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Question 1

A = A1 = A2 = A3

E = E1 = E2 = E3

L = L2 = cL1 = cL2

Congruential transformation of element sti�ness matrices

Ke =
EeAe

Le


c2 sc −c2 −sc
sc s2 −sc −s2
−c2 −sc c2 sc
−sc −s2 sc s2


For element (1):

c→ cos(90 + α) = −sin(α) = −s
s→ sin(90 + α) = cos(α) = c
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For element (2):

c→ cos(90) = 0

s→ sin(90) = 1

For element (3):

c→ cos(90− α) = sin(α) = s

s→ sin(90− α) = cos(α) = c

Plugging those trigonometrical equivalences and the length of the elements:

K1 =
EA

L


cs2 −sc2 −cs2 −sc2
−sc2 c3 sc2 −c3
−cs2 sc2 cs2 −sc2
sc2 −c3 −sc2 c3



K2 =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



K3 =
EA

L


cs2 sc2 −cs2 −sc2
sc2 c3 −sc2 −c3
−cs2 −sc2 cs2 sc2

−sc2 −c3 sc2 c3


Assembling the global sti�ness matrix (all of the following terms are multiplied by EA

L )

K11 = K1
11 +K2

11 +K3
11 = cs2 + 0 + cs2 = 2cs2 K12 = K1

12 +K2
12 +K3

12 = −sc2 + 0 + sc2 = 0
K13 = K1

13 = −cs2 K14 = K1
14 = sc2

K15 = K2
13 = 0 K16 = K2

14 = 0
K17 = K3

13 = −cs2 K18 = K3
14 = −sc2

K22 = K1
22 +K2

22 +K3
22 = c3 + 1 + c3 = 2c3 + 1 K23 = K1

23 = sc2

K24 = K1
24 = −c3 K25 = K2

23 = 0
K26 = K2

24 = −1 K27 = K3
23 = −sc2

K28 = K3
24 = −c3 K33 = K1

33 = cs2

K34 = K1
34 = −sc2 K35 = 0

K36 = 0 K37 = 0
K38 = 0 K44 = K1

44 = c3

K45 = 0 K46 = 0
K47 = 0 K48 = 0

K55 = K2
33 = 0 K56 = K2

34 = 0
K57 = 0 K58 = 0

K66 = K2
44 = 1 K67 = 0

K68 = 0 K77 = K3
33 = cs2

K78 = K3
34 = sc2 K88 = K3

44 = c3

The sti�ness matrix takes the form of:

K =
EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
symm c3


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Forces are applied only in node (1) therefore:

F = [H,−P, 0, 0, 0, 0, 0, 0]′

The sti�ness system is:

EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
symm c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
0
0
0
0
0
0


The 5th row and column are the sti�ness related to the coordinate x3. The only contribution to that
sti�ness comes from bar (2), which is placed vertically. As the bar elements can only have axial forces,
its sti�ness with respect to the perpendicular direction of it's axis is zero.

Question 2

By applying the boundary conditions, displacements in nodes 2,3 and 4 are restricted, leaving only
two degrees of freedom. Reducing the system

EA

L

[
2cs2 0
0 1 + 2c3

] [
ux1
uy1

]
=

[
H
−P

]

Question 3

Solving the system we get:

ux1 =
L

EA

H

2cs2

uy1 = − L

EA

P

1 + 2c3

When α→∞ all the bars are vertical.
ux1 →∞, because there is no lateral sti�ness. In other words, the system becomes hipostatic.
uy1 → −P

3EA , because all the bars take the load axially in parallel.

When α→ π/2 bars (1) and (3) are horizontal and have in�nite length.
ux1 → ∞, because the only contribution to the lateral sti�ness comes from bar (1) and (2). The
sti�ness of a bar is inversely proportional to it's length (K = EA/L) therefore the sti�ness of those
bars are null. To keep the relationship F = K.δ, the displacement has to go to in�nite when the
sti�ness goes to zero.
uy1 → −PL

EA , because the load is only taken by bar (2).

Question 4

To �nd the axial force acting in each bar it is necessary to recover �rst the displacements in the local
coordinate system, then the elongation or contraction of each element and �nally applying F = K ∗ δ
compute the force for each element.
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For element (1):

u1x1 = −s.ux1 + c.uy1 =
L

EA

(
− Hs

2cs2
− Pc

1 + 2c3

)
u1x2 = 0

δ1 = u1x2 − u1x1 =
L

EA

(
Hs

2cs2
+

Pc

1 + 2c3

)
F 1 =

EA

L/c

L

EA

(
Hs

2cs2
+

Pc

1 + 2c3

)
F 3 =

H

2s
+

Pc2

1 + 2c3

For element (2):

u2x1 = uy1 = − L

EA

P

1 + 2c3

u2x2 = 0

δ2 = u2x2 − u2x1 =
L

EA

P

1 + 2c3

F 2 =
EA

L

L

EA

P

1 + 2c3

F 2 =
P

1 + 2c3

For element (3):

u3x1 = s.ux1 + c.uy1 =
L

EA

(
Hs

2cs2
− Pc

1 + 2c3

)
u3x2 = 0

δ3 = u3x2 − u3x1 =
L

EA

(
Pc

1 + 2c3
− Hs

2cs2

)
F 3 =

EA

L/c

L

EA

(
Pc

1 + 2c3
− Hs

2cs2

)
F 3 =

Pc2

1 + 2c3
− H

2s

When α is very small, the lateral sti�ness is very low as well. To keep the relation ux = Fx/Kx, the
force has to tend to in�nite when the sti�ness tends to zero. This can also be observed when c = 0 is
plugged into F 1 and F 3.
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