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a) Program Timoshenko 2-nodes beam with reduce integration for shear stiffness matrix  
 

Timoshenko is one of the more common elements used to solve beam element problems, but 

it shows some inconvenient to obtain a good approach in some cases. Defining the bean 

slenderness ratio as 𝜆 = 𝐿2/ℎ, as the beam slenderness increases, the solution for Timoshenko 

element is progressivity stiffer than the exact one. So that, it is conclude that the element is not 

the good one for working with this kind of beams.  

In order to deal with this problem, different procedures have been developed. One of the most 

typical is the “reduced integration” Timoshenko, that is able to reduce the influence of the 

transverse stiffness using a Gauss quadrature of one order less than is needed to integrate exactly 

the terms in 𝐾𝑠
𝑒
. 

 

Reduce integration Timoshenko MATLAB code 
 

Taking as reference Timoshenko traditional code (Figure 1), some modifications are going to 

be implemented in order to reproduce in MATLAB the reduced integration variations (Figure 

2).  

As it was said, the order of the Gauss quadrature implemented at the reduce version should be 

one order less, so that for 2-node beam elements just one Gauss point is going to be needed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Then, the 𝐾𝑠
𝑒
 should be modified too whereas the 𝐾𝑏

𝑒
 remains as in the traditional 

Timoshenko case. For a homogeneous material with a single integration point it turns to  

 

 

 

 

 

 

Applying this new code, Timoshenko will be able to solve as well as Euler element any kind of 

beam 

gaus1 =-1/sqrt(3); 
gaus2 = 1/sqrt(3); 

 

bmat_b=[ 0, -1/len, 0, 1/len]; 
bmat_s1=[-1/len,-(1-gaus1)/2, 1/len,-(1+gaus1)/2]; 
bmat_s2=[-1/len,-(1-gaus2)/2, 1/len,-(1+gaus2)/2]; 

 
Str(ielem,1) = D_matb*(bmat_b *transpose(u_elem)); 
Str(ielem,2) = D_mats*(bmat_s1*transpose(u_elem)); 
Str(ielem,3) = D_mats*(bmat_s2*transpose(u_elem)); 

 
Figure 1. Timoshenko 2-Gauss points MATLAB code 

   gaus0 =  0.0;   

  
   bmat_b = [ 0, -1/len, 0, 1/len]; 
   bmat_s1 = [-1/len,-(1-gaus0)/2, 1/len,-(1+gaus0)/2]; 

  
   Str1_g0 = D_matb*(bmat_b *transpose(u_elem)); 
   Str2_g0 = D_mats*(bmat_s1*transpose(u_elem)); 

 
Figure 2. Reduced integration Timoshenko 1-Gauss point MATLAB code  

    K_s = [   1   ,   len/2 ,   -1   ,   len/2 ; 
            len/2 , len^2/4 , -len/2 , len^2/4 ; 
             -1   ,  -len/2 ,    1   ,  -len/2 ; 
            len/2 , len^2/4 , -len/2 , len^2/4 ]; 

             

 
Figure 3. Ks matrix for reduced Timoshenko MATLAB code 
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b) Solve the following problem with 64 elements mesh with  

2 nodes Euler Bernulli element 

2 nodes Timoshenko Full Integrate element 

2 nodes Timoshenko Reduce Integration element. 

Compare the maximum displacements, moments and shear for the 3 elements against 

the a/L relationship. 

Beam data: 

{
 
 

 
 

𝐸 = 21000
𝜈 = 0.25
𝐿 = 4

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎 𝑎𝑛𝑑 𝑎𝑟𝑒𝑎

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =  𝑎
4

12⁄

 

 

 

 

 

 
 

The problem is going to be solved for each 𝑎 value applying the three mentioned elements. 

Them, the results will be compared by representing in graphics the maximum y–displacement, 

moment and shear for each element type against the 𝑎/𝐿 and discussed. 
 

Before calculating some conclusions can be made looking at the problem statement. As de 

problem is symmetric, acting at the beam a distributed constant load: 

- The maximum y-displacement (absolute value) is going to be obtained at the beam middle 

point, 𝑥 = 2. 

- The moment graphics will have parabolic shape, achieving the maximum value at the 

middle point too. 

- About the shear, at the middle point its value should be zero. The maximum values 

(positive and negative) equals in absolute value due to the symmetry, will be obtained at the 

two beam extreme points.  

 

Results and conclusions  

 

Figure 4. Max Shear graphic 
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In general, it can be said that the results for shear, displacement and moment fulfils with the 

expected. About the shear, small differences appear for the two presented Timoshenko types, 

and the value at the different points 𝑎/𝐿 is almost constant for each element type. This is due 

to the fact that a constant distributed load is applied along all the beam where the self-weight 

effects is almost negligible for such small areas. So that, the main force to taking into account 

in the shear calculation is going to be always the applied load, equal for all the studied cases. 

  

Figure 5. Max Y-displacement graphic  

Figure 6. Max Moments graphic 
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At displacement and moment graphics, bigger differences between the element’s types are 

observed, capturing the fact that basic Timoshenko element shows problems for that beams 

whose slenderness ratio is higher. Defining the slenderness ratio parameter as 𝜆 = 𝐿2/𝑎, check 

at the graphics how the difference between Euler and Timoshenko gets bigger as 𝑎/𝐿 goes to 

cero, whereas the solutions are almost the same as we move to the right side. The bad 

performance of Timoshenko is easy to observe at the moment graphics, where the values 

should be for any 𝑎/𝐿 almost constant and they are not.   

Once the shear locking effect is removed from Timoshenko by introducing the “reduced 

integration”, the results between Euler and this new element are so close that it is not possible 

to differentiating them at the graphics. It can be saw how at some point, as the 𝑎/𝐿 value 

increases, the solution between the two Timoshenko elements turns to be finally the same.  

This confirms that with some modifications, the Timoshenko elements achieve performing as 

well as Euler, allowing the user to choose between the most suitable option.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


