CSMD Assignment 2

1 Try by hand computations adding node 4 between nodes 1 and 3. Verify that the solution 'blows up" because the modified master stiffness matrix is singular

Figure 1: Original Truss

Figure 2: Original Truss with dimentions

It is assumed that the proposed solution consists of splitting bar 3 in two equal bars 3 and 4 , with length L_{4}, and linking them by means of a joint of the same type as those present in nodes 1,2 and 3 .

The Hook law for a bar in the local reference system reads

$$
\overline{\mathbf{f}}^{e}=\overline{\mathbf{K}}^{e} \overline{\mathbf{u}}^{e}
$$

and, explicitly

$$
\overline{\mathbf{f}}^{e}=\frac{E A}{L_{4}}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \overline{\mathbf{u}}^{e}
$$

For bars $e=3,4$, connecting node pairs 1-4 and 3-4 respectively, the transformation between local and global coordinates systems reads

$$
\begin{aligned}
& \overline{\mathbf{u}}^{e}=\mathbf{T}^{\mathbf{e}} \mathbf{u}^{e} \\
& \overline{\mathbf{f}}^{e}=\mathbf{T}^{\mathbf{e}} \mathbf{f}^{e}
\end{aligned}
$$

with

$$
\mathbf{T}^{\mathbf{e}}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

And the elemental stiffness matrix in global coordinates system for bars $e=3,4$

$$
\begin{gathered}
\mathbf{K}^{e}=\left(\mathbf{T}^{\mathbf{e}}\right)^{T} \overline{\mathbf{K}}^{e} \mathbf{T}^{\mathbf{e}}=\frac{E A}{L_{4}}\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1
\end{array}\right] \\
\mathbf{K}^{\mathbf{e}}=\left[\begin{array}{cc}
\mathbf{K}_{\mathbf{d}}^{\mathbf{e}} & \mathbf{K}_{\mathbf{o f f d}}^{\mathbf{e}} \\
\mathbf{K}_{\mathbf{o f f d}}^{\mathbf{e}} & \mathbf{K}_{\mathbf{d}}^{\mathbf{e}}
\end{array}\right]
\end{gathered}
$$

In view of the elemental matrix for bars 3 and 4 there is no need to completely build the global stiffness matrix. The global stiffness matrix has the following shape:

$$
\left.\mathbf{K}=\left[\right) 2 \mathbf{K}_{\mathbf{d}}^{\mathbf{e}} .\right]
$$

Sub-matrices $\mathbf{K}_{\text {offd }}^{\mathbf{e}}$ and $\mathbf{K}_{\mathbf{d}}^{\mathbf{e}}$, from the elemental stiffness matrix, are singular. For the present particular geometry, with two truss bars at 45 deg with a common node, the singularity is made evident before computing the complete global matrix and trying to compute its inverse. Rows 7 and 8 of are exactly equal and therefore the matrix is singular.

2 Explain physically

The reason why the global stiffness matrix is singular for this truss is because the system has at least one kinematic degree of freedom. The system is indeed a four-bar linkage which is known to have one degree of freedom.

The original truss consisted of 3 bars with three links and three fixations $u_{x 1}, u_{y 1}$ and $u_{y 2}$. Bars have 3 DOFs (x, y and θ), links cancel 2 DOFs (x and y displacements). The latte configuration is a static system. The modified truss consists of 4 bars with four links and three fixations which results in 1 kinematic DOF.

Table 1: Degrees if freedom

members	Original Truss	Modified Truss
bars	$3 \times 3=9$	$4 \times 3=12$
links	$3 \times 2=6$	$4 \times 2=8$
fixations	3	3
k-DOFs	0	1

