COMPUTATIONAL STRUCTURAL MECHANICHS AND DYNAMICS HOMEWORK #1

ASSIGNMENT 1.
JORGE BALSA GONZALEZ

We have the truss problem with the geometric measures L and a angle and the
applied forces shown in next figure:

E and A same for
all three bars

It has 8 degrees of freedom, with 6 of them removable by the fixed
displacement conditions at nodes 2, 3 and 4.

We follow the direct stiffness method to solve this problem.

Breakdown:

In the figure is shown the idealization, and the loads and supports are also
shown.

We can think in this problem as three elements, also shown in figure as (1), (2)
and (3). (Disconnection and localization steps).

Member element formation:

We solve each of these three elements separately.

For each element:

u® =u®=T°u¢

Ui’ Cosp Sing 0 O Uyi
Uy’ _ —Sinp Cosgp 0 O Uyi
Uy’ 0 0 Cos¢e Sing Uyj
uyj'/ 0 0 —Sing Cosg Uy j

fe =( Te)T fel
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fri Cosp —Singp 0 O fui'
fyi _ Singp Cosep 0 O fyi'
fxi | 0 0 Cosep —Sing fri’
fy]./ 0 0 Singp Coseo yj'/

Ke=( Te)T Ke Te

E' = E?=E3=E
Al = A=A3=A
Element (1):
a
(
_T,
p=5ta

Cos @ = - Sin a = -s (for simplicity in the notation)
Sin @ = Cos a = c (for simplicity in the notation)

fxl Uy — Uy

fy1=0
fxzz_uxl-l'uxz
fy2=0
So:
10-10
1 EA 00 0 O
K=Z1-1010
0O 00O

And we substitute Cos @ =-s and Sin@ =cin (T})T and (T!) so we get:
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—-s ¢ 00 1 0-10 —-s —c 00
1_rpiNTpr1ip1l _ EA —c—-—s5s00 0O 0 0 O c —s 00 _
K=TYKT =3 00 =5 ¢ -1 010 00 -s —c|

00 —c —s 0 00O 00 ¢ —s

—-s 0s O —-s —c 00
EAl—c 0 ¢ O c —s 0 O
tYs 0 —-s0 0 0 —s —c

c 0 —-c O 0 0 ¢ —-s
And Ll = £

c
Finally:
s?c —sc? —s?c sc?
2 3 2 3
gl1=E4 [ —sc c> sc© —c >

L —s?c sc? s?c —sc? (5->-s)

sc? —c3 —sc? ¢3
Element (2):

@
Now

s
(p=5,so:

Cos @ = ¢ =0 (for simplicity in the notation)
Sin ¢ = s=1 (for simplicity in the notation)

fx1=0

fyl SUy1 — Uys
fx3=0

fy3: —Uyq + Uy3

So:
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0 000
,_EA[01 0 -1
K*=Z10000

0-101

And we substitute Cos @ =-s=0and Sin @ =c=1in (T})T and (T!) so we get:

00 0O
2_rm2N\T 272 _ EA 010 -1
K—(T)KT—L 0 00 0
0 -1 01
1?===1]
c
Element (3):
a
)
s
p=5-Q

Cos @ = Sin a = s (for simplicity in the notation)
Sin @ = Cos a = c (for simplicity in the notation)

fx1=Ux1 — Uyxs
fy1=0
fra=—Ux1 + Uy
fy4:0

So:
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10-10
s_E4[ 0000
K=Z1-1010

000 0

And we substitute Cos @ =s and Sin@ =cin (T3)T and (T3) so we get:

S c 00 1 0-10 s —c 00
3_¢3\T w373 _ EA[—cs 0 0 0 0 0 O c s 00
K*=(T")" KT Lt 00 sc -1 01 0 00 s —c
i 00 —cs 0O 0 0O 00 ¢ s

3 - Z
And L° = .
Finally:

s 0 —s O s —c 00
K3_E —c 0 c O c s 00 _
L3\ —s 0 s O 0 0 s —c
c 0 —-c O 00 ¢s
s?c sc®? —s?c —sc?
_EA [ sc? 3  —sc? —¢3 (s -> =)
L —s?c —sc? s%c sc?
—sc? —c3 sc? ¢3

Assembly:

element 1:

fx1 s%c —sc:? —s%c sc20 0 0O (2%

fn —sc? c3 sc2 —=¢3 0 000 Uy1

fr2 —s?c sc? s?c —sc>0 0 0O Uyx2

fyz _EA sc? —c¢3  —sc? c30 0 00 Uy2

fa3 L 0 0 0 0 0 000 U3

fy3 0 0 0 0 0 000 Uy3

fxa 0 0 0 0 0 00O Uy

fys 0 0 0 0 0000 \iy
element 2:
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fx1 0 0 00 0 000
n 0 1 0 0 0-100
fz 0 0 0 0 0 0
fr2{ _EAl 0 0 0 0 00
fis| L 0 0 0 0 0 0
£ 0o -1 0 0 01
foa 0 0 0 0 00
fy4 0 0 0 0 0 0
element 3:
fxl
fi s?c sc2 0 0 00 —s?c —sc?
fey sc? c3 0 000 s —-¢3
fol Eal 0 0 0000 0 0
f =T 0 0 0 00O 0 0
fx3 0 0 0 000 O 0
y3 —s? — sc? 0 000 s?c sc
]]:x‘* —sc? —=c3 0 00 0 sc? ¢3
v4
f= fO4f@ 4 FO = (KO 4 K@ 4 KO Yy = K u
2s%c 0 —cs? sc2 0 0 —cs? —sc?
0 1+2c® sc? —c® 0 —1 —s%c — ¢3
—s?c sc? s’c —-c¢* 0 0 0 O
_EA4A ¢ 0 0 0 0
L 0 0 0 0
1 0 0
—cs? sc?
symm 3

HOMEWORK #1

Jorge Balsa Gonzalez



COMPUTATIONAL STRUCTURAL MECHANICHS AND DYNAMICS HOMEWORK #1

The 5 row and column only contain zeros because they are related with the x
component of the node 3, element 2, which has not any force acting in the x direction
so no x direction displacement, just elongation in y direction.

Boundary conditions (BC):

According to the prescribed conditions, nodes 2, 3 and 4 are fixed, so:

uxz—o
uyz—O
ux3—0
uy3—0
ux4—0
uy4—0

And we obtain:

ﬂ( 2s2c 0)<ux1>=(ﬂ)
L \O 1+ 2c3/\Uyn —-P
reducing the stiffness system 8x8 to a 2x2 system:

EA
TZSZC Uy = H

EA 3
T(l + 2c )uyl =—-P
So we can now solve the displacements u,; and u,4:

_HL
1 = SFAs?e

—PL

Y1 T EA( + 269)

Let’s check this solutions in the limit casesa —» 0 and a« —» m/2

HL

u - —
x1 2EAsi 2a Cosa

~ —~PL
Uy = EA(1 + 2cos?a)

When a — 0: (Cos a = 1,Sina = 0)
uxl — 00
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—PL

YW1~ 354

If a — 0 there is just one bar in the Y axis, so no displacement can exist along x
direction. Just in y direction. So this has not physical sense.

This solution, with H20, physically can be interpreted such as any force H (includes
very small forces) applied in the x direction will cause an infinite displacement in X
direction, which has no sense.

When a —» 1t/2: (Cosa — 0,Sina = 1):
Uy1 = ©

—PL
7 A
This would be the case in which the distance from node 3 to 1 or 4 would be infinite.
And node 1 will be in node 2. Now there is just one bar along the X axis, so no
displacement can exist along x direction. Just in y direction. So this has not physical
sense, again.

u

So this system has not physical sense for a« - 0 and o - 1/2:

For both cases should happens:
Uy = 0
And (H=0):

-P
Uy = o~ (fora — 0)

-PL
Uyr = - (fora— m/2)

Axial forces:

So we have an axial force for each of the 3 elements:

where d. is the elongation and F. then the axial force.
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HL
s ¢c 00 /ZEASZC\
—cs 00 —PL

T = _~PL 1 ( HL -PLc  -HL PLs 0 0)
1= 00s ¢ EA(1+2c3) 2EAsc | EA(1+2¢3)’2EAs?  EA(1+2c3)’ "’
00 —cs 0
0
_ _ HL PLc
di=1u —u =0- + —
1 x2 x1 2EAsc | EA(142¢3) ( 1+2c‘3)
1) _ _r@
LY = =, 1=1LW¢
FO — ( )= EA LW (—H Pc )_ -H , Pc?
2sc 1+Zc3 1@ TEa \2sc " 142¢3) T 25 ' 142¢3

HL
0 1 0 0 2EAs?c \l
— -1 0 0 O _—PL -PL -HL
0 ( ,0,0)

Uy = 0 0 1 EA(1+2¢3) EA(1+2(,‘3) 2EAS2c
0 0 -1 0 0 /
0
_ _ —PL
dy = Uy —Ua =0- oo
L(Z) = L
poEA__PL P
L EA(L+2¢3)  (1+ 2¢3)
L® =L =13
HL
s ¢ 0 0 / 2EAS?c \
— [—c s 0 0 —PL _ —PLc HL —PLs HL
37\ o 0 s c]|EAQ+2e®) | T (EA(1+2c3) + 2EAsc’ EA(1+2¢3) Y oEas?’ 0 ’O)
0 0 —c s 0
0
— _ —PLc HL L®¢  -pc
d3 = Uy —Un _(EAC(1+ZC3) 2EASC) T EaA ((1+2c3) Zsc)
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F(g) =

EA L<3>C( —Pc N H) P c?
L®) ( EA) (1+2c3)  2sc

— 2
As we have seen F(® = () = Z2£ 4 F¢ _
2s 1+2c¢

If H#0 and a -> 0:
s->0andc>1

So both F®) and F® -> e

T (d+2cd)

HOMEWORK #1

H

2s

This is because in this case we have just one bar and H is perpendicular to this bar, and

we only would have P contribution. So H must be 0 if a=0 or az0 if H20, otherwise very

small applied forces in the x axis, would produce infinite axial forces.
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