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1. The Direct Stiffness Method The stiffness equation for a two-noded truss element is:
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where L(e) is length of the corresponding truss element, cmsnφ = cosm φ(e)sinn φ(e), with φ(e) as the
angle between element and x-axis.

For each element, L(e) and φ(e) are:
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(a) Using the assembly rules, the assembly matrix will be :
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where c = cosα and s = sinα.

The fifth row and column are zeros. This is because the fifth node is free to move in x-direction.
It doesn’t need any force to move in x-direction, NOR any force in x-direction influences the
displacement of other nodes.

(b) The nodes 2,3 and 4 are fixed. Hence, we apply boundary conditions ux2 = uy2 = ux3 = uy3 =
ux4 = uy4 = 0. Also, we use fx1 = H and fy1 = −P Hence, the reduced system of equations will
be: [
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(c) The above system of equation yields ux1 =
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and ux2 =
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.

Mathematically, as α → 0, ux1 → ∞. This is physically correct because at α = 0, all three
elements are vertical and cannot withstand any horizontal forces.

Also, as α → pi
2 , ux1 → ∞. As α increases, two factors play a significant role- the alignment

of elements w.r.t. horizontal force H and the length of the elements. Due to the geometry, the
length also increases with α. At α π

2 , the truss element 1 and 3 are almost horizontal and have
infinite length. Although the horizontal alignment of the truss element helps in bearing the force
H, the large length results in large displacement ( ∵ u = εL for uniform stress or uniform strain).

The optimal relation between the two factors here is at

αopt = argmin(1/cs2)

=⇒ cosα = 1/2

=⇒ α =
π
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(d) The axial forces for each element can be obtained by transforming the displacement vector into
local axis:
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. Using this relation, we obtain the axial displacement

at node 1 as:

ū
(1)
x1 = ux1s− uy1c

=⇒ ū
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(2)
x1 =

L

EA

(
P

1 + 2c3

)
ū
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Hence, the axial forces can be calculated as:
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Here we observe that as α → 0, F
(1)
a → ∞ and F

(3)
a → ∞. Mathematically, the solution is not

valid for α = 0 because the reduced system of equations in 1b has a singular matrix at α = 0.
Physically, at α = 0, the system of trusses is indeterminate.
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