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1 ASSIGNMENT 1.1

Consider the truss problem defined in Figure 1.1. All geometric and material properties: L, α, E
and A, as well as the applied forces P and H, are to be kept as variables. This truss has 8 degrees
of freedom, with six of them removable by the fixed-displacement conditions at nodes 2, 3 and
4. This structure is statically indeterminate as long as α 6= 0.

Figure 1.1: Truss structure. Geometry and mechanical features

(a) Show that the master stiffness equations are

E A

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1+2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
s ymm c3





ux 1
uy 1
ux 2
uy 2
ux 3
uy 3
ux 4
uy 4


=



H
−P

0
0
0
0
0
0


(1.1)
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in wich c = cos(α) and s = si n(α). Explain from physics why the 5th row and column
contain only zeros.

First, the elemental stiffness matrices are calculated using the numbering provided
in Figure 1.1. The local numbering is defined in all elements as 1 to the global node
1 and 2 to the global nodes 2, 3 and 4. The local x-axis is defined as going from node
1 to 2, 3 and 4 nodes depending on the element. The local y-axis is defined taking
a 90 degrees counter-clockwise rotation of the local x-axis. The elemental stiffness
matrices in global form are:

K e = E e Ae

Le


c2

e se ce −c2
e −se ce

se ce s2
e −se ce −s2

e

−c2
e −se ce c2

e se ce

−se ce −s2
e se ce s2

e


where se and ce represent the sine and cosine of the angle β of rotation of the local
axis over the global axis. β is defined positive if the local axes are rotated counter-
clockwise.
From the problem statement and the chose of the local axis explained above it is
evident that β1 =π/2+α, β2 =π/2 and β3 =π/2−α. It follows that:

s1 = si n(β1) = si n(π/2+α) = cos(α) = c

c1 = cos(β2) = cos(π/2+α) =−si n(α) =−s

s2 = si n(β2) = si n(π/2) = 1

c2 = cos(β2) = cos(π/2) = 0

s3 = si n(β3) = si n(π/2−α) = cos(α) = c

c3 = cos(β3) = cos(π/2−α) = si n(α) = s

Using this data as well as the fact that E and a are constant the elemental matrices
are computed:

K 1 = E A

L/c


s2 −cs −s2 cs
−cs c2 cs −c2

−s2 cs s2 −cs
cs −c2 −cs c2



K 2 = E A

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



K 3 = E A

L/c


s2 cs −s2 −cs
cs c2 −cs −c2

−s2 −cs s2 cs
−cs −c2 cs c2


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The assembly of the global matrix is done as follows:

K = E A

L



K 1
11 +K 2

11 +K 3
11 K 1

12 +K 2
12 +K 3

12 K 1
13 K 1

14 K 2
13 K 2

14 K 3
13 K 3

14
K 1

22 +K 2
22 +K 3

22 K 1
23 K 1

24 K 2
23 K 2

24 K 3
23 K 3

24
K 1

33 K 1
34 0 0 0 0

K 1
44 0 0 0 0

K 2
33 K 2

34 0 0
K 2

44 0 0
K 3

33 K 3
34

s ymm K 3
44


Substituting the computed values of the elemental stiffness matrices the global
stiffness matrix is obtained:

K = E A

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1+2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
s ymm c3


Which is equal to the global stiffness matrix of Equation 1.1

Finally, to obtain the force vector, it is noted that only two nodal forces are present
in the problem. They are applied to node 1 and are H and P in the positive x and
negative y directions respectively as follows from the observation of Equation 1.1

(b) Apply the BC’s and show the 2-equation modified stiffness system.

Nodes 2, 3 and 4 are restrained with a fixed displacement of 0. The only non-
restrained degrees of freedom are ux1 and ux2. That is translated in the master
equations eliminating all equations but first and second and all unknowns except
ux1 and ux2. As the prescribed displacements are 0 there is no contribution on the
force vector due to the displacement boundary conditions.
The resulting system is:

E A

L

[
2cs2 0

0 1+2c3

][
ux1

ux2

]
=

[
H
−P

]

(c) Solve for the displacements ux1 and ux2. Check that the solution makes physical sense for the
limit cases α→ 0 and α→π/2. Why does ux1 "blow up" if H 6= 0 and α→ 0?

The resulting system is diagonal, so the solution is straight:

ux1 = L

E A

H

2cs2

ux2 = L

E A

−P

1+2c3
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In the limit case when α→ 0 : c → 1 and s → 0. That is translated to ux1 →∞ and
ux2 → −P

3
L

E A .
In this problem, the force H generates a moment around the coordinates origin
(node 3). The reactions to that moment are provided by the bars (1) and (3). In the
limit case asα→ 0, the nodes 2, 3 and 4 are closer to each other. That is traduced in
reducing the lever arm. For that reason the axial forces F (1) and F (3) become bigger
to provide the same reaction moment resulting in a larger deformation. There is
even another mechanism that increases the displacement that is that the H force
becomes more transversal to the bars as α is reduced meaning that the deflection
gets even bigger until infinity for the limit case.
About the other case: α → π/2. In this case c → 0 and s → 1. So, ux1 → ∞ and
ux2 → −PL

E A .
In this case, the fact that the solution tends to infinity is for the same reason, the
bars (1) and (3) cannot compensate the moment produced by H. This is due to the
fact that the length of the to elements tend to infinity and with it, its stiffness is
reduced to 0.

(d) Recover the axial forces in the three members. Partial answer: F (3) = −H
2s +P c2

1+2c3 . Why do F (1)

and F (3) "blow up" if H 6= 0 and α→ 0?

Now that the displacements have been solved the reaction forces can be computed
as f

e = K
e

ue = K
e

T e ue

First element:

E A

L/c


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




c1 s1 0 0
s1 c1 0 0
0 0 c1 s1

0 0 s1 c1




u1
x1

u1
y1

u1
x2

u1
y2

=

E A

L/c


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0



−s c 0 0
c −s 0 0
0 0 −s c
0 0 c −s




L
E A

H
2cs2

L
E A

−P
1+2c3

0
0

=


−H
2s −P c2

1+2c3

0
H
2s +P c2

1+2c3

0


F (1) = H

2s +P c2

1+2c3

Second element:

E A

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




c2 s2 0 0
s2 c2 0 0
0 0 c2 s2

0 0 s2 c2




u2
x1

u2
y1

u2
x2

u2
y2

=

E A

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




L
E A

H
2cs2

L
E A

−P
1+2c3

0
0

=


−P

1+2c3

0
P

1+2c3

0


F (2) = P

1+2c3
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Third element:

E A

L/c


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




c3 s3 0 0
s3 c3 0 0
0 0 c3 s3

0 0 s3 c3




u3
x1

u3
y1

u3
x2

u3
y2

=

E A

L/c


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




s c 0 0
c s 0 0
0 0 s c
0 0 c s




L
E A

H
2cs2

L
E A

−P
1+2c3

0
0

=


H
2s −P c2

1+2c3

0
−H
2s +P c2

1+2c3

0


F (3) = −H

2s +P c2

1+2c3

2 ASSIGNMENT 1.2

Dr. Who proposes "improving" the result for the example truss of the 1st lesson by putting
one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided in two different
members: (3) 1-4 and (4) 3-4. His "reasoning" is that more is better. Try Dr. Who’s suggestion
by hand computations and verify that the solution "blows up" because the modified master
stiffness is singular. Explain physically.

The elemental matrices of elements (1) and (2) used in this problem are the same than
in the example. The matrices (3) and (4) are just the double of (3) in the example as the
elements are equal but half length. So the global stiffness matrix is:

K =



K 1
11 +K 3

11 K 1
12 +K 3

12 K 1
13 K 1

14 0 0 K 3
13 K 3

14
K 1

22 +K 3
22 K 1

23 K 1
24 0 0 K 3

23 K 3
24

K 1
33 +K 2

11 K 1
34 +K 2

12 K 2
13 K 2

14 0 0
K 1

44 +K 2
22 K 2

23 K 2
24 0 0

K 2
33 +K 4

11 K 2
34 +K 4

12 K 4
13 K 4

14
K 2

44 +K 4
22 K 4

23 K 4
24

K 3
33 +K 4

33 K 3
34 +K 4

34
s ymm K 3

44 +K 4
44


As the degrees of freedom of the node 1 and the y-displacement of the node 2 are re-
stricted, the first, second and fourth rows and columns have to be removed from the
global stiffness matrix:

K̂ =


K 1

33 +K 2
11 K 2

13 K 2
14 0 0

K 2
33 +K 4

11 K 2
34 +K 4

12 K 4
13 K 4

14
K 2

44 +K 4
22 K 4

23 K 4
24

K 3
33 +K 4

33 K 3
34 +K 4

34
s ymm K 3

44 +K 4
44

 =


10 0 0 0 0
0 5 5 −5 −5
0 5 10 −5 −5
0 −5 −5 10 10
0 −5 −5 10 10


It is obvious that this matrix is singular meaning that the problem is not well posed. This
is because the system is under-constrained. It is well-known that bar elements can only
be used in fully triangulated trusses as they are unable to resist shear forces nor bending
moments. That is the reason why the matrix is singular: the structure is unstable.
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