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1. The Direct Stiffness Method The stiffness equation for a two-noded truss element is:
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where K(©

where L(¢) is length of the corresponding truss element, ¢”s"¢ = cos™ ¢(©sin™ ¢, with ¢(©) as the
angle between element and x-axis.
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(a) Using the assembly rules, the assembly matrix will be :
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where ¢ = cosa and s = sina.

The fifth row and column are zeros. This is because the fifth node is free to move in x-direction.
It doesn’t need any force to move in x-direction, NOR any force in x-direction influences the
displacement of other nodes.

(b) The nodes 2,3 and 4 are fixed. Hence, we apply boundary conditions uzo = uy2 = uz3 = uy3 =
Uza = Uys = 0. Also, we use fy1 = H and f,; = —P Hence, the reduced system of equations will

be:
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(¢) The above system of equation yields u,, =
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Mathematically, as & — 0, uz; — oo. This is physically correct because at a = 0, all three
elements are vertical and cannot withstand any horizontal forces.

Also, as a —

pi
2

uz1 — 00. As « increases, two factors play a significant role- the alignment

of elements w.r.t. horizontal force H and the length of the elements. Due to the geometry, the

length also increases with a. At «

™

%, the truss element 1 and 3 are almost horizontal and have

infinite length. Although the horizontal alignment of the truss element helps in bearing the force
H, the large length results in large displacement ( *.- u = €L for uniform stress or uniform strain).

The optimal relation between the two factors here is at
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(d) The axial forces for each element can be obtained by transforming the displacement vector into

local axis:
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with ¢ = cos (% + a) and s = sin (g + a). Using this relation, we obtain the axial displacement

at node 1 as:
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Hence, the axial forces can be calculated as:
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Here we observe that as a — 0, Fél) — oo and Fa(g) — 00. Mathematically, the solution is not
valid for o = 0 because the reduced system of equations in 1b has a singular matrix at o = 0.
Physically, at a = 0, the system of trusses is indeterminate.




