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1 Show master stiffness equations

Figure 1: Statically indeterminate structure

The Hook law for a bar in the local reference system reads

f̄ e = K̄eūe

and, explicitly 
f̄xi

f̄yi

f̄xj

f̄yj

 = EA
l


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0




ūxi

ūyi

ūxj

ūyj


where l equals L for bar (2) and it equals L/ cos(α) for bars (1) and (3).
With the aim to put together all the bars in the truss system, a the transformation is defined depending

on the α angle measured counter-clockwise from the vertical. The nomenclature defined in the Assign-
ment wording for c and s is followed.

In matrix form

ūe = Teue

f̄ e = Tef e

Bar (1) contributes to the stiffness equations with
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
ūx1

ūy1

ūx2

ūy2

 =


−s c 0 0

−c −s 0 0

0 0 −s c

0 0 −c −s




ux1

uy1

ux2

uy2


Bar (2) contributes to the stiffness equations with

ūx1

ūy1

ūx3

ūy3

 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




ux1

uy1

ux3

uy3


Bar (3) contributes to the stiffness equations with

ūx1

ūy1

ūx4

ūy4

 =


s c 0 0

−c s 0 0

0 0 s c

0 0 −c s




ux1

uy1

ux4

uy4


Therefore, the Hook law in global reference system using the local expression of the stiffness matrix

reads

f e = (Te)T K̄eTeue

The elemental Hook law in global system result
H

−P
0

0

 = EA
L c


s2 −cs −s2 cs

−cs c2 cs −c2

−s2 cs s2 −cs
−cs −c2 −cs c2




ux1

uy1

ux2

uy2




0

0

0

0

 = EA
L


0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1




ux1

uy1

ux3

uy3




0

0

0

0

 = EA
L c


s2 cs −s2 −cs
cs c2 −cs −c2

−s2 −cs s2 cs

−cs −c2 cs c2




ux1

uy1

ux4

uy4


Finally, transforming the elemental stiffness matrices in contributions to the global stiffness matrix

by adding the missing DOFs and adding up the three contributions, yields
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

H

−P
0

0

0

0

0

0


= EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
0 2c3 + 1 c2s −c3 0 −1 −c2s −c3

−cs2 c2s cs2 −c2s 0 0 0 0

c2s −c3 −c2s c3 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0

−cs2 −c2s 0 0 0 0 cs2 c2s

−c2s −c3 0 0 0 0 c2s c3





ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


The 5th DOF is null and doesn’t contribute to the solution. From the point of view of the "null row",

it can be interpreted as: the displacement in x direction of node 3 is always zero no matter the elastic state
of the rest of DOFs. That is because, in a truss, the bars can only transmit forces in axial direction and
node 3 doesn’t link any bar with x component direction. From the point of view of the "null column",
this result can be interpreted as: The equilibrium of any DOF depends on the state of the rest of DOFs
(their displacement) except from the displacement of the 5th DOF because its value is irrelevant due to
geometrical configuration.

2 Apply BCs and show the 2-equation modified stiffness system

The two first DOFs of the truss can be transformed as follows without changing its physical meaning:

EA
L

[
2cs2 0

0 2c3 + 1

][
ux1

uy1

]
=

[
H

−P

]
− EA

L

[
−cs2 c2s 0 0 −cs2 −c2s
c2s −c3 0 −1 −c2s −c3

]


ux2

uy2

ux3

uy3

ux4

uy4


Boundary conditions set displacements of nodes 2, 3 and 4 to zero and can be expressed as

ui = 0 i = 2, 3, 4

Taking on account the above boundary conditions the modified stiffness system reads

EA
L

[
2cs2 0

0 2c3 + 1

][
ux1

uy1

]
=

[
H

−P

]

3 Solve for the displacements ux1 and uy1

Solving for the displacements [
ux1

uy1

]
= L

EA

[
1

2cs2
0

0 1
2c3+1

][
H

−P

]

ux1 = L
EA

1
2cs2

H
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uy1 = − L
EA

1
2c3+1

P

In the limit case when α→ 0, other quantities change as follows: c→ 1, s→ 0[
ux1

uy1

]
→ L

EA

[
∞ 0

0 1
3

][
H

−P

]

Therefore,

ux1 →∞

uy1 → −1
3
PL
EA

The x component compliance diverges and therefore a finite value ofH produces a infinite displace-
ment ux1. At the view of these results, statics is not observed anymore and the alignment of the three
elements confers the system with a kinematic degree of freedom.

The y component compliance is one third that of the bar of length L. This makes sense as (in absence
of load H) load P is shared among three equal bars of length L.

In the limit case when α→ π
2 , other quantities change as follows: c→ 0, s→ 1[

ux1

uy1

]
→ L

EA

[
∞ 0

0 1

][
H

−P

]

With α → π
2 the length of bars (1) and (2) diverge to infinity and their axial stiffness collapses to

zero. Therefore horizontal compliance vanishes and a similar analysis can be made for displacement ux1
as that made for α→ 0

For similar reasons, bars (1) and (2) do not contribute with stiffness in vertical direction and y com-
ponent stiffness is that of the bar of length L. This makes sense as (in absence of loadH) load P is bore
by bar (2) alone.

4 Recover the axial forces in the three members

Using the Superposition Principle, the axial forces of each bar can be derived by projecting ux1 and uy1
on the bar direction. Therefore,

Fi = Kiδi

F1 = EA
L c
(

L
EA

s
2cs2

H − L
EA

c
2c3+1

P
)

F1 = 1
2sH −

c2

2c3+1
P

F2 = EA
L

(
− L

EA
−1

2c3+1
P
)

F2 = 1
2c3+1

P

F3 = EA
L c
(

L
EA

−s
2cs2

H − L
EA

−c
2c3+1

P
)
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F3 = − 1
2sH + c2

2c3+1
P

In the limit case when α→ 0, F1 and F3 diverge because the system remains statically indeterminate
(only when α = 0 the system degenerates to the kinematic degree of freedom) and the horizontal force
H is cancelled out with the sum of the horizontal projections of F1 and F3. The smaller α is, the bigger
F1 and F3 must be.
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