COMPUTATIONAL STRUCTURAL MECHANICS \& DYNAMICS

Report on Assignment 1
submitted by
Kiran Sagar Kollepara Computational Mechanics

1. The Direct Stiffness Method The stiffness equation for a two-noded truss element is:

$$
\begin{aligned}
\mathbf{f}^{(e)} & =\mathbf{K}^{(e)} \mathbf{u}^{(e)} \\
\text { where } \quad \mathbf{K}^{(e)} & =\frac{E A}{L^{(e)}}\left[\begin{array}{cc|cc}
c^{2} \phi & s c \phi & -c^{2} \phi & -s c \phi \\
s c \phi & s^{2} \phi & -s c \phi & -s^{2} \phi \\
\hline-c^{2} \phi & -c s \phi & c^{2} \phi & c s \phi \\
-s c \phi & -s^{2} \phi & s c \phi & s^{2} \phi
\end{array}\right]=\left[\begin{array}{c|c}
\mathbf{K}_{11}^{(e)} & \mathbf{K}_{12}^{(e)} \\
\hline \mathbf{K}_{21}^{(e)} & \mathbf{K}_{22}^{(e)}
\end{array}\right]
\end{aligned}
$$

where $L^{(e)}$ is length of the corresponding truss element, $c^{m} s^{n} \phi=\cos ^{m} \phi^{(e)} \sin ^{n} \phi^{(e)}$, with $\phi^{(e)}$ as the angle between element and x -axis.

For each element, $L^{(e)}$ and $\phi^{(e)}$ are:

(e)	$L^{(e)}$	$\phi^{(e)}$
1	L	$\frac{\pi}{2}+\alpha$
2	L	$\frac{\pi}{2}$
3	$\frac{L}{\cos \alpha}$	$\frac{\pi}{2}-\alpha$

(a) Using the assembly rules, the assembly matrix will be :

$$
\begin{aligned}
& \mathbf{K}_{a}=\left[\begin{array}{cccc}
\mathbf{K}_{11}^{(1)}+\mathbf{K}_{11}^{(2)}+\mathbf{K}_{11}^{(3)} & \mathbf{K}_{12}^{(1)} & \mathbf{K}_{12}^{(2)} & \mathbf{K}_{12}^{(3)} \\
\mathbf{K}_{21}^{(1)} & \mathbf{K}_{22}^{(1)} & \mathbf{0} & \mathbf{0} \\
\mathbf{K}_{21}^{(2)} & \mathbf{0} & \mathbf{K}_{22}^{(2)} & \mathbf{0} \\
\mathbf{K}_{21}^{(3)} & \mathbf{0} & \mathbf{0} & \mathbf{K}_{21}^{(3)}
\end{array}\right] \\
& \Longrightarrow \mathbf{K}_{a}=\frac{E A}{L}\left[\begin{array}{cccccccc}
2 c s^{2} & 0 & -c s^{2} & c^{2} s & 0 & 0 & -c s^{2} & -c^{2} s \\
& 1+2 c^{3} & c^{2} s & -c^{3} & 0 & -1 & -c^{2} s & -c^{3} \\
& & c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 \\
& & & c^{3} & 0 & 0 & 0 & 0 \\
& & & & 0 & 0 & 0 & 0 \\
\\
& & & & & 1 & 0 & 0 \\
s y m m & & & & & & & c s^{2} \\
c^{2} s \\
& & & & & & & c^{3}
\end{array}\right]
\end{aligned}
$$

where $c=\cos \alpha$ and $s=\sin \alpha$.
The fifth row and column are zeros. This is because the fifth node is free to move in x-direction. It doesn't need any force to move in x-direction, NOR any force in x-direction influences the displacement of other nodes.
(b) The nodes 2,3 and 4 are fixed. Hence, we apply boundary conditions $u_{x 2}=u_{y 2}=u_{x 3}=u_{y 3}=$ $u_{x 4}=u_{y 4}=0$. Also, we use $f_{x 1}=H$ and $f_{y 1}=-P$ Hence, the reduced system of equations will be:

$$
\left[\begin{array}{c}
H \\
-P
\end{array}\right]=\frac{E A}{L}\left[\begin{array}{cc}
2 c s^{2} & 0 \\
0 & 1+2 c^{3}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right]
$$

(c) The above system of equation yields $u_{x 1}=\frac{L}{E A} \frac{H}{2 c s^{2}}$ and $u_{x 2}=\frac{L}{E A}\left(\frac{-P}{1+2 c^{3}}\right)$.

Mathematically, as $\alpha \rightarrow 0, u_{x 1} \rightarrow \infty$. This is physically correct because at $\alpha=0$, all three elements are vertical and cannot withstand any horizontal forces.

Also, as $\alpha \rightarrow \frac{p i}{2}, u_{x 1} \rightarrow \infty$. As α increases, two factors play a significant role- the alignment of elements w.r.t. horizontal force H and the length of the elements. Due to the geometry, the length also increases with α. At $\alpha \frac{\pi}{2}$, the truss element 1 and 3 are almost horizontal and have infinite length. Although the horizontal alignment of the truss element helps in bearing the force H, the large length results in large displacement ($\because u=\epsilon L$ for uniform stress or uniform strain).

The optimal relation between the two factors here is at

$$
\begin{aligned}
\alpha_{o p t} & =\operatorname{argmin}\left(1 / c s^{2}\right) \\
\Longrightarrow \cos \alpha & =1 / 2 \\
\Longrightarrow \alpha & =\frac{\pi}{3}
\end{aligned}
$$

(d) The axial forces for each element can be obtained by transforming the displacement vector into local axis:

$$
\overline{\mathbf{u}}^{(e)}=\left[\begin{array}{cccc}
c \phi & s \phi & 0 & 0 \\
-s \phi & c \phi & 0 & 0 \\
0 & 0 & c \phi & s \phi \\
0 & 0 & -s \phi & c \phi
\end{array}\right] \mathbf{u}^{(e)}
$$

with $c=\cos \left(\frac{\pi}{2}+\alpha\right)$ and $s=\sin \left(\frac{\pi}{2}+\alpha\right)$. Using this relation, we obtain the axial displacement at node 1 as:

$$
\begin{aligned}
\bar{u}_{x 1}^{(1)} & =u_{x 1} s-u_{y 1} c \\
\Longrightarrow \quad \bar{u}_{x 1}^{(1)} & =\frac{L}{E A}\left(\frac{H}{2 c s}+\frac{P c}{1+2 c^{3}}\right) \\
\|^{\text {rly }} \quad \bar{u}_{x 1}^{(2)} & =\frac{L}{E A}\left(\frac{P}{1+2 c^{3}}\right) \\
\bar{u}_{x 1}^{(3)} & =\frac{L}{E A}\left(-\frac{H}{2 c s}+\frac{P c}{1+2 c^{3}}\right)
\end{aligned}
$$

Hence, the axial forces can be calculated as:

$$
\begin{aligned}
F_{a}^{(1)} & =\frac{E A}{L / c}\left(\bar{u}_{x 1}^{(1)}-0\right) \\
\Longrightarrow F_{a}^{(1)} & =\frac{H}{2 s}+\frac{P c^{2}}{1+2 c^{3}} \\
\|^{\text {rly }} \quad F_{a}^{(2)} & =\frac{P}{1+2 c^{3}} \\
\|^{\text {rly }} \quad F_{a}^{(3)} & =-\frac{H}{2 s}+\frac{P c^{2}}{1+2 c^{3}}
\end{aligned}
$$

Here we observe that as $\alpha \rightarrow 0, F_{a}^{(1)} \rightarrow \infty$ and $F_{a}^{(3)} \rightarrow \infty$. Mathematically, the solution is not valid for $\alpha=0$ because the reduced system of equations in 1 b has a singular matrix at $\alpha=0$. Physically, at $\alpha=0$, the system of trusses is indeterminate.

