It's chosen a problem type: Plates

Material, self weight condition, and constraints are settled.

The material chosen for the unique surface defined by the four sides has the following properties:

E=3*10¹⁰ Pa *v*=0,2 Load: q=1*10⁴ N/m² thickness=0,10 m

 θ_x and θ_y are 0 at clamped boundary, as well as z-displacement.

Remember:

Kirchoff

1)Middle plane moves only vertically.

2)Points along a normal to the middle plane have same vertical displacement.

3) σ_{z} is negligible

4)Points along the normals to the middle plane before deformation remain in straight lines also orthogonal to middle plane after deformation.

Reissner-Middlin

Same points, but assumption 4 changes:

4)Points along the normals to the middle plane before deformation remain in straight lines **NOT NECESSARILY** orthogonal to middle plane after deformation.

GID:

- Linear triangle is DKT triangular
- Quadratic triangle element is R.M
- Linear Quadrilateral element is CLLL

Triangular linear mesh of 150x150 elements:

Num. of Triangle elements=45000 Num. of nodes=22801

Max. displacement is 1,244mm.

A symmetry with the diagonals (it could be divided in 4 triangular and equal domains) was expected with a linear material behaviour.

With a triangular quadratic mesh, 40x40 elements:

Num. of Triangle elements=3200 Num. of nodes=6561

Max. displacement is 1,2572mm.

With a quadrilateral linear mesh, of 100x100 elements:

Num. of Quadrilateral elements=10000 Num. of nodes=10201

Max. displacement is 1,2568mm.

<u>Analytic result:</u> D=E*t³/12(1- ν^2) W_{max}=q*b⁴/24*D=0,0128 where b=2, half of the side of plate.

So, comparison between 3 methods and Analytical result:

Linear Triangular	Quadratic Triangular	Linear Quadrilateral	Analytic
1,244	1,2572	1,2568	1 28
97,19%	98,22%	98,19%	1,20

Rotations:

y-axis

