2c3+1 −

H
2

Pc3

2c3+1 −
Hc
2s


Now, since the term involving the displacement in x direction of the node 1 (Ux1) contains both

sin and cosine in the denominator, the two limit cases 0 and π/2 will make the displacement to
increase too much. From physics, it can be said that if the angle is 0, there is only one bar, which
cannot withstand any moment. If the angle is π/2 the bars are infinitely apart.

(d) In order to obtain the axial forces on the members, one need to recover the displacements
on the nodes of each bar, and rotate them back using (U = TU). Then, one finds the deformation
induced by (d = Ux2 − Ux1), and after multiplying it by EA/L, one obtains the axial force.

The axial forces are then:

F (3) = −H
2s

+
Pc2

2c+ 1

F (2) =
Pc

2c3 + 1

F (1) = −H
2s
− Pc2

2c+ 1

Similarly to the explanation of the last point, when α → 0, the structures converges into a
single bar, which is not capable of withstanding moments, therefore, no H would be allowed.
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Assignment 2
Dr. Who proposes ”improving” the result from the example truss of the 1st lesson by putting

one extra node, 4, at the midpoint of the member (3) 1-3, so that it is subdivided in two different
members: (3) 1-4 and (4) 3-4. His reasoning is that more is better. Try Dr. Whos suggestion by
hand computations and verify that the solution ”blows up” because the modified stiffness matrix
is singular. Explain physically.

Following the steps already mentioned in the first part of this report, the matrices corresponding
to each of the members are:

K1 = 10


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0



K2 = 5


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



K3 = K4 = 40


.5 .5 −.5 −.5
.5 .5 −.5 −.5
−.5 −.5 .5 .5
−.5 −.5 .5 .5


Which are afterwards assembled into the master stiffness system:

30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

40 40
symm 40





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



fx1
fy1
fx2
fy2
2
1
fx4
fy4


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And after imposing the BCs:
10 0 0 0 0

20 20 −20 −20
25 −20 −20

40 40
symm 40



ux2
ux3
uy3
ux4
uy4

 =


fx2
2
1
fx4
fy4


When inserting a new node, one also inserted new unfixed DOF, (Ux4 and Uy4); these make

it impossible to solve the system since now the resulting matrix is singular, unlike in the class
problem.
From physics, it can be seen that the frame member does not deform freely in the middle of it,
so the modeling of the physics is not correct when adding this extra node in the middle of the
member.
Moreover, when modeling in 2D, one needs to make sure to suppress the rotations and translations,
and in the example with the extra node, the new DOFs are free, and the structure can be considered
as a mechanism.
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