It's chosen a problem type: Plane\_State.

Material, self weight condition, and constraints are settled.

The particular case for the plate structure of concrete **without steel plates** is calculated, in order to compare it with the latter.

Concrete: E=3\*10<sup>10</sup> Pa *v*=0,2 thickness=0,25 m

Steel: E=2,1\*10<sup>11</sup> Pa *v*=0,3 thickness=0,016 m

*It's been built a quadrilateral 4-node mesh 772 elements and 864 nodes, thus 864-6 fixed nodes, and two DoF by node=1716 DOF. Mesh is finer near the hole.* 

#### Without steel plates

Stresses:



Sx [N/m2]



Sy [N/m2]

Displacements:



x-Displacement [m]



y-Displacement [m]

Summarizing, for ALL-concrete assumption:

 $S_x^{max}$ =2,41\*10<sup>5</sup> N/m<sup>2</sup> and 7,77\*10<sup>5</sup> N/m<sup>2</sup> at the bottom-center of the plate and at the *fixed* elements respectively, corresponding to the compression and traction respectively.  $S_y^{max}$ =4,03\*10<sup>5</sup> N/m<sup>2</sup> and 5,6\*10<sup>5</sup>N/m<sup>2</sup>, compression and traction at the fixed elements.  $\delta_x^{max}$ =1,74\*10<sup>-5</sup> m and 1,89\*10<sup>-5</sup> m, at left and right top corners.  $\delta_y^{max}$ =7,92\*10<sup>-5</sup> m at the bottom-center of the plate.

Now it's time to consider **both steel plates.** The problem is focused as plane-stress problem. We consider a new material in the zone where the plates are, with properties which belong to the weight (width) of each material. This is 96% concrete and a mere 4% (aprox.) of steel.

| Material                  | ×                                  |
|---------------------------|------------------------------------|
| new                       |                                    |
| Young 4.0827e10           | $\left[ \frac{N}{m^2} \right]$     |
| Poisson 0.206015          |                                    |
| Specific-Weight 28179.2   | ] <mark>N</mark><br>m <sup>3</sup> |
| Thickness 0.266           | ] m                                |
|                           |                                    |
|                           |                                    |
|                           |                                    |
|                           |                                    |
| Assign Draw Draw Exchange |                                    |
| Close                     |                                    |

New mat. assumption











Sy [N/m2]

**Displacements:** 



x-Displacement [m]



y-Displacement [m]

Summarizing, for case with steel plates attached:

 $S_x^{max}$ =2,76\*10<sup>5</sup> N/m<sup>2</sup> and 9,89\*10<sup>5</sup> N/m<sup>2</sup> at the bottom-center of the plate and at the *fixed* elements respectively, corresponding to the compression and traction respectively.  $S_y^{max}$ =3,97\*10<sup>5</sup> N/m<sup>2</sup> and 7,49\*10<sup>5</sup>N/m<sup>2</sup>, compression and traction at the fixed elements.  $\delta_x^{max}$ =2,08\*10<sup>-5</sup> m and 1,89\*10<sup>-5</sup> m, at left and right top corners.  $\delta_y^{max}$ =8,748\*10<sup>-5</sup> m at the bottom-center of the plate.

So the overall global values do not vary so much. However, if a more detailed analysis is taken into the steel plates part, higher changes are seen. The comparison takes into account, as demanded, the particular case for stresses (absolute values):



All concrete

With Steels plates

Diminishes from 2\*10<sup>-5</sup> to 1,5\*10<sup>-5</sup> both in compression and traction. (-25%)



Diminishes from  $2*10^{-5}$  to  $1,5*10^{-5}$  in compression (-25%) and

Diminishes from  $5*10^{-5}$  to  $3*10^{-5}$  in traction. (-40%)