
Computational Structural Mechanics and Dynamics 
 

Practice 1 
 

Jose Andino Saint Antonin 

 

 

 



 

Solution A: 

The problem was solved by taking advantage of the two axis of symmetry of the plate. Therefore, only ¼ 

of the whole plate was modelled. For each edge, we fixed number of elements to 5 (6 nodes)  and made 

two grids, one with triangles and another one with squares.  

The main difficulty found was the representation of the parabolic load. The software only allows 

constant or linear loads. Therefore, we had to manually enter a discretized version of the loads into 6 

node on the edge where the pulling occurs:  

 

Figure 1 discrete representation of the loads  

The edges of symmetry were prescribed with displacement conditions. For the vertical axis of symmetry, 

zero displacement in the x direction was prescribed (loads on both sides are symmetric). For the 

horizontal axis of symmetry, zero displacement in the y direction was prescribed. 

  

Figure 2   triangular and square meshes 
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The simulation was carried out using triangular elements with 3 and 6 nodes and quadrilaterals with 4, 8 

and 9 nodes. The displacements in the x and y direction are shown in the following figures for all these 

cases. 

First of all, the results are consistent across the range of elements and order of the elements. Higher 

order elements simply provide more detail & resolution. 

It is interesting to note that discretization of the parabolic load seems to work well for 3 node triangles. 

In the rest of the cases, and especially in the case of high order quads, there are artifacts related to the 

discretization of the loads into node loads as opposed to correctly representing the load as a linear 

function or better, quadratic function on the edge of the elements. If this had been possible, the results 

of the simulation with high order quads would have been much smoother. 

 

Figure 3   linear shape functions on triangular elements – X and Y displacements 

 

Figure 4   quadratic shape functions on triangular elements– X and Y displacements 



  

Figure 5  linear shape functions for quadrilaterals (squares in this case) 

  

Figure 6 8-point square element results 

  

Figure 7  9-point square element results 



It is also worth noting that the displacement vectors are pointing in the positive x direction at the 

bottom of the simulated square. This is consistent with the prescribed zero vertical displacement in this 

region.  

 

Figure 8   displacement vectors 

 



 

 

 

 



Solution 

The problem was gridded as shown in the figure: 

 

Figure 9   mesh and material properties 

To tackle the issue of the central column drop, we assumed a delta of 0.05m. The column is being pulled 

by its subsiding foundation. The loads on top are 30kN/m. Since the length is 8m therefore and has 41 

nodes, the 240kN distributed in 41 nodes, 5.71kN per node (again, the loads are represented at node 

level, which works well for linear triangles. 

Case I: This shows no subduction and it is a ‘baseline’ to compare the subduction case with. The 

following figures show x and y displacements and  stresses: 

  

Figure 10 X and Y displacements for the case without subduction 



  

Figure 11 X and Y stresses, no subduction case 

Case II: subduction 

Now the central colum is pulled down by its foundation 5cm (displacement prescribed in the base of the 

colum of y=-0.05m) 

  

Figure 12 displacements for the subduction case 

As we can observe, the column on the left and right experience displacements towards the outside of 

the structure. Additionally, the lateral columns compress with the central column is getting stretched. 

This is also reflected in the stressed (see below) where the y stress on the lateral columns is negative 

(and large) and in the central column it is positive and large. 

It is interesting to point out that the ‘belly’ of the structure where the central column is pulling it 

experiences tension in the x direction, while the top of the structure experiences compression in the x 

direction. 



  

Figure 13   X and Y direction stresses for the subduction case. Notice that the condition set of displacement y=-0.05 on the base 
causes the central column to be on tension 

 

 

 

 



 

 

Solution 

The geometry and gridding were modeled in GID. Adequate properties were used for the concrete and 

metal portions of the plate. The elements used are linear quads (squares in fact), which provide grid 

quality excellent (all the cell angles are the same). All this is shown in the three figures below: 



 

Figure 14   geometrical model with displacement and load conditions 

 

Figure 15   Concrete (blue) and steel (grey) portions of the plate 

 

 

Figure 16   mesh with 25cm squares. Num. of Quadrilateral elements=8.300, Num. of nodes=8.698 

 

Figure 17  Grid quality is high, as all elements are squares 



The simulation was carried using place stress hypothesis as requested. Here we see the deformation and 

stresses experiences by the plate under the loads prescribed in the problem 

 

Figure 18  Stresses in the X direction in color code, nodes shown in their location after deformation, exaggerated 200X 

 

Figure 19   Stresses in the Y direction in color code, nodes shown in their location after deformation, exaggerated 200X 

Its worth pointing out that the largest stresses occur on the internal corner of the steel plate. Round 

shaped corners would decrease these stresses and reduce the risk of failure due to fatigue. 

 



 

 

 



Solution 

The geometry of the tunnel was created in GID and assigned material properties and loads as per the 

problem requirements. Due to software issues, we could not make quad elements.  

 

Figure 20  geometry of grid utilized 

In particular, the (outside) bottom of the tunnel was prescribed with pressure type of load, like the 

upper side and the left and right sides. However, it was impossible to get the model to run under these 

conditions. It is possible that the problems is not well posed in that case, as there may be vertical 

acceleration if the conditions prescribed are not perfectly accurate. 

 

Figure 21   contour conditions based on pressure (internal set to zero gauge pressure). 

Therefore, in order to simplify and understand the stresses and deformation, we simply had to assume 

that the outer bottom of the tunnel had zero vertical displacement. 



As shown in the next two figures, the bulk of the displacement occurs on the walls which tend to 

collapse towards the center of the tunnel.  

 

Figure 22   displacements using pressure boundary conditions but with zero vertical displacement in the base prescribed. 

Stresses are largest of the outer top of the tunnel (very large compressive stress) while tension is 

experience in the top of the tunnel (inside wall). The corners where the walls attach to the base also 

experience significant stress. 

  

Figure 23   stresses in the x and y direction 

 


