Assignment 3

Assignment 3.1

a)

To go from the plane stress to the plane strain problem, the following equation must be verified:

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{E *}{1-\nu *^{2}}\left[\begin{array}{ccc}
1 & \nu * & 0 \\
\nu * & 1 & 0 \\
0 & 0 & \frac{1-\nu *}{2}
\end{array}\right]=\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & 0 \\
\frac{\nu}{1-\nu} & 1 & 0 \\
0 & 0 & \frac{1-2 \nu}{2(1-\nu)}
\end{array}\right]
$$

$\nu *$ will be:

$$
\nu *=\frac{\nu}{1-\nu}
$$

So:

$$
\frac{E}{1-\nu *^{2}}\left[\begin{array}{ccc}
1 & \nu * & 0 \\
\nu * & 1 & 0 \\
0 & 0 & \frac{1-\nu *}{2}
\end{array}\right]=\frac{E *}{1-\frac{\nu^{2}}{(1-\nu)^{2}}}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & 0 \\
\frac{\nu}{1-\nu} & 1 & 0 \\
0 & 0 & \frac{1-2 \nu}{2(1-\nu)}
\end{array}\right]
$$

Thus:

$$
\frac{E *}{1-\frac{\nu^{2}}{(1-\nu)^{2}}}=\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}
$$

And:

$$
E *=\frac{E}{(1+\nu)(1-\nu)}
$$

To go from the plane strain to the plane stress problem, the following equation must be verified:

$$
\frac{E(1-\nu *)}{(1+\nu *)(1-2 \nu *)}\left[\begin{array}{ccc}
1 & \frac{\nu *}{1-\nu *} & 0 \\
\frac{\nu *}{1-\nu *} & 1 & 0 \\
0 & 0 & \frac{1-2 \nu *}{2(1-\nu *)}
\end{array}\right]=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

$\nu *$ can be obtained from:

$$
\frac{1-2 \nu *}{2(1-\nu *)}=\frac{1-\nu}{2} \rightarrow \nu *=\frac{\nu}{1+\boldsymbol{\nu}}
$$

Thus:

$$
\frac{E(1-\nu *)}{(1+\nu *)(1-2 \nu *)}=\frac{E}{1-\nu^{2}}
$$

And:

$$
E *=\frac{E(1+2 \nu)}{(1+\nu)^{2}}
$$

b)

The relation between σ and e is:

$$
\sigma=E e
$$

So:

$$
U=\frac{1}{2} e^{T} E e=\frac{1}{2} e^{T} \sigma=\frac{1}{2}\left[\begin{array}{lll}
e_{x} & e_{y} & 2 e_{x y}
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{x y}
\end{array}\right]=\frac{1}{2}\left(\sigma_{x} e_{x}+\sigma_{y} e_{y}+2 \sigma_{x y} e_{x y}\right)
$$

Using $C=E^{-1}$:

$$
e=C \sigma
$$

Thus:

$$
U=\frac{1}{2} \sigma^{T} C \sigma=\frac{1}{2} \sigma^{T} e=\frac{1}{2}\left[\begin{array}{lll}
\sigma_{x} & \sigma_{y} & \sigma_{x y}
\end{array}\right]\left[\begin{array}{c}
e_{x} \\
e_{y} \\
2 e_{x y}
\end{array}\right]=\frac{1}{2}\left(\sigma_{x} e_{x}+\sigma_{y} e_{y}+2 \sigma_{x y} e_{x y}\right)
$$

Assignment 3.2

1)

First we must compute the area of the element:

$$
A=\frac{1}{2}\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]=1 / 2\left[\begin{array}{lll}
0 & 0 & 1 \\
3 & 1 & 1 \\
2 & 2 & 1
\end{array}\right]=2
$$

Now we can compute the triangular coordinates of the triangle:

$$
\left[\begin{array}{l}
\zeta_{1} \\
\zeta_{2} \\
\zeta_{3}
\end{array}\right]=\frac{1}{2 A}\left[\begin{array}{ccc}
x_{2} y_{3}-x_{3} y_{2} & y_{2}-y_{3} & x_{3}-x_{2} \\
x_{3} y_{1}-x_{1} y_{3} & y_{3}-y_{1} & x_{1}-x_{3} \\
x_{1} y_{2}-x_{2} y_{1} & y_{1}-y_{2} & x_{2}-x_{1}
\end{array}\right]\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ccc}
4 & -1 & -1 \\
0 & 2 & -2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right]
$$

The shape functions derivatives are:

$$
B=\frac{1}{2 A}\left[\begin{array}{cccccc}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -1 & 0 & -2 & 0 & 3 \\
-1 & -1 & -2 & 2 & 3 & -1
\end{array}\right]
$$

The elemental stiffness matrix is:
$K^{e}=B^{T} E B \int_{\Omega^{e}} h d \Omega=\frac{h}{4 A}\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & -1 & -1 \\ 2 & 0 & -2 \\ 0 & -2 & -2 \\ -1 & 0 & 3 \\ 0 & 3 & -1\end{array}\right]\left[\begin{array}{ccc}100 & 25 & 0 \\ 25 & 100 & -2 \\ 0 & 0 & 50\end{array}\right]\left[\begin{array}{cccccc}-1 & 0 & 2 & 0 & -1 & 0 \\ 0 & -1 & 0 & -2 & 0 & 3 \\ -1 & -1 & -2 & 2 & 3 & -1\end{array}\right]$

$$
K^{e}=\left[\begin{array}{cccccc}
18.75 & 9.375 & -12.5 & -6.25 & -6.25 & -3.125 \\
9.375 & 18.75 & 6.25 & 12.5 & -15.625 & -31.25 \\
-12.5 & 6.25 & 75.0 & -37.5 & -62.5 & 31.25 \\
-6.25 & 12.5 & -37.5 & 75.0 & 43.75 & -87.5 \\
-6.25 & -15.625 & -62.5 & 43.75 & 68.75 & -28.125 \\
-3.125 & -31.25 & 31.25 & -87.5 & -28.125 & 118.75
\end{array}\right]
$$

2)

The sum of rows 1,3 and 5 and rows 2,4 and 6 must vanish:

$$
\begin{aligned}
& {\left[\begin{array}{rlllll}
18.75 & 9.375 & -12.5 & -6.25 & -6.25 & -3.125
\end{array}\right]+\left[\begin{array}{llllll}
-12.5 & 6.25 & 75.0 & -37.5 & -62.5 & 31.25
\end{array}\right]+} \\
& +\left[\begin{array}{llllll}
-6.25 & -15.625 & -62.5 & 43.75 & 68.75 & -28.125
\end{array}\right]=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{llllll}
9.375 & 18.75 & 6.25 & 12.5 & -15.625 & -31.25
\end{array}\right]+\left[\begin{array}{lllll}
-6.25 & 12.5 & -37.5 & 75.0 & 43.75
\end{array}\right.} \\
& \quad+\left[\begin{array}{lllll}
-3.125 & -31.25 & 31.25 & -87.5 & -28.125 \\
-118.75
\end{array}\right]=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]+
\end{aligned}
$$

The same happens for the columns:

$$
\begin{aligned}
& {\left[\begin{array}{c}
18.75 \\
9.375 \\
-12.5 \\
-6.25 \\
-6.25 \\
-3.125
\end{array}\right]+\left[\begin{array}{c}
-12.5 \\
6.25 \\
75.0 \\
-37.5 \\
-62.5 \\
31.25
\end{array}\right]+\left[\begin{array}{c}
-6.25 \\
-15.625 \\
-62.5 \\
43.75 \\
68.75 \\
-28.125
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
-31.25
\end{array}\right]+\left[\begin{array}{l}
-\left[\begin{array}{c}
-6.25 \\
12.5 \\
18.75 \\
6.25 \\
0
\end{array}\right] \\
-37.5 \\
75.0 \\
43.75 \\
-87.5
\end{array}\right]+\left[\begin{array}{c}
-3.125 \\
-31.25 \\
31.25 \\
-87.5 \\
-28.125 \\
118.75
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

All this is due to the fact that the elemental stiffness matrix is singular and the element needs a constraint to be able to hold an external load. If no constrains are imposed, then there will be infinite different possible displacements for a given set of external forces. The sum of the odd (or even) rows (or columns) is 0 is because rigid body motions are allowed when no constrain is applied, such that:

$$
\text { For } \mathbf{u}=\left[\begin{array}{c}
a \\
b \\
a \\
b \\
a \\
b
\end{array}\right], \mathbf{K} \mathbf{u}=\mathbf{0} \forall a, b \in \mathbb{R}
$$

