COMPUTATIONAL SUCTURAL MECHANICS AND DYNAMICS

Master of Science in Computational Mechanics/Numerical Methods
Spring Semester 2019
Rafel Perelld i Ribas

Assignment 8: Shells

Analyse the following concrete hyperbolic shell under self-weight. Explain the behaviour of
all the stresses presented.
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Figure 1: Hyperbolic shell

To simulate the shell, the input file has been written. The variables declared are the following:

Material properties: As the material is concrete, the Young modulus has been chosen
as E=3-10%"Pa , the Poisson ratio is v = 0.2. The material density has been
estimated of p = 2500 kg/m?3. The thickness is of 0.1m

% Material Properties
young = 3el0 ;
poiss = 0.2 ;
thick = 0.1;
denss = 2.5e3 ;

Figure 2: Material properties



Coordinates matrix: As the shape is bilinear, the geometry has been defined using

Lagrange interpolation functions:

2 Coordinate:

global coordinates
. rdinates = zeros (100,
for 1 = 1.0:100.0
Xx = mod(i-1, 10)
y = floor((i-1)/10)
coordinates(i, 1) =
oordinates (i, 2) =
iinat (l, 3) =
end

3);

* 10.0 / 9.0;

* 10.0 / 9.0;
X;
Vi

2% ((10-x)* (10-y) )/ ((10-00) * (10-00) ) -...
2* ((10-x)*(00-y))/ ((10-00) * (00-10) ) -...
2* ((00-x) * (10-y) )/ ((00-10) * (10-00) ) +. ..

2% ((00-x)* (00-y) )/ ((00-10) * (00-10));

Figure 3: Coordinates matrix

Connectivity matrix: The elements used are triangular so the connectivity matrix has

been written as:

Elements

global elements

elements = zeros (162, 3);
for i = 1:81
el = i1 + floor((i-1)/9):
elements (1 + (i-1)*2,:) [el, el + 1, el + 10];
ements (2 + (i-1)*2,:) = [el + 1, el + 10, el + 11];
end

Figure 4: Connectivity matrix



Prescribed displacements: All nodal displacements have been prescribed in all
boundary nodes:

Fixed Nodes

fixdesp = zeros (108, 3);
for i =1 10
fixdesp(l + (i-1)*3, :) = [i, 1, 0.0];:
fixdesp(2 + (i-1)*3, :) = [i, 2, 0.0];
fixdesp(3 + (i-1)*3, :) = [i, 3, 0.01;
fixdesp(l + (i-1)*3 + 78, :) = [1 + 90, 1, 0.0]:
fixdesp(2 + (i-1)*3 + 78, ) = [1i + 90, 2, 0.0];
fixdesp(3 + (i-1)*3 + 78, :) = [i + 90, 3, 0.0];
end
for i =1 : 8
fixdesp(l + (i-1)*3 4 30, :) = [i*10 + 1, 1, 0.0]1;
fixdesp(2 + (i-1)*3 + 30, :) = [i*10 + 1, 2, 0.0];
fixdesp(3 + (i-1)*3 + 30, :) = [i*10 + 1, 3, 0.0];
fixdesp(l + (i-1)*3 + 54, :) = [i*10 + 10, 1, 0.0]:
fixdesp(2 + (i-1)*3 + 54, :) = [i*10 + 10, 2, 0.0];
fixdesp(3 + (i-1)*3 + 54, :) = [i*10 + 10, 3, 0.0];
end

Figure 5: Prescribed displacements

Loads: As in the problem there are no external loads apart of the self-weight the vectors have
been left empty:

5 Point lToads
polntload 13

1ide loads
sidelead [

17

Figure 6: Loads



Results

After performing the simulation, the results are visualised with GiD:

Displacements:
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Figure 7: Displacements

As expected, the displacements are larger in the central part of the structure. They are mainly in the
z-direction.

Membrane stresses
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Figure 10: Txy

The membrane stresses are concentrated on the boundary of the domain and preserve
symmetry around of the diagonal.



Moments
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Figure 11: Mx
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Figure 13: Mxy

As in the membrane stresses, the moments are concentrated on the edges of the geometry and each
component preserves some kind of symmetry or anti-symmetry. It is interesting to note that Mx and
My present very different behaviour.



Shear

Figure 14: Qx

Figure 15: Qy

Again, the Qx and Qy shear forces are concentrated around the boundary and present anti-symmetry

around the y and x axis respectively. In this case, although the behaviour is not equal is similar in
magnitude.



