COMPUTATIONAL STRUCTURAL MECHANICS AND DYNAMICS

Marcos Boniquet Aparicio

It's chosen a problem type: 3D SHELL dynamic analisis RamSeries.

Material and constraints are settled.

$$
\begin{aligned}
& E=3 * 10^{10} \mathrm{~Pa} \\
& \nu=0,3 \\
& y=25 \mathrm{KN} / \mathrm{m}^{3} \\
& q=1 * 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Following lines are constrained with zero displacement and zero spin.

Triangular DKT mesh

Num. of Triangle elements=7.870
Num. of nodes=4.056

A modal Analysis is carried out:

PRACTICE 5 Exercise 2
COMPUTATIONAL STRUCTURAL MECHANICS AND DYNAMICS
Marcos Boniquet Aparicio

Mode1
Mode 2

Mode 3
Mode 4

Mode 5
Mode 6

Mode 7
Mode 8

Mode 9
Mode 10

Direct integration with sinusoidal force applied

The Δt chosen is 0,0001 (f1 is over 1000 HZ). The steps are 100 , in order to ensure a permanent regime and evaluate maximum displacement with a certain confidence. Wen steps are doubled, max y displacements are almost exactly the same, whereas for x and z axis may vary roughly 10%.

The Sinusoidal load is settled.

PRACTICE 5 Exercise 2

COMPUTATIONAL STRUCTURAL MECHANICS AND DYNAMICS

Marcos Boniquet Aparicio

MAXIMUM Displacements $\Delta t=0,0001,100$ steps:
For mode $1, \mathbf{w}_{\mathrm{p}}=\mathbf{w}_{1}$ being $\mathrm{f}_{1} \mathbf{1 6 8 6} \mathbf{H z}$
max. x-displacement $=2,7919^{*} 10^{-7}$
max. y-displacement $=1,2598^{*} 10^{-6}$
max. z-displacement $=5,2349 * 10^{-7}$
In order to evaluate if steps are enough it's repeated process with an order of magnitude more steps:

MAXIMUM Displacements $\Delta t=0,0001,1000$ steps:

For mode $1, w_{p}=w_{1}$ being $f_{1}=1686 \mathrm{~Hz}$
max. x-displacement $=3,39^{*} 10^{-7}(+21 \%$ respect to $\Delta t=0,0001,100$ steps)
max. y-displacement $=1,48^{*} 10^{-6}(+18 \%$ respect to $\Delta t=0,0001,100$ steps $)$
max. z-displacement $=7,28^{*} 10^{-7}(+39 \%$ respect to $\Delta t=0,0001,100$ steps $)$
So 100 steps weren't sufficient. Next step is to repeat process with lower Δt :

MAXIMUM Displacements $\Delta \mathbf{t}=\mathbf{0 , 0 0 0 0 5}, 1000$ steps:

For mode $1, \mathbf{w}_{\mathrm{p}}=\mathbf{w}_{1}$ being $\mathrm{f}_{\mathbf{1}} \mathbf{1 6 8 6 H z}$
max. x -displacement $=7,75^{*} 10^{-7}(+128 \%$ respect to $\Delta \mathrm{t}=0,0001,1000$ steps)
max. y-displacement $=2.64^{*} 10^{-6}(+78 \%$ respect to $\Delta t=0,0001,1000$ steps $)$
max. z-displacement $=8.6^{*} 10^{-7}(+18 \%$ respect to $\Delta t=0,0001,1000$ steps $)$
So we try for shorter periods of time:
MAXIMUM Displacements $\Delta \mathbf{t}=\mathbf{0 , 0 0 0 0 1}, 1000$ steps:

For mode $1, \mathbf{w}_{\mathrm{p}}=\mathbf{w}_{1}$ being $\mathrm{f}_{1=1686} \mathbf{H z}$
max. x-displacement $=5,48^{*} 10^{-7}(-25 \%$ respect to $\Delta t=0,00005,1000$ steps $)$
max. y-displacement $=2,10^{*} 10^{-6}(-20 \%$ respect to $\Delta t=0,00005,1000$ steps $)$
max. z-displacement $=7,75^{*} 10^{-7}(-7 \%$ respect to $\Delta t=0,00005,1000$ steps $)$
We will accept this as a reliable Dynamic Analisis Data, and compare to the cases beneath and over this natural frequency for mode1, with the objective of comparing the maximum displacements for each of them:

```
\(\mathrm{w}_{\mathrm{p}}=0,75^{*} \mathrm{w}_{1}\) :
max. \(x\)-displacement \(=6,30^{*} 10^{-7}\left(+15 \%\right.\) respect to \(\left.\mathbf{w}_{1}\right)\)
max. y-displacement \(=2.62^{*} 10^{-6}\left(+24 \%\right.\) respect to \(\left.\mathbf{w}_{1}\right)\)
max. z-displacement \(=9,2^{*} 10^{-7}\left(+18,7 \%\right.\) respect to \(\left.\mathbf{w}_{1}\right)\)
\(w_{p}=1,25^{*} w_{1}\) :
max. x-displacement \(=2,97^{*} 10^{-7}\left(-45 \%\right.\) respect to \(\left.\mathbf{w}_{1}\right)\)
max. \(y\)-displacement \(=1,67^{*} 10^{-6}\left(-20 \%\right.\) respect to \(\left.w_{1}\right)\)
max. z-displacement \(=5,53^{*} 10^{-7}\left(-28 \%\right.\) respect to \(\left.w_{1}\right)\)
```


PRACTICE 5 Exercise 2

COMPUTATIONAL STRUCTURAL MECHANICS AND DYNAMICS

Marcos Boniquet Aparicio

Although max. displacement is detected at $0,75 w_{1}$, at 1,25 times w_{1} it is registered a lower displacement for any axis.

Furthermore, if frequencies are diminished for this exercise, we obtain higher displacements in all axis. So there is not such a clear amplitude-frequency relation, just a shape of the displacement field, which matches a characteristic pattern for each of the modes.

