CSMD: ASSIGNMENT 10: DYNAMICS

Xavier Corbella Coll May 8, 2016

Question 1
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The system depicted in figure [1| can be modeled as:

d*u
ku —m—7 = F

dt?
The effects of F can be seen in figure [2] which has been obtained for k = 2;m = 1. f, is
defined as \/% . As can be seen, when a constant force is applied, the system oscillates
with the natural frequency *é—f" = 0.225 (a whole cycle every 4.44 s). However, for a
sinusoidal load with the natural frequency of the structure, the result is unbounded and
tends to increase its amplitude without control.
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Figure 2

Question 2

A uniform axial bar with length L and negligible mass which is clamped at both ends
and has a weight of mass m placed at its center is subjected to three forces : The upper
reaction Ry ( at y = L), the reaction at the bottom R; (at y = 0) and the force due to
the mass placed at y = 0 which is mg. R; and Ry can be obtained from equilibrium of
forces and compatibility condition:

Y F=0 — mg=R —-R
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The stifflness K is then:
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K = — = —
u% L

Since we are neglecting the mass of the bar, the total mass of the system is m. Thus, the
natural frequency of vibration can be expressed as:
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Question 3

The consistent element mass matrix is calculated as:

m = NTNpdVv
Qe

Using an isoparametric representation of the two-node bar element:
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Question 4

We can express the variation of area as:
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Question 5

The simplest procedure to obtain the lumped mass matrix of the 3D 2-node bar is to
assign half of the mass of the bar to every node:
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