Assignment 6

6.1 Program In Matlab the Timoshenko 2 Nodes Beam element with reduce

 integration for the shear stiffness matrix.Many procedures to eliminate shear locking in Timoshenko beam elements have been proposed. Reduced integration is a popular method to reduce the influence of the transverse shear stiffness by under-integrating the terms in $K_{s}^{(e)}$ using a quadrature of one order less than is needed for exact integration. The terms of $K_{b}^{(e)}$ are still integrated exactly.

$$
K_{b}^{(e)}=\left(\frac{\hat{D}_{b}}{l}\right)^{(e)}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

Where: $\hat{D}_{b}=E I_{y}$
For homogeneous material, the computation of $K_{s}^{(e)}$ with a single integration point gives:

$$
K_{s}^{(e)}=\left(\frac{\hat{D}_{s}}{l}\right)^{(e)}\left[\begin{array}{cccc}
1 & \frac{l^{(e)}}{2} & -1 & \frac{l^{(e)}}{2} \tag{2}\\
\cdots & \frac{\left(l^{(e)}\right)^{2}}{4} & -\frac{l^{(e)}}{2} & \frac{\left(l^{(e)}\right)^{2}}{4} \\
& \ldots & 1 & -\frac{l^{(e)}}{2} \\
& & & \frac{\left(l^{(e)}\right)^{2}}{4}
\end{array}\right]
$$

Where: $\hat{D}_{s}=G A^{*}$

6.2 Discussion of the results.

In the following graphs the three methods will be compared by plotting the maximum moment, maximum shear and maximum displacement values for each of the a/L ratios.
L will always have the same value (4 m) and a will take the following values:

$$
\begin{aligned}
& a=0,001 \\
& a=0,005 \\
& a=0,010 \\
& a=0,020 \\
& a=0,050 \\
& a=0,100 \\
& a=0,200 \\
& a=0,400
\end{aligned}
$$

Figure 6.2.1: Maximum moment

Comparing the moment efforts it is possible to observe how for Timoshenko and a low value of the relation a / L, the value has a marked difference with the two remaining methods. When the value of the relation a / L is greater, these three methods are equalized.

Figure 6.2.2: Maximum displacement

Figure 6.2.3: Maximum shear

Finally, for the maximum values of shear and displacement for each of the relationships, the three methods have a similar behavior.
Euler-Bernoulli has a small difference with Timoshenko and Reduced Timoshenko in the case of the shear effort while in the case of maximum displacement Reduced Timoshenko is a bit separated from the two remaining methods.

