ASSIGNMENT 1.

JORGE BALSA GONZÁLEZ

We have the truss problem with the geometric measures L and α angle and the applied forces shown in next figure:

It has 8 degrees of freedom, with 6 of them removable by the fixed displacement conditions at nodes 2, 3 and 4.

We follow the direct stiffness method to solve this problem.

Breakdown:

In the figure is shown the idealization, and the loads and supports are also shown.

We can think in this problem as three elements, also shown in figure as (1), (2) and (3). (Disconnection and localization steps).

Member element formation:
We solve each of these three elements separately.

For each element:
$\overline{u^{e}}=u^{e,}=T^{e} u^{e}$

$$
\left(\begin{array}{l}
u_{x i}^{\prime} \\
u_{y i}^{\prime} \\
u_{x j}^{\prime} \\
u_{y j}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\operatorname{Cos} \varphi & \operatorname{Sin} \varphi & 0 & 0 \\
-\operatorname{Sin} \varphi & \operatorname{Cos} \varphi & 0 & 0 \\
0 & 0 & \operatorname{Cos} \varphi & \operatorname{Sin} \varphi \\
0 & 0 & -\operatorname{Sin} \varphi & \operatorname{Cos} \varphi
\end{array}\right)\left(\begin{array}{l}
u_{x i} \\
u_{y i} \\
u_{x j} \\
u_{y j}
\end{array}\right)
$$

$f^{e}=\left(T^{e}\right)^{T} f^{e \prime}$

$$
\left(\begin{array}{l}
f_{x i} \\
f_{y i} \\
f_{x j} \\
f_{y j}
\end{array}\right)=\left(\begin{array}{cccc}
\operatorname{Cos} \varphi & -\operatorname{Sin} \varphi & 0 & 0 \\
\operatorname{Sin} \varphi & \operatorname{Cos} \varphi & 0 & 0 \\
0 & 0 & \operatorname{Cos} \varphi & -\operatorname{Sin} \varphi \\
0 & 0 & \operatorname{Sin} \varphi & \operatorname{Cos} \varphi
\end{array}\right)\left(\begin{array}{l}
f_{x i}{ }^{\prime} \\
f_{y i}{ }^{\prime} \\
f_{x j}{ }^{\prime} \\
f_{y j}{ }^{\prime}
\end{array}\right)
$$

$$
\begin{aligned}
& K^{e}=\left(T^{e}\right)^{T} \quad K^{e} T^{e} \\
& E^{1}= E^{2}=E^{3}=\mathrm{E} \\
& A^{1}=A=A^{3}=\mathrm{A}
\end{aligned}
$$

Element (1):

$\varphi=\frac{\pi}{2}+\alpha$
$\operatorname{Cos} \varphi=-\operatorname{Sin} \alpha=-s($ for simplicity in the notation)
$\operatorname{Sin} \varphi=\operatorname{Cos} \alpha=c$ (for simplicity in the notation)
$f_{x 1}=u_{x 1}-u_{x 2}$
$f_{y 1}=0$
$f_{x 2}=-u_{x 1}+u_{x 2}$
$f_{y 2}=0$
So:
$K^{1}=\frac{E A}{L^{1}}\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
And we substitute $\operatorname{Cos} \varphi=-s$ and $\operatorname{Sin} \varphi=\mathrm{c}$ in $\left(T^{1}\right)^{T}$ and $\left(T^{1}\right)$ so we get:
$K^{1}=\left(T^{1}\right)^{T} K^{1} T^{1}=\frac{E A}{L^{1}}\left(\begin{array}{cccc}-s & c & 0 & 0 \\ -c & -s & 0 & 0 \\ 0 & 0 & -s & c \\ 0 & 0 & -c & -s\end{array}\right)\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{cccc}-s & -c & 0 & 0 \\ c & -s & 0 & 0 \\ 0 & 0 & -s & -c \\ 0 & 0 & c & -s\end{array}\right)=$ $\frac{E A}{L^{1}}\left(\begin{array}{cccc}-s & 0 & s & 0 \\ -c & 0 & c & 0 \\ s & 0 & -s & 0 \\ c & 0 & -c & 0\end{array}\right)\left(\begin{array}{cccc}-s & -c & 0 & 0 \\ c & -s & 0 & 0 \\ 0 & 0 & -s & -c \\ 0 & 0 & c & -s\end{array}\right)$
And $L^{1}=\frac{L}{c}$
Finally:
$K^{1}=\frac{E A}{L}\left(\begin{array}{cccc}s^{2} c & -s c^{2} & -s^{2} c & s c^{2} \\ -s c^{2} & c^{3} & s c^{2} & -c^{3} \\ -s^{2} c & s c^{2} & s^{2} c & -s c^{2} \\ s c^{2} & -c^{3} & -s c^{2} & c^{3}\end{array}\right)(\mathrm{s}->-\mathrm{s})$

Element (2):

φ

Now

$\varphi=\frac{\pi}{2}$, so:
$\operatorname{Cos} \varphi=\mathrm{c}=0$ (for simplicity in the notation)
$\operatorname{Sin} \varphi=s=1$ (for simplicity in the notation)
$f_{x 1}=0$
$f_{y 1}=u_{y 1}-u_{y 3}$
$f_{x 3}=0$
$f_{y 3}=-u_{y 1}+u_{y 3}$
So:
$K^{2}=\frac{E A}{L^{2}}\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right)$
And we substitute $\operatorname{Cos} \varphi=-\mathrm{s}=0$ and $\operatorname{Sin} \varphi=\mathrm{c}=1$ in $\left(T^{1}\right)^{T}$ and $\left(T^{1}\right)$ so we get:
$K^{2}=\left(T^{2}\right)^{T} K^{2} T^{2}=\frac{E A}{L}\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right)$
$L^{2}=\frac{L}{c}=L$

Element (3):

$\varphi=\frac{\pi}{2}-\alpha$
$\operatorname{Cos} \varphi=\operatorname{Sin} \alpha=s($ for simplicity in the notation)
$\operatorname{Sin} \varphi=\operatorname{Cos} \alpha=c$ (for simplicity in the notation)
$f_{x 1}=u_{x 1}-u_{x 4}$
$f_{y 1}=0$
$f_{x 4}=-u_{x 1}+u_{x 4}$
$f_{y 4}=0$
So:
$K^{3}=\frac{E A}{L^{1}}\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
And we substitute $\operatorname{Cos} \varphi=\mathrm{s}$ and $\operatorname{Sin} \varphi=\mathrm{c}$ in $\left(T^{3}\right)^{T}$ and $\left(T^{3}\right)$ so we get:
$K^{3}=\left(T^{3}\right)^{T} K^{3} T^{3}=\frac{E A}{L^{1}}\left(\begin{array}{cccc}s & c & 0 & 0 \\ -c & s & 0 & 0 \\ 0 & 0 & s & c \\ 0 & 0 & -c & s\end{array}\right)\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{cccc}s & -c & 0 & 0 \\ c & s & 0 & 0 \\ 0 & 0 & s & -c \\ 0 & 0 & c & s\end{array}\right)$
And $L^{3}=\frac{L}{c}$
Finally:

$$
\begin{aligned}
& K^{3}=\frac{E A}{L^{3}}\left(\begin{array}{cccc}
s & 0 & -s & 0 \\
-c & 0 & c & 0 \\
-s & 0 & s & 0 \\
c & 0 & -c & 0
\end{array}\right)\left(\begin{array}{cccc}
s & -c & 0 & 0 \\
c & s & 0 & 0 \\
0 & 0 & s & -c \\
0 & 0 & c & s
\end{array}\right)= \\
& =\frac{E A}{L}\left(\begin{array}{cccc}
s^{2} c & s c^{2} & -s^{2} c & -s c^{2} \\
s c^{2} & c^{3} & -s c^{2} & -c^{3} \\
-s^{2} c & -s c^{2} & s^{2} c & s c^{2} \\
-s c^{2} & -c^{3} & s c^{2} & c^{3}
\end{array}\right)(s->-s)
\end{aligned}
$$

Assembly:

element 1:

$$
\left(\begin{array}{l}
f_{x 1} \\
f_{y 1} \\
f_{x 2} \\
f_{y 2} \\
f_{x 3} \\
f_{y 3} \\
f_{x 4} \\
f_{y 4}
\end{array}\right)=\frac{E A}{L}\left(\begin{array}{ccccccccc}
s^{2} c & -s c^{2} & -s^{2} c & s c^{2} & 0 & 0 & 0 & 0 & \\
-s c^{2} & c^{3} & s c^{2} & -c^{3} & 0 & 0 & 0 & 0 \\
-s^{2} c & s c^{2} & s^{2} c & -s c^{2} & 0 & 0 & 0 & 0 \\
s c^{2} & -c^{3} & -s c^{2} & c^{3} & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right)
$$

element 2:

$$
\left(\begin{array}{l}
f_{x 1} \\
f_{y 1} \\
f_{x 2} \\
f_{y 2} \\
f_{x 3} \\
f_{y 3} \\
f_{x 4} \\
f_{y 4}
\end{array}\right)=\frac{E A}{L}\left(\begin{array}{ccccccccccc}
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
& 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & & \\
0 & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right)
$$

element 3:

$$
\left(\begin{array}{l}
f_{x 1} \\
f_{y 1} \\
f_{x 2} \\
f_{y 2} \\
f_{x 3} \\
f_{y 3} \\
f_{x 4} \\
f_{y 4}
\end{array}\right)=\frac{E A}{L}\left(\begin{array}{cllllllll}
s^{2} c & s c^{2} & 0 & 0 & 0 & 0 & -s^{2} c & -s c^{2} \\
s c^{2} & c^{3} & 0 & 0 & 0 & 0 & s^{2} c & -c^{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-s^{2} & -s c^{2} & 0 & 0 & 0 & 0 & s^{2} c & 0 c^{2} \\
-s c^{2} & -c^{3} & & 0 & 0 & 0 & 0 & s c^{2} & c^{3}
\end{array}\right)\left(\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{u_{3}} \\
u_{x 4} \\
u_{y 4}
\end{array}\right)
$$

$f=f^{(1)}+f^{(2)}+f^{(3)}=\left(K^{(1)}+K^{(2)}+K^{(3)}\right) u=K u$

The $5^{\text {th }}$ row and column only contain zeros because they are related with the x component of the node 3 , element 2 , which has not any force acting in the x direction so no x direction displacement, just elongation in y direction.

Boundary conditions (BC):

According to the prescribed conditions, nodes 2, 3 and 4 are fixed, so:
$u_{x 2}=0$
$u_{y 2}=0$
$\boldsymbol{u}_{x 3}=\mathbf{0}$
$\boldsymbol{u}_{\boldsymbol{y} 3}=\mathbf{0}$
$\boldsymbol{u}_{x 4}=\mathbf{0}$
$\boldsymbol{u}_{\boldsymbol{y} 4}=\mathbf{0}$
And we obtain:

$$
\frac{E A}{L}\left(\begin{array}{cc}
2 s^{2} c & 0 \\
0 & 1+2 c^{3}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{u} \\
\boldsymbol{u}_{\boldsymbol{x}} \\
\boldsymbol{u}_{\boldsymbol{y}}
\end{array}\right)=\binom{\boldsymbol{H}}{-\boldsymbol{P}}
$$

reducing the stiffness system 8×8 to a 2×2 system:
$\frac{E A}{L} 2 s^{2} c u_{x 1}=H$
$\frac{E A}{L}\left(1+2 c^{3}\right) u_{y 1}=-P$
So we can now solve the displacements $u_{x 1}$ and $u_{y 1}$:

$$
\begin{gathered}
u_{x 1}=\frac{H L}{2 E A s^{2} c} \\
u_{y 1}=\frac{-P L}{E A\left(1+2 c^{3}\right)}
\end{gathered}
$$

Let's check this solutions in the limit cases $\alpha \rightarrow 0$ and $\alpha \rightarrow \pi / 2$
$u_{x 1}=\frac{H L}{2 E A S i^{2} \alpha \operatorname{Cos} \alpha}$

$$
u_{y 1}=\frac{-P L}{E A\left(1+2 \cos ^{2} \alpha\right)}
$$

When $\boldsymbol{\alpha} \rightarrow \mathbf{0}:(\operatorname{Cos} \alpha \rightarrow 1, \operatorname{Sin} \alpha \rightarrow 0)$
$u_{x 1} \rightarrow \infty$

$$
u_{y 1} \rightarrow \frac{-P L}{3 E A}
$$

If $\alpha \rightarrow 0$ there is just one bar in the Y axis, so no displacement can exist along \mathbf{x} direction. Just in y direction. So this has not physical sense.
This solution, with $\mathrm{H} \neq 0$, physically can be interpreted such as any force H (includes very small forces) applied in the \mathbf{x} direction will cause an infinite displacement in \mathbf{X} direction, which has no sense.

$$
\begin{aligned}
& \text { When } \boldsymbol{\alpha} \rightarrow \boldsymbol{\pi} / 2:(\operatorname{Cos} \alpha \rightarrow 0, \operatorname{Sin} \alpha \\
& \rightarrow 1) \text { : } \\
& u_{x 1}
\end{aligned} \rightarrow \infty,
$$

This would be the case in which the distance from node 3 to 1 or 4 would be infinite. And node 1 will be in node 2 . Now there is just one bar along the X axis, so no displacement can exist along x direction. Just in y direction. So this has not physical sense, again.

So this system has not physical sense for $\boldsymbol{\alpha} \rightarrow \mathbf{0}$ and $\boldsymbol{\alpha} \rightarrow \boldsymbol{\pi} / \mathbf{2}$:
For both cases should happens:

$$
u_{x 1} \rightarrow 0
$$

And ($\mathrm{H}=0$):
$u_{y 1} \rightarrow \frac{-P}{3 E A}($ for $\alpha \rightarrow 0)$

$$
u_{y 1} \rightarrow \frac{-P L}{E A} \quad(\text { for } \alpha \rightarrow \pi / 2)
$$

Axial forces:

So we have an axial force for each of the 3 elements:

$$
\begin{gathered}
\overline{u_{e}}=T_{e} u_{e} \\
d_{e}=\bar{u}_{x j}^{e}-\bar{u}_{x i}^{e} \\
F_{e}=\frac{E A}{L} \cdot d_{e}
\end{gathered}
$$

where d_{e} is the elongation and F_{e} then the axial force.

$$
\begin{aligned}
& \overline{u_{1}}=\left(\begin{array}{cccc}
s & c & 0 & 0 \\
-c & s & 0 & 0 \\
0 & 0 & s & c \\
0 & 0 & -c & s
\end{array}\right)\left(\begin{array}{c}
\frac{H L}{2 E A s^{2} c} \\
\frac{-P L}{E A\left(1+2 c^{3}\right)} \\
0 \\
0
\end{array}\right)=\left(\frac{H L}{2 E A s c}+\frac{-P L c}{E A\left(1+2 c^{3}\right)}, \frac{-H L}{2 E A s^{2}}-\frac{P L s}{E A\left(1+2 c^{3}\right)}, 0,0\right) \\
& d_{1}=\bar{u}_{x 2}-\bar{u}_{x 1}=0-\frac{H L}{2 E A S c}+\frac{P L c}{E A\left(1+2 c^{3}\right)}=\frac{L}{E A}\left(\frac{-H}{2 s}+\frac{P c}{1+2 c^{3}}\right) \\
& L^{(1)}=\frac{L}{c^{\prime}}, \quad \mathrm{L}=L^{(1)} c \\
& F^{(1)}=\frac{E A}{L} \cdot \frac{L}{E A}\left(\frac{-H}{2 s c}+\frac{P c}{1+2 c^{3}}\right)=\frac{E A}{L^{(1)}} \cdot \frac{L^{(1)} c}{E A}\left(\frac{-H}{2 s c}+\frac{P c}{1+2 c^{3}}\right)=\frac{-H}{2 s}+\frac{P c^{2}}{1+2 c^{3}} \\
& \overline{u_{2}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{H L}{2 E A s^{2} c} \\
\frac{-P L}{E A\left(1+2 c^{3}\right)} \\
0 \\
0
\end{array}\right)=\left(\frac{-P L}{E A\left(1+2 c^{3}\right)}, \frac{-H L}{2 E A s^{2} c}, 0,0\right) \\
& d_{2}=\bar{u}_{x 2}-\bar{u}_{x 1}=0-\frac{-P L}{E A\left(1+2 c^{3}\right)} \\
& L^{(2)}=L \\
& F^{(2)}=\frac{E A}{L} \frac{P L}{E A\left(1+2 c^{3}\right)}=\frac{P}{\left(1+2 c^{3}\right)} \\
& L^{(3)}=\frac{L}{c^{\prime}}, \mathrm{L}=L^{(3)} c \\
& \overline{u_{3}}=\left(\begin{array}{cccc}
s & c & 0 & 0 \\
-c & s & 0 & 0 \\
0 & 0 & s & c \\
0 & 0 & -c & s
\end{array}\right)\left(\begin{array}{c}
\frac{H L}{2 E A s^{2} c} \\
\frac{-P L}{E A\left(1+2 c^{3}\right)} \\
0 \\
0
\end{array}\right)=\left(\frac{-P L c}{E A\left(1+2 c^{3}\right)}+\frac{H L}{2 E A s c}, \frac{-P L S}{E A\left(1+2 c^{3}\right)}+\frac{H L}{2 E A s^{2}}, 0,0\right) \\
& d_{3}=\bar{u}_{x 2}-\bar{u}_{x 1}=0-\left(\frac{-P L c}{E A c\left(1+2 c^{3}\right)}+\frac{H L}{2 E A s c}\right)=-\frac{L^{(3)} c}{E A}\left(\frac{-P c}{\left(1+2 c^{3}\right)}+\frac{H}{2 s c}\right)
\end{aligned}
$$

$$
F^{(3)}=\frac{E A}{L^{(3)}} \cdot\left(-\frac{L^{(3)} c}{E A}\right)\left(\frac{-P c}{\left(1+2 c^{3}\right)}+\frac{H}{2 s c}\right)=\frac{P c^{2}}{\left(1+2 c^{3}\right)}-\frac{H}{2 s}
$$

As we have seen $F^{(3)}=F^{(1)}=\frac{-H}{2 s}+\frac{P c^{2}}{1+2 c^{3}}$
If $\mathrm{H} \neq 0$ and $\alpha->0$:
$s->0$ and c-> 1

So both $F^{(3)}$ and $F^{(1)}->\infty$

This is because in this case we have just one bar and H is perpendicular to this bar, and we only would have P contribution. So H must be 0 if $\alpha=0$ or $\alpha \neq 0$ if $H \neq 0$, otherwise very small applied forces in the x axis, would produce infinite axial forces.

