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Exercise 1 - Thin plate under dead weight

A thin plate, as shown in Figure (1), subject to its self-weight and it is constrained on its upper
face to the support. A convergence analysis and study of the accuracy of the mesh will be carried
out using triangular elements with 3 and 6 nodes and quadrilaterals with 4, 8 and 9 nodes. The
exact solution is given to be:

e Displacement of the center of side ED u,, equals 2.26E — 6 mm

e Stress o, at point B equals 0.247M N/m?
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Fig. 1 — Thin plate - geometry and boundary conditions

The plate is made of a material with the following physical properties.
e Young Modulus E' = 2.1E5M Pa

e Poisson coefficient v = 0.30

e Specific Weight v = 7000%

e Thickness t = 0.1m

Discretized models with triangular and quadrilateral elements are shown in Figure (2). Please
note that the meshes depicted correspond to the finest meshes used in the convergence study.
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Fig. 2 — Mesh using triangular (a) and quadrilateral (b) elements

Results for the vertical displacements and corresponding stresses using linear triangular elements

are shown in Figures (3) and (4).
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Fig. 3 — Vertical displacement results using 16 (a), 72 (b) and 200 (c¢) triangular linear elements
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Fig. 4 — Stress fields o, results using 16 (a), 72 (b) and 200 (c) triangular linear elements

Results for the vertical displacements and corresponding stresses using linear quadrilateral ele-
ments are shown in Figures (5) and (6).
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Fig. 5 — Vertical displacement results using 12 (a), 100 (b) and 180 (c) quadrilateral linear elements
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Fig. 6 — Stress fields o, results using 12 (a), 100 (b) and 180 (c) quadrilateral linear elements

The following figures present a diagram of the convergence rate of each of the analyzed elements:
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Fig. 7 — Convergence of the value of the displacement of the center of side ED u,
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Fig. 8 — Convergence of the value of the stress o, at point B



Exercise 2 - Plate with two sections

The structure in Figure (9) presents a reinforced concrete plate with two holes, supported by
three columns. The central column undergoes a displacement § due to sag of the foundation caused
by a leakage in some pipes nearby. The geometry of the structure and the loads applied are shown
in Figure 9. The material properties used in the analysis can be found below.
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Fig. 9 — Reinforced concrete plate with two holes: geometry and loads applied.

Young Modulus E = 3.0E102;

Poisson coefficient v = 0.2

Specific Weight v = 2400025

Thickness t = 0.2m

In order to analyze the effect of a displacement of 1 cm on the stability of the structure, a FEM
stress analysis with linear triangular elements (see Figure 10) is carried out. As it can be seen,
the mesh is refined in the zones where the gradients of stresses are expected to be greater, which
are in the connection of the column with the plate. Firstly, the solution is found for no imposed
displacements on the central column.
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Fig. 10 — Discretization of the problem with 3,389 nodes (5694 elements)

As a first result, it is worth depicting the deformed state of both models, whence the imposed
displacement on the central column is clearly visible, and its effect on the rest of the structure is
noticeable (see Figure 11).
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Fig. 11 — Deformed state of the (a) original structure and (b) structure with imposed displacement.

The stress state analysis results are shown in Figures (12), (13), (14) and (15). A discussion of
the stress results is presented next:

e Stress o, : The results exhibit that the original model (Fig 12a) presents a regular behavior
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with tension stress on the lower layers of the plate and some compression on the upper ones.
In contrast with Figure (12b), in which both values of stress increments are almost 30 times
approximately, and in the connection of between the central column and the plate, the value
of tension changes from 854 K N/m? [C] to 24906 K N/m? [T).

e Stress o, : A comparisong of Figures (13a) and (13b), allows to notice the change in the
behavior due to the sag of the foundation. The central column working originally in com-
pression, now is completely tensed and the maximum tensile values of stresses increased from
93 KN/m? [T] in the plate to 42964 K N/m? [T] in the central column. The compression is
incremented ten times and then distributed completely between the two side columns.

e Stress 7, : Considering Figures (14a) and (14b), it is shown again that there is a considerable
increase in the stresses, and also it is worth mentioning that the two holes in the plate could
cause critical problems since the increment is affecting this part of the structure as well.

e Principal Stresses: The results showed an important change due to the change in behavior
of the complete structure by imposing a displacement of only 1 ¢m in the central support.
As seen in Figure (15a), first the columns work in compression as a regular frame, but then
in figure (15b) the central column is completely tensed. Moreover, the direction of the stress
vector vary significantly including now tension vectors.
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Fig. 12 — Stress o, of the (a) original structure and (b) structure with imposed displacement.
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Fig. 13 — Stress o, of the (a) original structure and (b) structure with imposed displacement.
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Fig. 14 — Stress 7., of the (a) original structure and (b) structure with imposed displacement.
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Exercise 3 - Plate with ventilation hole

The structure represents a reinforced concrete plate with simple supports. This plate possesses
a hole for a ventilation pipe. Due to a change in the initial project, the design load for which the
plate was calculated increased significantly. This motivated the placement of a metal reinforcement
sheet on both sides of the plate in the area of the hole. The geometry, loads and constraints are
depicted in Figure (16).

O T T
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Fig. 16 — Plate with ventilation hole geometry, loads and constrains project.
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In order to verify if the reinforcement proposal is suitable and actually necessary, a FEM analysis
will be performed considering both the original full-concrete structure and a second one with steel
plates confining the ventilation hole (as showed in the cross section A-A in Figure (16)). The
material properties considered are the following ones:

e Concrete o Steel
— Young Modulus FE = 3.0E10% — Young Modulus F = 2.1E11%
— Poisson coefficient v = 0.2 — Poisson coefficient v = 0.3
— Specific Weight v = 24000% — Specific Weight v = 78000%
— Thickness ¢t = 0.25m — Thickness t = 0.016m (2 plates)

For the FEM analysis, the domain is discretized with 2,450 linear quadrilateral elements (see
Figure (17)) with refinements around the vicinity of the ventilation hole. As for the second model,
overlapping meshes (with collapsed nodes) for both the steel and concrete structures were used,
assuring thus compatibility of the displacements.

The computations of the deformed state (see Figures (18a) and (18b)) revealed that the dis-
placements of the reinforced beam are slightly greater in comparison (around 0.02mm), which can
be explained considering the weight of the steel plates.

Since the ventilation hole will be the place of a pipe, it is vital to take into account the defor-
mation in the region around the hole itself, to check for not admissible too large strains. Thus,
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Fig. 17 — Discretization of the problem. Two colors are shown to indicate the materials.

once again the results showed that the difference between the original and reinforced models are
practically negligible, i.e. the deformation state is not a critical factor to considering.
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The second part of the analysis is to verify the stress state of the original concrete model and the
reinforced one. As the representations of the stresses vector fields show in o, direction (see Figure
20), there is a general detriment of around 0.02% in the critical stresses of the plate (even for o, and
Tuy, Which are not relevant to include). For instance, in the mid-point of the model, where tension
(lower nodes) and compression (upper nodes) are involved, as well as the reactions. The general
reduction observed when using the reinforcement is beneficial, but does not affect considerably the
behavior of the entire system. Once again, it becomes more important to check the state stress of
nodes in the vicinity of the hole (consider results shown in Figures (21), (22), and (23)).

Fig. 21 — Stress o, in the region of the ventilation hole in the (a) concrete (b) reinforced concrete
(c) steel plate models
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Fig. 22 — Stress o, in the region of the ventilation hole in the (a) concrete (b) reinforced concrete
(c) steel plate models
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Fig. 23 — Stress 7, in the region of the ventilation hole in the (a) concrete (b) reinforced concrete
(c) steel plate models
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The previously presented results of stress states in the region of the ventilation hole allow us to
make a final decision on whether to include or not the steel reinforcement. As it can be seen, at the
corners of the hole an important reduction (around 25%) in the tension stress values is exhibited,
which are one of the mandatory critical values to review since the concrete by itself cannot sustain
this type of loading as evident in the latter representations of the stress fields (o,, 0y, T4y). A vector
field representation of the principal stresses in the vicinity of the hole (see Figure (24)), allow us to
better understand the difference between the two proposed solutions and to observe how the tension
and compression affect the critical points in the model. Thus, as a conclusion, it is possible to state
that whether the steel plate is required or not will depend on the concrete reinforcement design
of the beam, because if the engineer in charge has considered in the design enough steel rebars to
resist the tension stresses presented in the ventilation hole, then the metal plate is not needed.
Otherwise, if the steel rebars are optimal for just the concrete, and the tension presented in this
analysis is greater than the ones from the rebars, then the metal plate is needed

Bisplay Vectors of Stresses_PS, Al factor 4e-8.

(b)

Fig. 24 — Principal stresses in the vicinity of the ventilation hole for the (a) concrete model (b)
concrete-steel models
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Exercise 4 - Prismatic water tank

A 3-meter-high rectangular tank is used to store drinking water. The cross section of the tank
and its geometric dimensions are depicted in Figure (25).
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Fig. 25 — Cross section of the water tank

For the analysis of the problem, the domain was discretized using a unstructured mesh with 1,059
quadrilateral elements (see Figure (26a)) with linear shape functions. A more in-depth analysis
would eventually need mesh refinements in the vicinity of sharp corners.

The water column is modeled using two separate hydrostatic distributed loads at the bottom and
vertical wall of the tank (maximum value at the bottom equal to phgm,o = 24500N/m), whereas,
the ground is modeled as an elastic support with load coefficient equal to 50N/cm3. The weight
of the structure is also taken into account in the computations. Moreover, it is assumed that the
ground can only resist compression efforts with no traction or resistance in the z direction allowed.
A symmetry condition was imposed on the left boundary of the model, restricting the displacements
on the x direction (see Figure (26b)).

The problem is considered to be a plane strain problem with concrete as the material of the
water tank structure (£ = 30.0e10N/m?, v = 0.2, v = 24000N/m?).
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(b)
Fig. 26 — Discretized model (a) and boundary conditions (b) of the computational model

An analysis of the stress vectors allows us to verify the correctness of the problem. As stated
before, the ground cannot sustain tension efforts which is satisfied based on the results depicted in
Figure (27). Only compression stresses are obtained at the boundary of the ground matching thus
the physics of the problem.

The displacements (m) and the corresponding deformed configuration (with a factor of 250) are
depicted in Figure (28). The displacements reach their maximum value at the top of the structure
(around 1 m) and as expected the displacements are more pronounced in the z direction and less
important in the y direction due to the elastic compensating effect of the ground.
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Fig. 27 — Stress vector field
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The normal stresses in the z, y and z are represented in Figure (29). The maximum normal stress
values reached are 607kN/m?, 470kN/m? and 177kN/m? for the z, y and z directions, respectively.
The maximum z stress is computed to be at the bottom of the tank due to the normal pressure
of the water causing the bottom of the tank to be “pulled” whereas the area in contact with the
ground is compressed. Similarly, the deformation of the structure is such that the vertical wall of
the tank is bent in the x direction, causing the internal face to be subject to tensile stresses while
the external face is under compression. Hence, the results of the simulation showed that the greatest
value of stresses will be in the vicinity of the connection between the bottom and the vertical wall of
the structure, where additional care should be taken in order to assure the structure can withhold
the given loading conditions.

In order to obtained more reliable results mesh refinements would be needed in the region of
sharp corners subject to the maximum stresses. Furthermore, if the displacements or the stresses
surpass the permissible values, reinforcements can be considered in the form of steel internal bars
and other possible engineering composite solutions.
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Fig. 29 — Normal stress vector fields
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