It's chosen a problem type: 3D SHELL dynamic analisis RamSeries.

Material and constraints are settled.

E=3*10¹⁰ Pa ν=0,3 γ=25KN/m³ q=1*10⁴ N/m²

Following lines are constrained with zero displacement and zero spin.

Triangular DKT mesh

Num. of *Triangle elements*=7.870 *Num.* of nodes=4.056

A modal Analysis is carried out:

Mode 5

Mode 6

Mode 7

Direct integration with sinusoidal force applied

The Δt chosen is 0,0001 (f1 is over 1000 HZ). The steps are 100, in order to ensure a permanent regime and evaluate maximum displacement with a certain confidence. Wen steps are doubled, max y displacements are almost exactly the same, whereas for x and z axis may vary roughly 10%.

 Layer to use: Earyer0
 Nodes: 4K, Elements: 7K
 Render: smooth
 (6.925, 1.5181, 0.)

The Sinusoidal load is settled.

MAXIMUM Displacements Δt =0,0001, 100 steps:

For mode $1, w_p = w_1$ being $f_{1=}1686Hz$ max. x-displacement =2,7919*10⁻⁷ max. y-displacement =1,2598*10⁻⁶ max. z-displacement =5,2349*10⁻⁷

In order to evaluate if steps are enough it's repeated process with an order of magnitude more steps:

MAXIMUM Displacements Δt =0,0001, 1000 steps:

For mode $1, w_p = w_1$ being $f_{1=}$ **1686Hz** max. x-displacement =3,39*10⁻⁷ (+21% respect to Δt =0,0001 ,100 steps) max. y-displacement =1,48*10⁻⁶(+18% respect to Δt =0,0001, 100 steps) max. z-displacement =7,28*10⁻⁷ (+39% respect to Δt =0,0001, 100 steps)

So 100 steps weren't sufficient. Next step is to repeat process with lower Δt :

MAXIMUM Displacements Δt =0,00005, 1000 steps:

For mode $1, w_p = w_1$ being $f_{1=}$ **1686Hz** max. x-displacement =7,75*10⁻⁷(+128% respect to Δt =0,0001 ,1000 steps) max. y-displacement =2.64*10⁻⁶(+78% respect to Δt =0,0001 ,1000 steps) max. z-displacement =8.6*10⁻⁷(+18% respect to Δt =0,0001 ,1000 steps)

So we try for shorter periods of time:

MAXIMUM Displacements Δt =0,00001, 1000 steps:

For mode $1, w_p = w_1$ being $f_{1=}$ 1686Hz max. x-displacement =5,48*10⁻⁷(-25% respect to Δt =0,00005 ,1000 steps) max. y-displacement =2,10*10⁻⁶(-20% respect to Δt =0,00005 ,1000 steps) max. z-displacement =7,75*10⁻⁷(-7% respect to Δt =0,00005 ,1000 steps)

We will accept this as a reliable Dynamic Analisis Data, and compare to the cases beneath and over this natural frequency for mode1, with the objective of comparing the maximum displacements for each of them:

 $w_p=0,75^*w_1$: max. x-displacement =6,30*10⁻⁷ (+15% respect to w_1) max. y-displacement =2.62*10⁻⁶ (+24% respect to w_1) max. z-displacement =9,2*10⁻⁷ (+18,7% respect to w_1) $w_p=1,25^*w_1$: max. x-displacement =2,97*10⁻⁷ (-45% respect to w_1) max. y-displacement =1,67*10⁻⁶ (-20% respect to w_1) max. z-displacement =5,53*10⁻⁷ (-28% respect to w_1)

Although max. displacement is detected at $0,75w_1$, at 1,25 times w_1 it is registered a lower displacement for any axis.

Furthermore, if frequencies are diminished for this exercise, we obtain higher displacements in all axis. So there is not such a clear amplitude-frequency relation, just a shape of the displacement field, which matches a characteristic pattern for each of the modes.