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Part1 :

The local displacements are expanded in Fouries series along the circular (circumferential) direction.
1D finite elements are used to discretize the transversal (meridional) direction. The “length” of the
structure is a whole circumference for the axi-symmetric shells and, therefore, angle α is replaced by
2π.It can be seen from the figure 1.

The local displacement vector is written as

u
′
(s, β) =

m∑
l=1

n∑
i=1

Sl(β)Ni(s)a
′
i

l

u
′
(s, β) = [u

′
0, v

′
0, w

′
0, θs, θt]

T ; a
′l = [u

′l
0i, v

′l
0i, w

′l
0i, θ

l
si, θ

l
ti]
T ;;

Sl(β) is defined as :


Sl 0 0 0 0
0 C l 0 0 0
0 0 Sl 0 0
0 0 0 Sl 0
0 0 0 0 C l

 Where Sl = Sl(β) = sin γβ;C l = C l(β) = cos γβ

Ni(s) = Ni(s)I5;
For axisymmetric shells α = 2π, so γ = πL

α = L/2;

So, Sl = Sl(β) = sin Lβ
2 ;C l = C l(β) = cos Lβ2

θs and θt are the rotations of the normal vector contained in the planes sn and st, respectively. The
discretization process leads to the following relationship between the local generalized strains and the

nodal modal displacement amplitudes: ε̂
′
(s, β) =

m∑
l=1

n∑
i=1

Sl(β)B
′l
i (s)a

′
i

l
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Following the standard discretization procedure, the uncoupled system of stiffness equations is
obtained. The local stiffness matrix and the equivalent nodal modal force amplitude vector for dis-
tributed loading for a troncoconical strip are:

The loads are expanded similarly as for the displacements.Nodal point loads are directly assembled
in the global equivalent nodal modal force vector in the standard manner. The nodal modal amplitude
vectors for distributed forces tl and point loads pl are computed by: [fli

e
] = α(=2π)

2

∫
ae Nit

lds =
π
∫
ae Nit

lds where tl is the amplitude vector for a distributed load for the l-th harmonic term given
by:
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tl = 2
πl [fs(C

l
0 − C l1), fβ(Sl1 − Sl0), fz(C l0 − C l1),ms(C

l
0 − C l1),mβ(Sl1 − Sl0), 0]T

For a point load acting at a node with global number i we have:
f li = pli = 2

α(=2π) [Fsi , S
l
i, Fβi , C

l
i , Fzi, S

l
i,Mxi, S

l
i,Mβi, C

l
i , 0]T ; and

C li = cos γβi;S
l
i = sin γβi

Part 2:
Most analytical solutions for axisymmetric shells are based on Kirchhoff assumption for the orthogo-
nality of the normal rotation. This hypothesis, though only acceptable for thin shell situations, can
be applied to many problems of practical interest and analytical solutions are available for cylindrical
reservoirs, spherical and conical domes, circular plates etc. The key difference between Kirchhoff and
Reissner-Mindlin theories is the assumption made for the rotation of the normal. Kirchhoff theory
establishes that, as the thickness is small, the normals to the generatrix remain straight and orthog-
onal to the generatrix after deformation. Hence, the normal rotation coincides with the slope of the
generatrix at each point.In mathematical form we can write

θ = ∂w
′

∂s

∣∣∣
z′=0

Substituting the expression for ∂w
′

∂s : ∂w
′

∂s =
∂w

′
0

∂s + u0
′

Rs
− z′ θ

Rs
gives θ =

∂w
′
0

∂s + u0
′

Rs

The equation for γx′z′ can be written as: γx′z′ = 1
Cs

(
∂w

′
0

∂s + u0
′

Rs
− θ) = 0

i.e. the Kirchhoff orthogonality condition is equivalent to neglecting the effect of transverse shear
deformation, as expected.For thin shells; Cs = Cα = 1. The local displacement vector is now defined

as: u
′

=
[
u

′
0, w

′
0,

∂w
′
0

∂s

]T
The expressions for the axial and circumferential strains are deduced to:

ε
′
x = 1

Cs
[
∂u

′
0

∂s −
w0

′

Rs
− z′

(
∂2w

′
0

∂s2
+ ∂

∂s(
u
′
0

Rs
))

ε
′
y = 1

Cα
[
u
′
0 cosφ−w

′
0 sinφ

r − z′ cosφ
r (

∂w
′
0

∂s +
u
′
0

Rs
)]

The generalized strain vector is: ε̂
′

= S2

[
ε̂
′
m

ε̂b
′

]
; where S2 =

[
S −z′

S
]

and S is defined as S =

[ 1
Cs

0

0 1
Cα

]
and the membrane and bending generalized strains are: ε

′
m =

 ∂u
′
0

∂s −
w

′
0

Rs
u
′
0 cosφ−w

′
0 sinφ

r

and ε
′
b = ∂2w

′
0

∂s2
+ ∂

∂s(
u
′
0

Rs
)

cosφ
r (

∂w
′
0

∂s +
u
′
0

Rs
)

;

Considering Rs = ∞, the generalized strain vectors simplify to: ε
′
m =

 ∂u
′
0

∂s
u
′
0 cosφ−w

′
0 sinφ

r

and ε
′
b = ∂2w

′
0

∂s2

cosφ
r (

∂w
′
0

∂s )

;

A C1continuous interpolation must be used for the normal displacement w
′
0 to satisfy element confor-

mity. A simpler C0 continuous Lagrange approximation can however be employed for the tangential

displacement u
′
0. Also as the element is straight

∂w
′
0

∂s =
∂w

′
0

∂x′
and

∂2w
′
0

∂s2
=

∂2w
′
0

∂x′
2

The simplest element based on Kirchhoff theory has two nodes. The tangential displacement is linearly
interpolated as u

′
0 =

∑2
i=1Ni

uu
′
0iwith Nu

i = 1+ξξi
2 ;
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The followingC1 continuous approximation is chosen for w
′
0 =

∑2
i=1[Ni

ww
′
0i+Ni

w ∂w
′
0

∂s i
] where Ni

w

and Ni
w

are the cubic 1D Hermite shape functions. The local generalized strain matrix is written as:
ε̂′ = [B

′
1,B

′
2]a

′(e) = B
′
a

′(e) with

B
′
i =

B′
mi
. . .

B
′
bi

 =


∂Nu

i
∂s 0 0

Nu
i cosφ
r −Nw

i cosφ
r

Ni
w
sinφ
r

0
∂2Nw

i
∂s2

∂2Ni
w

∂s2

0 cosφ
r

∂Nw
i

∂s
cosφ
r

∂Ni
w

∂s



The explicit form of the B
′
=


− 1
Le 0 0 1

Le 0 0
1−ξ′

2x Ce (−Nw
1 )S

e

4r (−N1
w

)S
e

4r
1+ξ

′

2r C
e (−Nw

2 )S
e

4r (−N2
w

)S
e

4r

0 6ξ
Le2

2(3ξ−1)
Le2

0 −6ξ
Le2

−2(1+3ξ)

Le2

0 (ξ2−1)3Ce
2rLe

H1Ce

2rLe 0 (1−ξ2)3Ce
2rLe

H2Ce

2rLe


Where Ce = cosφe;S(e) = sinφe;

Nw
i = 2+3ξξi−ξ3ξi

4

Ni
w

= ξ3+ξ2ξi−ξ−ξi
4 ;Hi = 3ξ2 + 2ξξi − 1

Integration Rules:

A two-point quadrature is recommended for computing the integrals containing rational terms.Good
results are obtained however with the simplest reduced one-point quadrature.This is equivalent to mak-
ing ξ = 0 and r = rmin B

′
. A more accurate expression for the stiffness matrix using a seven-point

quadrature can also be found.
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