CSMD: Assignment 10: DYnamics

Question 1

Figure 1

The system depicted in figure 1 can be modeled as:

$$
k u-m \frac{d^{2} u}{d t^{2}}=F
$$

The effects of F can be seen in figure 2, which has been obtained for $k=2, m=1 . f_{n}$ is defined as $\sqrt{\frac{k}{m}}$. As can be seen, when a constant force is applied, the system oscillates with the natural frequency $\frac{\sqrt{f_{n}}}{2 \pi}=0.225$ (a whole cycle every 4.44 s). However, for a sinusoidal load with the natural frequency of the structure, the result is unbounded and tends to increase its amplitude without control.

Figure 2

Question 2

A uniform axial bar with length L and negligible mass which is clamped at both ends and has a weight of mass m placed at its center is subjected to three forces: The upper reaction R_{2} (at $y=L$), the reaction at the bottom $R_{1}($ at $y=0)$ and the force due to the mass placed at $y=0$ which is $\mathrm{mg} . R_{1}$ and R_{2} can be obtained from equilibrium of forces and compatibility condition:

$$
\sum F=0 \quad \rightarrow \quad m g=R_{1}-R_{2}
$$

$$
u(0)=u(L)=0 \quad \rightarrow \quad 0=\frac{R_{1} L}{E A}+\frac{R_{1} L}{E A} \quad \rightarrow \quad R_{1}=-R_{2}=\frac{m g}{2}
$$

The displacement at $y=\frac{L}{2}$ is :

$$
u_{\frac{L}{2}}=\frac{R_{1} L}{E A}=\frac{m g L}{2 E A}
$$

The stiffness K is then:

$$
K=\frac{m g}{u_{\frac{L}{2}}}=\frac{2 E A}{L}
$$

Since we are neglecting the mass of the bar, the total mass of the system is m. Thus, the natural frequency of vibration can be expressed as:

$$
f_{n}=\sqrt{2 \frac{E A}{m L}}
$$

Question 3

The consistent element mass matrix is calculated as:

$$
m=\int_{\Omega^{e}} \boldsymbol{N}^{\boldsymbol{T}} \boldsymbol{N} \rho d V
$$

Using an isoparametric representation of the two-node bar element:

$$
\begin{gathered}
m=\rho A \int_{-1}^{1}\left[\begin{array}{c}
\frac{1}{2}(1-\xi) \\
\frac{1}{2}(1+\xi)
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2}(1-\xi) \\
\left.\frac{1}{2}(1+\xi)\right]|J| d \xi= \\
=\rho \frac{A L}{8} \int_{-1}^{1}\left[\begin{array}{cc}
(1-\xi)^{2} & (1-\xi)(1+\xi) \\
(1-\xi)(1+\xi) & (1+\xi)^{2}
\end{array}\right] d \xi=\rho \frac{A L}{8} \int_{-1}^{1}\left[\begin{array}{cc}
1-2 \xi+\xi^{2} & 1-\xi^{2} \\
1-\xi^{2} & 1+2 \xi+\xi^{2}
\end{array}\right] d \xi= \\
=\rho \frac{A L}{8}\left[\begin{array}{cc}
\xi-\xi^{2}+\frac{\xi^{3}}{3} & \xi-\frac{\xi^{3}}{3} \\
\xi-\frac{\xi^{3}}{3} & \xi+\xi^{2}+\frac{\xi^{3}}{3}
\end{array}\right]_{-1}^{1}=\rho \frac{A L}{8}\left[\begin{array}{cc}
\frac{8}{3} & \frac{4}{3} \\
\frac{4}{3} & \frac{8}{3}
\end{array}\right]=\rho \frac{A L}{3}\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\rho} \frac{\boldsymbol{A L}}{\mathbf{3}} & \boldsymbol{\rho} \frac{\mathbf{A L}}{\mathbf{6}} \\
\boldsymbol{\rho} \frac{\mathbf{A L}}{\mathbf{6}} & \boldsymbol{\rho} \frac{\mathbf{A L}}{\mathbf{3}}
\end{array}\right]
\end{array}\right.
\end{gathered}
$$

Question 4

We can express the variation of area as:

$$
A(\xi)=\sum_{i=1}^{2} N_{i}(\xi) A_{i}=\frac{A_{1}}{2}(1-\xi)+\frac{A_{2}}{2}(1+\xi)
$$

Thus:

$$
\begin{gathered}
m=\int_{-1}^{1} \boldsymbol{N}^{\boldsymbol{T}} \boldsymbol{N} \rho A|J| d \xi=\rho \frac{L}{2} \int_{-1}^{1}\left[\begin{array}{c}
\frac{1}{2}(1-\xi) \\
\frac{1}{2}(1+\xi)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2}(1-\xi) & \left.\frac{1}{2}(1+\xi)\right]\left(\frac{A_{1}}{2}(1-\xi)+\frac{A_{2}}{2}(1+\xi)\right) d \xi= \\
=\rho \frac{L}{16} \int_{-1}^{1}\left[\begin{array}{cc}
(1-\xi)^{2} & (1-\xi)(1+\xi) \\
(1-\xi)(1+\xi) & (1+\xi)^{2}
\end{array}\right]\left(A_{1}(1-\xi)+A_{2}(1+\xi)\right) d \xi= \\
=\rho \frac{L}{16} \int_{-1}^{1} A_{1}\left[\begin{array}{cc}
(1-\xi)^{3} & (1-\xi)^{2}(1+\xi) \\
(1-\xi)^{2}(1+\xi) & (1+\xi)^{2}(1-\xi)
\end{array}\right]+A_{2}\left[\begin{array}{cc}
(1-\xi)^{2}(1+\xi) & (1-\xi)(1+\xi)^{2} \\
(1-\xi)(1+\xi)^{2} & (1+\xi)^{3}
\end{array}\right]=
\end{array} .\right.
\end{gathered}
$$

$=\rho \frac{L}{16} \int_{-1}^{1} A_{1}\left[\begin{array}{cc}1-3 \xi+3 \xi^{2}-\xi^{3} & 1-\xi-\xi^{2}+\xi^{3} \\ 1-\xi-\xi^{2}+\xi^{3} & 1+\xi-\xi^{2}-\xi^{3}\end{array}\right]+A_{2}\left[\begin{array}{cc}1-\xi-\xi^{2}+\xi^{3} & 1+\xi-\xi^{2}-\xi^{3} \\ 1+\xi-\xi^{2}-\xi^{3} & 1+3 \xi+3 \xi^{2}+3 \xi^{3}\end{array}\right]=$ $=\rho \frac{L}{16}\left[A_{1}\left[\begin{array}{lll}\xi-\frac{3 \xi^{2}}{2}+\xi^{3}-\frac{\xi^{4}}{4} & \xi-\frac{\xi^{2}}{2}-\frac{\xi^{3}}{3}+\frac{\xi^{4}}{4} \\ \xi-\frac{\xi^{2}}{2}-\frac{\xi^{3}}{3}+\frac{\xi^{4}}{4} & \xi+\frac{\xi^{2}}{2}-\frac{\xi^{3}}{3}-\frac{\xi^{4}}{4}\end{array}\right]+A_{2}\left[\begin{array}{ll}\xi-\frac{\xi^{2}}{2}-\frac{\xi^{3}}{3}+\frac{\xi^{4}}{4} & \xi+\frac{\xi^{2}}{2}-\frac{\xi^{3}}{3}-\frac{\xi^{4}}{4} \\ \xi+\frac{\xi^{2}}{2}-\frac{\xi^{3}}{3}-\frac{\xi^{4}}{4} & \xi+\frac{3 \xi^{2}}{2}+\xi^{3}+\frac{\xi^{4}}{4}\end{array}\right]\right]_{-1}^{1}=$

$$
=\left[\begin{array}{cc}
\rho L \frac{3 A 1+A 2}{12} & \rho L \frac{A 1+A 2}{12} \\
\rho L \frac{A 1+A 2}{12} & \rho L \frac{A 1+3 A 2}{12}
\end{array}\right]
$$

Question 5

The simplest procedure to obtain the lumped mass matrix of the 3D 2-node bar is to assign half of the mass of the bar to every node:

$$
m=\frac{\rho L A}{2} \boldsymbol{I}_{6}=\left[\begin{array}{cccccc}
\frac{\rho L A}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{\rho L A}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{\rho L A}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\rho L A}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\rho L A}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\rho L A}{2}
\end{array}\right]
$$

