CSMD Assignment 1

1 Show master stiffness equations

The Hook law for a bar in the local reference system reads

$$
\overline{\mathbf{f}}^{e}=\overline{\mathbf{K}}^{e} \overline{\mathbf{u}}^{e}
$$

and, explicitly

$$
\left[\begin{array}{c}
\bar{f}_{x i} \\
\bar{f}_{y i} \\
\bar{f}_{x j} \\
\bar{f}_{y j}
\end{array}\right]=\frac{E A}{l}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\bar{u}_{x i} \\
\bar{u}_{y i} \\
\bar{u}_{x j} \\
\bar{u}_{y j}
\end{array}\right]
$$

where l equals L for bar (2) and it equals $L / \cos (\alpha)$ for bars (1) and (3).
With the aim to put together all the bars in the truss system, a the transformation is defined depending on the α angle measured counter-clockwise from the vertical. The nomenclature defined in the Assignment wording for c and s is followed.

In matrix form

$$
\begin{aligned}
\overline{\mathbf{u}}^{e} & =\mathbf{T}^{e} \mathbf{u}^{e} \\
\overline{\mathbf{f}}^{e} & =\mathbf{T}^{e} \mathbf{f}^{e}
\end{aligned}
$$

Beam (1) contributes to the stiffness equations with

$$
\left[\begin{array}{c}
\bar{u}_{x 1} \\
\bar{u}_{y 1} \\
\bar{u}_{x 2} \\
\bar{u}_{y 2}
\end{array}\right]=\left[\begin{array}{cccc}
-s & c & 0 & 0 \\
-c & -s & 0 & 0 \\
0 & 0 & -s & c \\
0 & 0 & -c & -s
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2}
\end{array}\right]
$$

Beam (2) contributes to the stiffness equations with

$$
\left[\begin{array}{c}
\bar{u}_{x 1} \\
\bar{u}_{y 1} \\
\bar{u}_{x 3} \\
\bar{u}_{y 3}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]
$$

Beam (3) contributes to the stiffness equations with

$$
\left[\begin{array}{c}
\bar{u}_{x 1} \\
\bar{u}_{y 1} \\
\bar{u}_{x 4} \\
\bar{u}_{y 4}
\end{array}\right]=\left[\begin{array}{cccc}
s & c & 0 & 0 \\
-c & s & 0 & 0 \\
0 & 0 & s & c \\
0 & 0 & -c & s
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

Therefore, the Hook law in global reference system using the local expression of the stiffness matrix reads

$$
\mathbf{f}^{e}=\left(\mathbf{T}^{e}\right)^{T} \overline{\mathbf{K}}^{e} \mathbf{T}^{e} \mathbf{u}^{e}
$$

The elemental Hook law in global system result

$$
\begin{gathered}
{\left[\begin{array}{c}
H \\
-P \\
0 \\
0
\end{array}\right]=\frac{E A}{L} c\left[\begin{array}{cccc}
s^{2} & -c s & -s^{2} & c s \\
-c s & c^{2} & c s & -c^{2} \\
-s^{2} & c s & s^{2} & -c s \\
-c s & -c^{2} & -c s & c^{2}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2}
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=\frac{E A}{L}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=\frac{E A}{L} c\left[\begin{array}{cccc}
s^{2} & c s & -s^{2} & -c s \\
c s & c^{2} & -c s & -c^{2} \\
-s^{2} & -c s & s^{2} & c s \\
-c s & -c^{2} & c s & c^{2}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]}
\end{gathered}
$$

Finally, transforming the elemental stiffness matrices in contributions to the global stiffness matrix by adding the missing DOFs and adding up the three contributions, yields

$$
\left[\begin{array}{c}
H \\
-P \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\frac{E A}{L}\left[\begin{array}{cccccccc}
2 c s^{2} & 0 & -c s^{2} & c^{2} s & 0 & 0 & -c s^{2} & -c^{2} s \\
0 & 2 c^{3}+1 & c^{2} s & -c^{3} & 0 & -1 & -c^{2} s & -c^{3} \\
-c s^{2} & c^{2} s & c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 \\
c^{2} s & -c^{3} & -c^{2} s & c^{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
-c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 & c s^{2} & c^{2} s \\
-c^{2} s & -c^{3} & 0 & 0 & 0 & 0 & c^{2} s & c^{3}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

The $5^{t h}$ DOF is null and doesn't contribute to the solution. From the point of view of the "null row", it can be interpreted as: the displacement in x direction of node 3 is always zero no matter the elastic state of the rest of DOFs. That is because, in a truss, the bars can only transmit forces in axial direction and node 3 doesn't link any bar with x component direction. From the point of view of the "null column", this result can be interpreted as: The equilibrium of any DOF depends on the state of the rest of DOFs (their displacement) except from the displacement of the $5^{t h}$ DOF because its value is irrelevant due to geometrical configuration.

2 Apply BCs and show the 2-equation modified stiffness system

The two first DOFs of the truss can be transformed as follows without changing its physical meaning:

$$
\frac{E A}{L}\left[\begin{array}{cc}
2 c s^{2} & 0 \\
0 & 2 c^{3}+1
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right]=\left[\begin{array}{c}
H \\
-P
\end{array}\right]-\frac{E A}{L}\left[\begin{array}{cccccc}
-c s^{2} & c^{2} s & 0 & 0 & -c s^{2} & -c^{2} s \\
c^{2} s & -c^{3} & 0 & -1 & -c^{2} s & -c^{3}
\end{array}\right]\left[\begin{array}{l}
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

Boundary conditions set displacements of nodes 2, 3 and 4 to zero and can be expressed as

$$
\mathbf{u}_{i}=\mathbf{0} \quad i=2,3,4
$$

Taking on account the above boundary conditions the modified stiffness system reads

$$
\frac{E A}{L}\left[\begin{array}{cc}
2 c s^{2} & 0 \\
0 & 2 c^{3}+1
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right]=\left[\begin{array}{c}
H \\
-P
\end{array}\right]
$$

3 Solve for the displacements $u_{x 1}$ and $u_{y 1}$

Solving for the displacements

$$
\begin{gathered}
{\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right]=\frac{L}{E A}\left[\begin{array}{cc}
\frac{1}{2 c s^{2}} & 0 \\
0 & \frac{1}{2 c^{3}+1}
\end{array}\right]\left[\begin{array}{c}
H \\
-P
\end{array}\right]} \\
u_{x 1}=\frac{L}{E A} \frac{1}{2 c s^{2}} H \\
u_{y 1}=-\frac{L}{E A} \frac{1}{2 c^{3}+1} P
\end{gathered}
$$

In the limit case when $\alpha \rightarrow 0$, other quantities change as follows: $c \rightarrow 1, s \rightarrow 0$

$$
\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right] \rightarrow \frac{L}{E A}\left[\begin{array}{cc}
\infty & 0 \\
0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
H \\
-P
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
u_{x 1} & \rightarrow \infty \\
u_{y 1} & \rightarrow-\frac{1}{3} \frac{P L}{E A}
\end{aligned}
$$

The x component compliance diverges and therefore a finite value of H produces a infinite displacement $u_{x 1}$. At the view of these results, statics is not observed anymore and the alignment of the three elements confers the system with a kinematic degree of freedom.

The y component compliance is one third that of the beam of length L. This makes sense as (in absence of load H) load P is shared among three equal beams of length L.

In the limit case when $\alpha \rightarrow \frac{\pi}{2}$, other quantities change as follows: $c \rightarrow 0, s \rightarrow 1$

$$
\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right] \rightarrow \frac{L}{E A}\left[\begin{array}{cc}
\infty & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
H \\
-P
\end{array}\right]
$$

With $\alpha \rightarrow \frac{\pi}{2}$ the length of bars (1) and (2) diverge to infinity and their axial stiffness collapses to zero. Therefore horizontal compliance vanishes and a similar analysis can be made for displacement $u_{x 1}$ as that made for $\alpha \rightarrow 0$

For similar reasons, bars (1) and (2) do not contribute with stiffness in vertical direction and y component stiffness is that of the bar of length L. This makes sense as (in absence of load H) load P is bore by bar (2) alone.

4 Recover the axial forces in the three members

Using the Superposition Principle, the axial forces of each bar can be derived by projecting $u_{x 1}$ and $u_{y 1}$ on the bar direction. Therefore,

$$
\begin{gathered}
F_{i}=K_{i} \delta_{i} \\
F_{1}=\frac{E A}{L} c\left(\frac{L}{E A} \frac{s}{2 c s^{2}} H-\frac{L}{E A} \frac{c}{2 c^{3}+1} P\right) \\
F_{1}=\frac{1}{2 s} H-\frac{c^{2}}{2 c^{3}+1} P \\
F_{2}=\frac{E A}{L}\left(-\frac{L}{E A} \frac{-1}{2 c^{3}+1} P\right) \\
F_{2}=\frac{1}{2 c^{3}+1} P \\
F_{3}=\frac{E A}{L} c\left(\frac{L}{E A} \frac{-s}{2 c s^{2}} H-\frac{L}{E A} \frac{-c}{2 c^{3}+1} P\right) \\
F_{3}=-\frac{1}{2 s} H+\frac{c^{2}}{2 c^{3}+1} P
\end{gathered}
$$

In the limit case when $\alpha \rightarrow 0, F_{1}$ and F_{3} diverge because the system remains statically indeterminate (only when $\alpha=0$ the system degenerates to the kinematic degree of freedom) and the horizontal force H is cancelled out with the sum of the horizontal projections of F_{1} and F_{3}. The smaller α is, the bigger F_{1} and F_{3} must be.

