PRACTICE 3 Exercise 1

COMPUTATIONAL STRUCTURAL MECHANICS AND DYNAMICS

Marcos Boniquet Aparicio

It's chosen a problem type: Plates

Material, self weight condition, and constraints are settled.

The material chosen for the unique surface defined by the four sides has the following properties:
$E=3^{*} 10^{10} \mathrm{~Pa}$
$\nu=0,2$
Load: $q=1 * 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
thickness=0,10 m
θ_{x} and θ_{y} are 0 at clamped boundary, as well as z-displacement.

Remember:

Kirchoff
1)Middle plane moves only vertically.
2)Points along a normal to the middle plane have same vertical displacement.
3) σ_{z} is negligible
4)Points along the normals to the middle plane before deformation remain in straight lines also orthogonal to middle plane after deformation.

Reissner-Middlin

Same points, but assumption 4 changes:
4)Points along the normals to the middle plane before deformation remain in straight lines NOT NECESSARILY orthogonal to middle plane after deformation.

GID:

- Linear triangle is DKT triangular
- Quadratic triangle element is R.M
- Linear Quadrilateral element is CLLL

Marcos Boniquet Aparicio

Triangular linear mesh of 150×150 elements:
Num. of Triangle elements $=45000$
Num. of nodes=22801

Max. displacement is $1,244 \mathrm{~mm}$.
A symmetry with the diagonals (it could be divided in 4 triangular and equal domains) was expected with a linear material behaviour.

With a triangular quadratic mesh, 40×40 elements:
Num. of Triangle elements=3200
Num. of nodes=6561

Max. displacement is $1,2572 \mathrm{~mm}$.

With a quadrilateral linear mesh, of 100×100 elements:
Num. of Quadrilateral elements=10000
Num. of nodes=10201

Max. displacement is $1,2568 \mathrm{~mm}$.
Analytic result:
$D=E^{*} t^{3} / 12\left(1-\nu^{2}\right)$
$W_{\text {max }}=q^{*} b^{4} / 24^{*} \mathrm{D}=0,0128$ where $\mathrm{b}=2$, half of the side of plate.
So, comparison between 3 methods and Analytical result:

Linear Triangular	Quadratic Triangular	Linear Quadrilateral	Analytic
1,244	1,2572	1,2568	1,28
$\mathbf{9 7 , 1 9 \%}$	$\mathbf{9 8 , 2 2 \%}$	$\mathbf{9 8 , 1 9 \%}$	

Rotations:

y-axis

