Computational Structural Mechanics and Dynamics Assignment 3.1:"The Plane Stress Problem" Assignment 3.2: "The 3-node Plane Stress Triangle"

Lisandro Roldan
February 29, 2016

Assignment 3.1: "The Plane Stress Problem"

(a)

For the plane stress problem, we call $E=E *$ and $\nu=\nu *$. Making the stresses $\sigma_{x x}$ and $\sigma_{y y}$ equal for both plane stress and plane strain, we obtain the following system of equations

$$
\begin{aligned}
& \frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[e_{x x}+\frac{\nu}{1-\nu} e_{y y}\right]=\frac{E *}{1-\nu *^{2}}\left[\nu * e_{x x}+e_{y y}\right] \\
& \frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[e_{y y}+\frac{\nu}{1-\nu} e_{x x}\right]=\frac{E *}{1-\nu *^{2}}\left[\nu * e_{y y}+e_{x x}\right]
\end{aligned}
$$

Solving for $E *$ and $\nu *$ we obtain

$$
\begin{gathered}
E *=\frac{E}{1-\nu^{2}} \\
\nu *=\frac{\nu}{1-\nu}
\end{gathered}
$$

Now, it is possible to go from one state to the other using this two fictitious modulus.
From plane stress

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{E *}{1-\nu *^{2}}\left[\begin{array}{ccc}
1 & \nu * & 0 \\
\nu * & 1 & 0 \\
0 & 0 & \frac{1-\nu *}{2}
\end{array}\right]\left[\begin{array}{c}
e_{x x} \\
e_{y y} \\
2 e_{x y}
\end{array}\right]
$$

Replacing $E *=\frac{E}{1-\nu^{2}}$ and $\nu *=\frac{\nu}{1-\nu}$

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{\frac{E}{1-\nu^{2}}}{\left(1-\left(\frac{\nu}{1-\nu}\right)^{2}\right)}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & 0 \\
\frac{\nu}{1-\nu} & 1 & 0 \\
0 & 0 & \frac{1-\frac{\nu}{1-\nu}}{2}
\end{array}\right]\left[\begin{array}{c}
e_{x x} \\
e_{y y} \\
2 e_{x y}
\end{array}\right]
$$

Rearranging the fractions we end up with the plane strain system

$$
\left[\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & 0 \\
\frac{\nu}{1-\nu} & 1 & 0 \\
0 & 0 & \frac{1-2 \nu}{2(1-\nu)}
\end{array}\right]\left[\begin{array}{c}
e_{x x} \\
e_{y y} \\
2 e_{x y}
\end{array}\right]
$$

Then, to go back to plane stress we just have to invert the previous results $E *=\frac{E(2 \nu+1)}{(\nu+1)^{2}}$ and $\nu *=\frac{\nu}{\nu+1}$

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{\frac{E(2 \nu+1)}{(\nu+1)^{2}}\left(1-\frac{\nu}{\nu+1}\right)}{\left(1+\frac{\nu}{\nu+1}\right)\left(1-2 \frac{\nu}{\nu+1}\right)}\left[\begin{array}{ccc}
1 & \frac{\nu}{\nu+1} \\
\frac{\nu}{\nu+\frac{\nu}{\nu+1}} & 0 \\
\frac{\frac{\nu}{\nu+1}}{1-\frac{\nu}{\nu+1}} & 1 & 0 \\
0 & 0 & \frac{1-2 \frac{\nu}{\nu+1}}{2\left(1-\frac{\nu}{\nu+1}\right)}
\end{array}\right]\left[\begin{array}{c}
e_{x x} \\
e_{y y} \\
2 e_{x y}
\end{array}\right]
$$

When simplified, the expression is

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left[\begin{array}{c}
e_{x x} \\
e_{y y} \\
2 e_{x y}
\end{array}\right]
$$

(b)

Following Hook's law $\sigma=e E$ and its inverse $e=E^{-1} \sigma$
Then

$$
\begin{array}{r}
U=\frac{1}{2} e^{t} E e=\frac{1}{2} \sigma^{t} e=\frac{1}{2}\left(\sigma_{x x} e_{x x}+\sigma_{y y} e_{y y} \sigma_{x y} e_{x y}\right) \\
U=\frac{1}{2} \sigma^{t} E^{-1} \sigma=\frac{1}{2} \sigma^{t} e=\frac{1}{2}\left(\sigma_{x x} e_{x x}+\sigma_{y y} e_{y y} \sigma_{x y} e_{x y}\right)
\end{array}
$$

Assignment 3.2: "The 3-node Plane Stress Triangle"

(1)

Given the coordinates of the three points of the triangle
$x_{1}=0, x_{2}=3, x_{3}=2, y_{1}=0, y_{2}=1, y_{3}=2$
We can calculate the area of the triangle by the following determinant

$$
A=\frac{1}{2}\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right|=2
$$

And the element strain matrix
$B=\frac{1}{2 A}\left[\begin{array}{cccccc}y_{2}-y_{3} & 0 & y_{3}-y_{1} & 0 & y_{1}-y_{2} & 0 \\ 0 & x_{3}-x_{2} & 0 & x_{1}-x_{3} & 0 & x_{2}-x_{1} \\ x_{3}-x_{2} & y_{2}-y_{3} & x_{1}-x_{3} & y_{3}-y_{1} & x_{2}-x_{1} & y_{1}-y_{2}\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccccc}-1 & 0 & 2 & 0 & -1 & 0 \\ 0 & -1 & 0 & -2 & 0 & 3 \\ -1 & -1 & -2 & 2 & 3 & -1\end{array}\right]$
For a constant thickness $h=1$, the element stiffness matrix can be calculated as $K_{e}=h B^{T} E B$

$$
\begin{gathered}
K_{e}=\frac{1}{8}\left[\begin{array}{ccc}
-1 & 0 & -1 \\
-1 & -1 & 0 \\
-2 & 0 & 2 \\
2 & -2 & 0 \\
3 & 0 & -1 \\
-1 & 3 & 0
\end{array}\right]\left[\begin{array}{ccc}
100 & 25 & 0 \\
25 & 100 & 0 \\
0 & 0 & 50
\end{array}\right]\left[\begin{array}{cccccc}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -1 & 0 & -2 & 0 & 3 \\
-1 & -1 & -2 & 2 & 3 & -1
\end{array}\right] \\
K e=\left[\begin{array}{cccccc}
18.75 & 9.375 & -12.5 & -6.25 & -6.25 & -3.125 \\
9.375 & 18.75 & 6.25 & 12.5 & -15.625 & -31.25 \\
-12.5 & 6.25 & 75 & -37.5 & -62.5 & 31.25 \\
-6.25 & 12.5 & -37.5 & 75 & 43.75 & -87.5 \\
-6.25 & -15.625 & -62.5 & 43.75 & 68.75 & -28.125 \\
-3.125 & -31.25 & 31.25 & -87.5 & -28.125 & 118.75
\end{array}\right]
\end{gathered}
$$

(2)

The sum of rows (or columns) are

$$
\begin{aligned}
R_{1}=18.75+9.375-12.5-6.25-6.25+-3.125 & =0 \\
R_{2}=9.375+18.75+6.25+12.5-15.625-31.25 & =0 \\
R_{3}=-12.5+6.25+75-37.5-62.5+31.25 & =0 \\
R_{4}=-6.25+12.5-37.5+75+43.75-87.5 & =0 \\
R_{5}=-6.25-15.625-62.5+43.75+68.75-28.125 & =0 \\
R_{6}=-3.125-31.25+31.25-87.5-28.125+118.75 & =0
\end{aligned}
$$

The fact that the sum of $R 1+R 3+R 5$ and $R 2+R 4+R 6$ is equal to zero can be explained by the equilibrium of the forces in the triangle.

For the x coordinate

$$
\begin{aligned}
& K_{11} u_{x 1}+K_{12} u_{x 2}+K_{13} u_{x 3}+K_{14} u_{x 4}+K_{15} u_{x 5}+K_{16} u_{x 6}=f_{x 1} \\
& K_{31} u_{x 1}+K_{32} u_{x 2}+K_{33} u_{x 3}+K_{34} u_{x 4}+K_{35} u_{x 5}+K_{36} u_{x 6}=f_{x 2} \\
& K_{51} u_{x 1}+K_{52} u_{x 2}+K_{53} u_{x 3}+K_{54} u_{x 4}+K_{55} u_{x 5}+K_{56} u_{x 6}=f_{x 3}
\end{aligned}
$$

Summing the tree equations, we can apply equilibrium of forces in x direction to be zero

$$
\begin{array}{r}
K_{11} u_{x 1}+K_{12} u_{x 2}+K_{13} u_{x 3}+K_{14} u_{x 4}+K_{15} u_{x 5}+K_{16} u_{x 6}+ \\
K_{31} u_{x 1}+K_{32} u_{x 2}+K_{33} u_{x 3}+K_{34} u_{x 4}+K_{35} u_{x 5}+K_{36} u_{x 6}+ \\
K_{51} u_{x 1}+K_{52} u_{x 2}+K_{53} u_{x 3}+K_{54} u_{x 4}+K_{55} u_{x 5}+K_{56} u_{x 6} \\
=f_{x 1}+f_{x 2}+f_{x 3}=0
\end{array}
$$

It is evident that for any rigid displacement (because the non-existence of boundary conditions the resulting force should be zero, then the sum of the rigidity terms should also be zero.

The same explanations is valid for the y direction and columns $2,4,6$.

